Supplementary Text S3

We describe a spherical model for the set $\operatorname{SDP}(2)$ of structure tensors. The constraint that the determinant of the structure tensor should be equal to 1 is unnatural since in a given image the values of the structure tensors determinants are likely to vary over a wide range. We saw that the set of structure tensors, $\operatorname{SDP}(2)$, was a foliated manifold whose co-dimension 1 leaves are isomorphic to H^{2}. We can also represent $\operatorname{SDP}(2)$ as the open unit ball of \mathbb{R}^{3}.

Let

$$
\mathcal{T}=\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]
$$

be an element of $\operatorname{SDP}(2)$ of determinant equal to $a b-c^{2}=d^{2} \geq 0$. The change of variables

$$
x_{0}=\frac{a+b}{2} \quad x_{1}=\frac{a-b}{2} \quad x_{2}=c,
$$

indicates that all tensors of determinant equal to d^{2} belong to the sheet of the hyperboloid of equation

$$
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}=d^{2}
$$

corresponding to positive values of x_{0}. If we perform the stereoscopic projection of this sheet with respect to the point of coordinates $(0,0,-d)$ in the plane of equation $x_{0}=0$ one obtains the open disc of radius $d \geq 0$.

Consider now the subset of tensors with determinant less than or equal to $1(0 \leq d \leq 1)$. For each d we have a one to one correspondence between the tensors of determinant equal to d^{2} and the points of the open disk in the plane of equation $x_{0}=0$ centered at the origin and of radius equal to d, hence with the same open disk centered on the x_{0}-axis but in the plane of equation $x_{0}=1-d$. This establishes a one to one correspondence between the tensors of determinant between 0 and 1 (including these values) and the northern half open unit ball of center the origin.

Consider next the subset of tensors with determinant greater than or equal to $1(d \geq 1)$. The inverse of each such tensor has a determinant equal to $0<1 / d \leq 1$. We have therefore a one to one correspondence between the set of tensors of determinant d^{2} and the points of the open disk of radius $1 / d$ in the plane of equation $x_{0}=1 / d-1$ centered on the x_{0}-axis. This establishes a one to one correspondence between the tensors of determinant greater than or equal to 1 and the southern half open unit ball of center the origin.

Combining these two representations we obtain a one to one correspondence between the set $\mathrm{SDP}(2)$ of structure tensor and the open unit ball centered at the origin, see the Figure S1.

This representation has the following nice property. If \mathcal{T} is an element of $\operatorname{SSDP}(2), d \mathcal{T}, d>0$ is an element of $\operatorname{SDP}(2)$ with determinant d^{2}. Let m be the point representing \mathcal{T} and P that representing $d \mathcal{T}$. An easy verification shows that the projection of p of P in the x_{0}-plane is obtained by applying the homotethy of center the origin and of ratio d to the point m.

The Riemannian structure of $\operatorname{SSDP}(2)$ is transported to the open unit ball as follows. Consider two structure tensors \mathcal{T}_{1} and \mathcal{T}_{2} with determinants d_{1}^{2} and d_{2}^{2}. Define $\overline{\mathcal{T}}_{i}=\frac{1}{d_{i}} \mathcal{T}_{i}, i=1,2$ that are in $\operatorname{SSDP}(2)$. The geodesic $\mathcal{G}(t)$ between \mathcal{T}_{1} and \mathcal{T}_{2} can be parameterized by [1]

$$
\mathcal{G}:[0,1] \rightarrow \operatorname{SDP}(2) \quad \text { such that } \quad \mathcal{G}(t)=\mathcal{T}_{1}^{1 / 2} e^{t \log \left(\mathcal{T}_{1}^{-1 / 2} \mathcal{T}_{2} \mathcal{T}_{1}^{-1 / 2}\right)} \mathcal{T}_{1}^{1 / 2}
$$

A simple algebraic manipulation shows that

$$
\mathcal{G}(t)=d_{1}^{1-t} d_{2}^{t} \overline{\mathcal{T}}_{1}^{1 / 2} e^{t \log \left(\overline{\mathcal{T}}_{1}^{-1 / 2} \overline{\mathcal{T}}_{2} \overline{\mathcal{T}}_{1}^{-1 / 2}\right)} \overline{\mathcal{T}}_{1}^{1 / 2}=d_{1}^{1-t} d_{2}^{t} \overline{\mathcal{G}}(t)
$$

where $\overline{\mathcal{G}}(t)$ is the geodesic in $\operatorname{SSDP}(2)$ between $\overline{\mathcal{T}}_{1}$ and $\overline{\mathcal{T}}_{2}$. In the sphere model the corresponding geodesic is obtained very simply as follows. Let m_{1} and m_{2} be the two points of the open unit disk
centered at the origin in the plane of equation $x_{0}=0$ (this is the representation of $\operatorname{SSDP}(2)$). The geodesic between m_{1} and m_{2} is the circular arc going through m_{1} and m_{2} orthogonal to the unit circle. Let m_{t} be the point of this geodesic representing $\overline{\mathcal{G}}(t)$. When t varies from 0 to 1 , the point m_{t} traces the geodesic arc between m_{1} and m_{2}. According to a previous remark, the projection in the $\left(x_{1}, x_{2}\right)$ plane of the point P_{t} representing the tensor $\mathcal{G}(t)$ is obtained by applying the homotethy of center the origin and ratio $d(t)=d_{1}^{1-t} d_{2}^{t}$ to m_{t} and its x_{0}-coordinate is $1-d(t)$ if $d(t) \leq 1$ and $1 / d(t)-1$ if $d(t) \geq 1$.

References

1. Moakher M (2005) A differential geometric approach to the geometric mean of symmetric positivedefinite matrices. SIAM J Matrix Anal Appl 26: 735-747.
