Text S1

Supplemental Methods:  Model 

Constraining of kinetic constants for Model 1: Upper layer.  The upper layer of the cubic reaction diagram (Figure 2A) represents binding of Ca2+ to free CaM, including both association and dissociation reactions.  The model defines 8 kinetic rate constants denoted 
[image: image1.wmf]. The four corresponding equilibrium dissociation constants are denoted 
[image: image2.wmf], such that 
[image: image3.wmf] with 
[image: image4.wmf]and 
[image: image5.wmf]. 
[image: image6.wmf] is the dissociation constant for a calcium ion from the 
[image: image7.wmf]terminus of CaM with 
[image: image8.wmf] ions bound.  We refer to these 
[image: image9.wmf] as the “microscopic” dissociation constants to differentiate them from dissociation constants that have been measured without distinguishing which calcium ions bind to each terminus 


[1-3] ADDIN EN.CITE .  We refer to the latter as “macroscopic” dissociation constants and denote them 
[image: image10.wmf]. 

We use three different estimates to obtain ranges for the microscopic dissociation constants. First, we calculated the values of microscopic KD’s by solving a system of equations relating them to the four experimentally determined macroscopic dissociation constants measured by [4].  The four macroscopic equilibrium dissociation constants (
[image: image11.wmf]’s) are associated with a model of interaction of Ca2+ and CaM that includes five states of Ca2+/CaM (Figure S1A).  The states are designated by an index corresponding to the number of bound Ca2+: CaM0, CaM1, CaM2, CaM3, and CaM4. The microscopic equilibrium dissociation constants (also termed
[image: image12.wmf]’s) characterize a more refined model that includes nine states of Ca2+/CaM: CaM0, CaM1C, CaM1N1C, CaM1N, CaM2C, CaM1N2C, CaM2N, CaM2N1C, CaM4 (see Figure S1B).  This model distinguishes between Ca2+ ions bound to the N or C termini of CaM but does not distinguish between the two sites at a terminus.  It includes the assumption that binding of Ca2+ to one terminal is independent of binding of Ca2+ to the other terminal. These two assumptions mean that the microscopic state model has only four equilibrium constants as well: 
[image: image13.wmf]. Here we describe how to derive values for the microscopic constants as a function of the macroscopic constants. 

For any reaction network, it is possible to write a number (R) of independent equations describing the equilibria between different states, where R is equal to the number of states minus one.  (This can be done by excluding just enough reactions from the diagram to remove all loops. One is left with a reaction graph that has no loops or a reaction tree that always has one more state than the number of reactions).  Hence, we can write 4 equilibrium relations involving the macroscopic CaM states and 8 relations involving the microscopic CaM states (see below). This yields 12 equations relating the 4 microscopic equilibrium constants to the 4 macroscopic equilibrium constants. There are 12 unknown concentrations of CaM states we would like to eliminate. Eight variables can be eliminated among the 12 equations. Conservation of atoms between the microscopic and macroscopic states (3 equations) plus conservation of mass (one equation) provide the necessary constraints to do so. Explicitly, for given constant [Ca2+] and [CaM] one may solve the following equations for the equilibrium dissociation constants:



[image: image14.wmf]
As a second way of estimating ranges for the microscopic dissociation constants, we use measurements of dissociation constants of Ca2+ from mutants engineered to permit Ca2+ binding only to the N or C termini  [4].  These values are within a factor of two of those we computed for each terminus from the macroscopic 
[image: image15.wmf] values.  

As a third way of estimating ranges for the microscopic dissociation constants, we use dissociation constants for Ca2+ from individual termini directly measured with the use of tryptic fragments of CaM encompassing the individual N and C termini [3].  These values are also within a factor of two of our computed values.  These estimates provide us with narrow ranges of values for the microscopic KD’s.

On and off rate constants for the reactions in the upper layer are either taken from direct measurements in the literature or derived from the relationships among measured constants and our calculated microscopic dissociation constants.  Off rate constants for dissociation of Ca2+ from each CaM terminus with 2 bound Ca2+ have been measured experimentally [5,6].  Because of limitations of the temporal resolution of fluorescence measurements in these studies, the reported values were those for the rate limiting step, which is the first dissociation of a Ca2+ ion from each terminus (i.e. 
[image: image16.wmf]).  We use these constants, and our calculated microscopic 
[image: image17.wmf]and 
[image: image18.wmf], to calculate 
[image: image19.wmf]and 
[image: image20.wmf].  To calculate on and off rate constants for binding of the first Ca2+ to each terminus, we assume that the observed cooperativity between binding of Ca2+ to the first and second sites results entirely from a change in off rates.  This assumption effectively defines 
[image: image21.wmf] and 
[image: image22.wmf].  We then estimate the corresponding off rates by multiplying the on rates by the calculated microscopic affinity constants 
[image: image23.wmf]and 
[image: image24.wmf].  The resulting 8 kinetic rate constants, which are required to specify binding of Ca2+ to free CaM in the upper layer of Model 1 (Text Figure 2A and Figure S1), are listed in Table S1. 
Example of a calculation of equilibrium constants based on the principle of microscopic reversibility:  Consider the reaction loop specifying reactions among CaM4, CaM1N2C, K•CaM1N2C, and K•CaM4 illustrated in Text Figure 3.  This loop defines the thermodynamic relationships that we use to estimate affinities of free Ca2+ for K•CaM1N2C and of CaM1N2C for CaMKII.  The dissociation constants for the four reactions in the loop are first expressed in terms of free energies, 


[image: image25.wmf]
Because 
[image: image26.wmf] around the loop (microscopic reversibility), 
[image: image27.wmf], yielding a relationship that we use to calculate 
[image: image28.wmf]. 
Fitting of s and r for on and off rate cosntants:  We estimated the on rate constants (
[image: image29.wmf], 
[image: image30.wmf], 
[image: image31.wmf], 
[image: image32.wmf]) and (
[image: image33.wmf] 
[image: image34.wmf]) as well as the corresponding off rate constants by generating ODEs representing the relations in Model 1. For these calculations, we represent s and r as having contributions from both the on and the off rate constants.  For example, the equations 
[image: image35.wmf] represent the dissociation of a single Ca2+ from the N terminus, and 
[image: image36.wmf] represent the dissociation of the first Ca2+ from the N terminus when two Ca2+ ions are bound.  Analogous equations represent dissociation of the two Ca2+ ions  from the C terminus.  Recall that we showed in the main text that the cooperativity coefficients (s and r) for binding of Ca2+ to K•CaMnNcC are equal to those for binding of CaMnNcC to K (which we designate 
[image: image37.wmf]and 
[image: image38.wmf]for clarity in the following derivations).  Because 
[image: image39.wmf]and 
[image: image40.wmf](and thus, 
[image: image41.wmf]and  
[image: image42.wmf]) are determined from experimental measurements, we are left with 4 additional pairs of parameters to estimate, constrained by the four relations 
[image: image43.wmf], 
[image: image44.wmf], 
[image: image45.wmf]and 
[image: image46.wmf]). The simplex method for gradient descent was used to fit the parameters to three sets of experimental data.  Specifically, we fit experimental data for dissociation of CaM from Ca2+•CaM•CaMKII in high (Text Figure 3A) and in low (Text Figure 3B) Ca2+ [data from Figure 2B in 7] and for dissociation of Ca2+ from Ca2+•CaM•CaMKII [Text Figure 3C, data from Fig. 4A in 8].  Fits were made under three different sets of constraints: constant on rates (
[image: image47.wmf]) and varying off rates (Text Figure 3, green), constant off rates (
[image: image48.wmf]) and varying on rates (Text Figure 3, blue), and varying both on and off rates simultaneously (Text Figure 3, red).  The objective function was taken as the sum of the squares of differences between simulations and experiments for each of the three experiments. The best fit was obtained when the on and off components of the cooperativity coefficients were allowed to vary simultaneously (Table S2 and Text Figure 3, red).  The constants providing the best fit converged to nearly identical values when we began the regression at several different starting points, suggesting that the equilibrium relationships are satisfied by a single narrow range of parameter values.

Model 1 (Kennedy2010_Ca2+_CaM_mCaMKII) is available in SBML format in the Biomodels Database located at www.biomodels.net [9].
Derivation of parameters for Model 2: Coarse grained model. Binding of two Ca2+ ions to each of the two termini of CaM is highly cooperative; binding of one Ca2+ to either terminus enhances the affinity of that terminus for a second Ca2+.  We have created a model that treats the binding of a pair of  Ca2+ ions to a terminus as a single event.  We derive the equilibrium binding constants and rate constants from those in Model 1 using a steady state approximation applied to the concentrations of CaM species with odd numbers of bound Ca2+.  For example, the following reactions describe interaction of Ca2+ with the C terminus of CaM in Model 1: 


[image: image49.wmf]

When Ca2+ binds with high cooperativity, the equilibrium for the second reaction is far to the right and the concentration of the intermediate CaMnN1C is close to zero. Thus, we can approximate the reaction in Model 2 as: 



[image: image50.wmf],

where the subscript ss (for steady-state) indicates that the rate constant is derived by expressing the relations in Model 1 as differential equations and setting d[CaMnN1C]/dt = 0 as dictated by the steady state approximation.  Making an analogous approximation for the interaction of Ca2+ with the N terminus and for binding of Ca2+ to K•CaMnNcC yields the model for interactions among Ca2+, CaM, and CaMKII shown in Text Figure 5.  The derived expressions for the on and off rates for interactions of pairs of Ca2+ with the C-terminus of CaM are: 



[image: image51.wmf]


[image: image52.wmf]
The same reasoning yields similar expressions for the on and off rates for interactions of Ca2+ with the N terminus and for interactions among Ca2+, CaM, and CaMKII. 
Consider the sequential Ca2+ binding reactions to the CaM C terminal:



[image: image53.wmf]
We use the Law of Mass Action to write differential equations governing the time evolution of the CaM species concentrations, i.e. 
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At sufficiently high concentrations of Ca2+ compared to CaM, 
[image: image57.wmf]. We will assume this to be the case, consistent with a model in which pairs of Ca2+ bind to the termini nearly simultaneously (such binding becomes increasingly unlikely at low concentrations). Further, if binding of two Ca2+ ions at the C terminal is cooperative, then the concentration of the intermediate species with one Ca2+ bound, [CaM1C] will be very low. Thus we assume 
[image: image58.wmf].  The latter embodies the steady state approximation for the system. Setting the right hand side of Equation 0.2 equal to zero yields the following expression for [CaM1C]:
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Substituting this equation into equations (0.1) and (0.3) and rearranging terms leads to: 
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Interpreting these equations as the Mass Action derivative expressions for the reaction 
[image: image61.wmf]


[image: image62.wmf], 

where the subscript ss refers to the steady state assumption, one can deduce 
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The rates for binding of Ca2+ to the N terminal of CaM can be derived in a similar fashion. Substituting the appropriate parameters from Model 1 for 
[image: image64.wmf] leads to expressions for the kinetic rates in Model 2 as a function of the rates in Model 1.
 

Constraining of parameters for phosphorylation reactions:  Autophosphorylation of monomeric CaMKII (mCaMKII) occurs via an intersubunit reaction. Two molecules of K•CaMnNcC bind to each other, after which one acts as catalyst and the other acts as substrate [Text Figure 6, 10].  We obtain a
[image: image65.wmf]for formation of a complex of two K•CaM4 species by fitting autophosphorylation data from [Figure 5 in 11, supplementary Figure S2].  Attempts to constrain values for 
[image: image66.wmf]and 
[image: image67.wmf] by fitting this data revealed that the fits depend only on the 
[image: image68.wmf] and are not sensitive to the values of  
[image: image69.wmf]or 
[image: image70.wmf].  Therefore, we assume a commonly used value for the on rate constant for diffusion-limited protein-protein interactions, 
[image: image71.wmf]= 50 µM-1s-1 [see 12].  Because there is no data measuring dissociation constants for pairs of K•CaMnNcC for (n, c <4), we assume that all pairs have the same dissociation constant.  

A K•CaMnNcC molecule in a monomer-monomer complex is autophosphorylated with a rate constant dependent on the number of Ca2+ ions bound to the CaM associated with the monomer.  For K•CaM4, the autophosphorylation rate constant (
[image: image72.wmf]) is set equal to the autophosphorylation rate measured when the CaMKII holoenzyme is fully saturated with CaM4 and ATP [4].  Autophosphorylation rates have also been measured when the CaMKII holoenzyme was saturated with two mutant CaMs [CaM2N-WT and CaM2C-WT, 4] that mimic K•CaM2N and K•CaM2C, respectively.   We set the autophosphorylation rates of K•CaM2N and K•CaM2C (
[image: image73.wmf] and 
[image: image74.wmf]) equal to these corresponding rates.  The autophosphorylation rates for K•CaMnNcC with odd numbers of bound Ca2+ are assigned a range of values between those that have been estimated experimentally.  For example, the value of 
[image: image75.wmf]has a range between zero and the higher value of 
[image: image76.wmf]as seen in Table S1; the value of 
[image: image77.wmf]has a range between 
[image: image78.wmf]and 
[image: image79.wmf].  

Latin Hypercube Sampling:  For our implementation of Latin Hypercube sampling, we assumed a uniform distribution of the values of input parameters over the specified range.  The method divides values for each parameter into N equally probable bins.  A single random value from each bin is chosen and is placed in a vector of N values for that parameter (typically N=1000) after which the order of the values is randomized.  The vectors for each parameter are then assembled into an N by M matrix, where M is the number of parameters to be tested. Thus, each of the N columns of the matrix contains a randomized set of values for an individual parameter. 

The concentration ranges of mCaMKII and CaM that we used in the sensitivity analysis are meant to bracket estimated concentrations within spines in vivo (see Methods). They are considerably higher than commonly used in experiments; thus, Ca2+ cannot saturate binding to CaM until it reaches 160 µM (4 X 40µM, the highest CaM concentration).
Calculation of PRCC:  We calculated the PRCC between each input parameter and autophosphorylation of CaMKII (our output of interest) over the time of the simulation.  First, the sum of the concentrations of all autophosphorylated CaMKII species was calculated for the sets of values in each row of the N x M matrix. These values were added to the matrix to generate a new N by M+1 matrix.  A rank matrix was generated by assigning the values in each column a rank value based on their magnitude. A correlation matrix was then generated from the rank matrix wherein the correlation between all parameters was calculated according to the Spearman’s rank correlation coefficient. PRCC values for all parameters were calculated from the correlation matrix by matrix inversion. The 95% confidence intervals of PRCC values for each parameter were calculated according to methods described in [13].
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