Supplementary text S4

We prove the following proposition that is stated without proof in the Section Methods:
Proposition $1 \Gamma_{2, T}$ is a Fuchsian group for all $T \neq 0 . \Gamma_{4, T}$ (respectively $\Gamma_{6, T}$) is a Fuchsian group if $\cosh T \geq \sqrt{2}$ (respectively if $\cosh T \geq 2$).

Proof According to [1, chapter 2], in order to prove that $\Gamma_{n, t}$ is Fuchsian it is sufficient to prove that it is a discrete subgroup of $\mathrm{SU}(1,1)$. Since $\Gamma_{n, t}$ is the free product of the two cyclic groups K_{n} and A_{T}. Theorem 1 in [2] gives a necessary and sufficient condition for such a subgroup of $\mathrm{SU}(1,1$,$) to be discrete.$ We define $\lambda_{p}=2 \cos \frac{\pi}{p}, p \geq 2$. Rosenberger's first theorem states that a sufficient condition for a free group product G of two cyclic subgroups of $\operatorname{SU}(1,1)$ is that there exist two generators U and V such that

- $\operatorname{Tr}(U)=\lambda_{p}$ or $\operatorname{Tr}(U) \geq 2, \operatorname{Tr}(V)=\lambda_{q}$ or $\operatorname{Tr}(V) \geq 2$,
- $U V \neq \pm \mathrm{Id}$ when $\operatorname{Tr}(U)=\operatorname{Tr}(V)=0$,
- $\operatorname{Tr}\left(U V^{-1}\right) \leq-2$.

Let $r_{2 \pi / n}$ be the element of K_{n} corresponding to the rotation of angle $\pi / n, n=2,4,6$. It is clear that $\Gamma_{n, t}$ is generated by the pair $\left(r_{2 \pi / n}, a_{T}\right)$ and that $\operatorname{Tr}\left(r_{2 \pi / n}\right)=\lambda_{n}$ and $\operatorname{Tr}\left(a_{T}\right)=2 \cosh t$. On the other hand $\operatorname{Tr}\left(r_{2 \pi / n}\left(a_{T}\right)^{-1}\right)=\lambda_{n} \cosh t$ which does not allow us to conclude.

Consider the case $n=2$ and note that $K_{2, t}$ is also generated by the pair $\left(U_{2}^{T}, V_{2}^{T}\right)=\left(r_{\pi}, r_{\pi}^{-1} a_{T}\right)=$ $\left(r_{\pi}, r_{-\pi} a_{T}\right)$. It is easy to check that $\operatorname{Tr}\left(U_{2}^{T}\right)=\lambda_{2}=0, \operatorname{Tr}\left(V_{2}^{T}\right)=\lambda_{2} \cosh T=0, U_{2}^{T} V_{2}^{T}=a_{T} \neq$ Id if $T \neq 0$ and $\operatorname{Tr}\left(U_{2}^{T}\left(V_{2}^{T}\right)^{-1}\right)=-2 \cosh T \leq-2$ for all $T \mathrm{~s}$.

Consider the case $n=4$ and note that $K_{4, T}$ is generated by the pair $\left(U_{4}^{T}, V_{4}^{T}\right)=\left(r_{\pi / 2}, r_{\pi / 2}^{-2} a_{T}\right)=$ $\left(r_{\pi / 2}, r_{-\pi / 2} a_{T}\right)$. It is straightforward to check that $\operatorname{Tr}\left(U_{4}^{T}\right)=\lambda_{4}, \operatorname{Tr}\left(V_{4}^{T}\right)=\lambda_{2} \cosh T=0$ and that $\operatorname{Tr}\left(U_{4}^{T}\left(V_{4}^{T}\right)^{-1}\right)=2 \cos \frac{3 \pi}{4} \cosh T=-\sqrt{2} \cosh T$. Thus $K_{4, T}$ is Fuchsian if $\cosh T \geq \sqrt{2}$.

Consider finally the case $n=6$ and note that $K_{6, t}$ is generated by the pair $\left(U_{6}^{T}, V_{6}^{T}\right)=\left(r_{\pi / 6}, r_{\pi / 6}^{-3} a_{T}\right)=$ $\left(r_{\pi / 6}, r_{-\pi / 2} a_{T}\right)$. It is straightforward to check that $\operatorname{Tr}\left(U_{6}^{T}\right)=\lambda_{6}, \operatorname{Tr}\left(V_{6}^{T}\right)=\lambda_{2} \cosh T=0$ and that $\operatorname{Tr}\left(U_{6}^{T}\left(V_{6}^{T}\right)^{-1}\right)=2 \cos \frac{2 \pi}{3} \cosh T=-\cosh T$. Thus $K_{6, T}$ is Fuchsian if $\cosh T \geq 2$.

References

1. Katok S (1992) Fuchsian Groups. Chicago Lectures in Mathematics. The University of Chicago Press.
2. Rosenberger G (1972) Fuchssche Gruppen, die freies Produkt zweier zyklisher Gruppen sind, und die Gleichung $x^{2}+y^{2}+z^{2}$. Math Ann 199: 213-227.
