Table S1. Parameter Values for Model 1

Most values are taken from the literature or derived from values in the literature. In a few instances values were derived by fitting to published experimental data as described in Methods.

Parameter	Description	Value Range	Reference		
Ca ²⁺ bindir	Ca ²⁺ binding to CaM				
K_D^{1C}	Equilibrium binding of 1 st Ca ²⁺ to CaM C-terminus	7.3 - 12 uM	[1-3]		
k_{off}^{1C}	Ca ²⁺ dissociation from CaM C-terminus	10 - 70 s ⁻¹	[4-6]		
k_{on}^{1C}	Ca ²⁺ binding to CaM C-terminus	1.2 - 9.6 uM ⁻¹ s ⁻¹	[7]		
K_D^{2C}	Equilibrium binding of 2 nd Ca ²⁺ to CaM C-terminus	0.4 - 1.7 uM	[1-3]		
k_{off}^{2C}	2 nd Ca ²⁺ dissociation from CaM C-terminus	8.5 - 10 s ⁻¹	[4]		
k_{on}^{2C}	2 nd Ca ²⁺ binding to CaM C-terminus	$5 - 25 \text{ uM}^{-1}\text{s}^{-1}$	[7]		
K_D^{1N}	Equilibrium binding of 1 st Ca ²⁺ to CaM N-terminus	15 - 40 uM	[1-3]		
$k_{o\!f\!f}^{1N}$	1 st Ca ²⁺ dissociation from CaM N-terminus	1000 - 4000 s ⁻¹	[4,6,8,9]		
k_{on}^{1N}	1 st Ca ²⁺ binding to CaM N-terminus	$25 - 260 \text{ uM}^{-1}\text{s}^{-1}$	[7]		
K_D^{2N}	Equilibrium binding of 2 nd Ca ²⁺ to CaM N-terminus	3.3 - 9 uM	[1-3]		
k_{off}^{2N}	2 nd Ca ²⁺ dissociation from CaM N-terminus	$500 - >1000 \text{ s}^{-1}$	[4-6,8,9]		
k_{on}^{2N}	2 nd Ca ²⁺ binding to CaM N-terminus	$50 - 300 \text{ uM}^{-1}\text{s}^{-1}$	[7]		
	ng to CaMKII	1 1			
k_{on}^{CaM0}	CaM0 binding to CaMKII	$3.8 \text{ mM}^{-1}\text{s}^{-1}$	[10]		
$k_{o\!f\!f}^{CaM0}$	CaM0 dissociating from CaMKII	5.5 s ⁻¹	[10]		
k_{on}^{CaM1C}	CaM1C binding to CaMKII	$59 \text{ mM}^{-1}\text{s}^{-1}$	[10]		
k_{off}^{CaM1C}	CaM1C dissociating from CaMKII	6.1 s ⁻¹	[10]		
K_D^{CaM2C}	Equilibrium binding of CaM2C to CaMKII	1.6 - 8.4 uM	[2]		
k_{on}^{CaM2C}	CaM2C binding to CaMKII	$0.92 \text{ uM}^{-1}\text{s}^{-1}$	[10]		
k_{off}^{CaM2C}	CaM2C dissociating from CaMKII	6.8 s ⁻¹	[10]		
$k_{on}^{CaM1N1C}$	CaM1N1C binding to CaMKII	$0.33 \text{ uM}^{-1}\text{s}^{-1}$	[10]		
$k_{off}^{CaM1N1C}$	CaM1N1C dissociating from CaMKII	3.4 s ⁻¹	[10]		
$k_{on}^{CaM1N2C}$	CaM1N2C binding to CaMKII	$5.2 \text{ uM}^{-1}\text{s}^{-1}$	[10]		
$k_{off}^{CaM1N2C}$	CaM1N2C dissociating from CaMKII	3.8 s ⁻¹	[10]		
k_{on}^{CaM1N}	CaM1N binding to CaMKII	$22 \text{ mM}^{-1}\text{s}^{-1}$	[10]		
k_{off}^{CaM1N}	CaM1N dissociating from CaMKII	3.1 s ⁻¹	[10]		
K_D^{CaM2N}	Equilibrium binding of CaM2N to CaMKII	16.5 - 23.5 uM	[2]		
k_{on}^{CaM2N}	CaM2N binding to CaMKII	$0.12 \text{ uM}^{-1}\text{s}^{-1}$	[10]		
k_{off}^{CaM2N}	CaM2N dissociating from CaMKII	1.7 s ⁻¹	[10]		

1 CaM 2N1C		10 1-1-1	[10]
$k_{on}^{CaM 2N1C}$	CaM2N1C binding to CaMKII	$1.9 \text{ uM}^{-1}\text{s}^{-1}$	[10]
$k_{off}^{CaM2N1C}$	CaM2N1C dissociating from CaMKII	1.9 s ⁻¹	[10]
$K_D^{CaM 4}$	Equilibrium binding of CaM4 to CaMKII	0.04 - 0.08 uM	[2,4,11-13]
$k_{on}^{CaM 4}$	CaM4 binding to CaMKII	$14 - 60 \text{ uM}^{-1}\text{s}^{-1}$	[7]
k_{off}^{CaM4}	CaM4 dissociating from CaMKII	$1.1 - 2.3 \text{ s}^{-1}$	[14]
Ca ²⁺ bindi	ing to CaM-CaMKII		
k_{off}^{K1C}	1 st Ca ²⁺ dissociation from K•CaM C-terminus	33 s^{-1}	[15]
k_{on}^{K1C}	1 st Ca ²⁺ binding to K•CaM C-terminus	$44 \text{ uM}^{-1}\text{s}^{-1}$	[15]
k_{off}^{K2C}	2 nd Ca ²⁺ dissociation from K•CaM C-terminus	0.49 - 4.9 s ⁻¹	[4,8,14,15]
k_{on}^{K2C}	$2^{nd} Ca^{2+}$ binding to K•CaM C-terminus	$44 \text{ uM}^{-1}\text{s}^{-1}$	[15]
$k_{o\!f\!f}^{K1N}$	1 st Ca ²⁺ dissociation from K•CaM N-terminus	300 s ⁻¹	[15]
k_{on}^{K1N}	1 st Ca ²⁺ binding to K•CaM N-terminus	$76 \text{ uM}^{-1}\text{s}^{-1}$	[15]
$k_{o\!f\!f}^{K2N}$	2 nd Ca ²⁺ dissociation from K•CaM N-terminus	$6 - 60 \text{ s}^{-1}$	[4,8,14,15]
k_{on}^{K2N}	2 nd Ca ²⁺ binding to K•CaM N-terminus	$76 \text{ uM}^{-1}\text{s}^{-1}$	[15]
	nutophosphorylation		
K_D^{CaMKII}	Equilibrium binding of two CaMKII subunits	1.3 - 45 uM	[16,17]
k_{on}^{CaMKII}	K•CaM binding to KCaM	$10 - 100 \text{ uM}^{-1}\text{s}^{-1}$	[18,19]
k_{off}^{CaMKII}	K•CaM dissociation from KCaM	13 - 4500 s ⁻¹	[7]
$k_{on}^{CaMKIIp}$	K•CaM binding to pKCaM	$10 - 100 \text{ uM}^{-1}\text{s}^{-1}$	[18,19]
$k_{off}^{CaMKIIp}$	K•CaM dissociation from pKCaM	13 - 4500 s ⁻¹	[7]
k_p^{CaM0}	Autophosphorylation of KCaM0	0 s ⁻¹	[20]
k_p^{CaM1C}	Autophosphorylation of KCaM1C	0.0 - 0.084 s ⁻¹	[20]
k_p^{CaM2C}	Autophosphorylation of KCaM2C	0.044 - 0.084 s ⁻¹	[2]
$k_p^{CaM1N1C}$	Autophosphorylation of KCaM1N1C	$0.0 - 0.16 \text{ s}^{-1}$	[20]
$k_p^{CaM1N2C}$	Autophosphorylation of KCaM1N2C	0.044 - 1.25 s ⁻¹	[20]
k_p^{CaM1N}	Autophosphorylation of KCaM1N	0.0 - 0.16 s ⁻¹	[20]
k_p^{CaM2N}	Autophosphorylation of KCaM2N	0.079 - 0.16 s ⁻¹	[2]
$k_p^{CaM2N1C}$	Autophosphorylation of KCaM2N1C	0.079 - 1.25 s ⁻¹	[20]
$k_p^{CaM 4}$	Autophosphorylation of KCaM4	0.5 - 1.25 s ⁻¹	[2,21]

- 1. Linse S, Helmersson A, Forsen S (1991) Calcium binding to calmodulin and its globular domains. J Biol Chem 266: 8050-8054.
- 2. Shifman JM, Choi MH, Mihalas S, Mayo SL, Kennedy MB (2006) Ca²⁺/Calmodulindependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc Natl Acad Sci U S A 103: 13968-13973.

- 3. Kubota Y, Putkey J, Waxham M (2007) Neurogranin controls the spatiotemporal pattern of postsynaptic Ca²⁺/CaM signaling. Biophys J 93: 3848-3859.
- 4. Gaertner TR, Putkey JA, Waxham MN (2004) RC3/Neurogranin and Ca²⁺/calmodulindependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium. J Biol Chem 279: 39374-39382.
- 5. Martin S, Maune J, Beckingham K, Bayley P (1992) Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. European Journal of Biochemistry 205: 1107-1114.
- 6. Persechini A, White HD, Gansz KJ (1996) Different mechanisms for Ca²⁺ dissociation from complexes of calmodulin with nitric oxide synthase or myosin light chain kinase. J Biol Chem 271: 62-67.
- 7. Calculated from the relationship $K_D = k_{off}/k_{on}$.
- 8. Peersen OB, Madsen TS, Falke JJ (1997) Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca²⁺ binding and implications for kinase activation. Protein Sci 6: 794-807.
- 9. Brown SE, Martin SR, Bayley PM (1997) Kinetic control of the dissociation pathway of calmodulin-peptide complexes. J Biol Chem 272: 3389-3397.
- 10. Determined in this work. Fit to experimental time series data in reference 13.
- 11. Rosenberg OS, Deindl S, Sung R-J, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. 0092-8674 123: 849-860.
- 12. De Koninck P, Schulman H (1998) Sensitivity of CaM Kinase II to the frequency of Ca²⁺ oscillations. Science 279: 227-230.
- 13. Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calciumcalmodulin-dependent protein kinase. Science 256: 1199-1202.
- Singla SI, Hudmon A, Goldberg JM, Smith JL, Schulman H (2001) Molecular characterization of calmodulin trapping by calcium/calmodulin-dependent protein kinase II. J Biol Chem 276: 29353-29360.
- 15. Determined in this work. Fit to experimental time series data in reference 4.
- Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12.
- Determined in this work. Fit to experimental time series data in Bradshaw JM, Hudmon A, Shulman H (2002) Chemical Quenched Flow Kinetic Studies Indicate an Intraholoenzyme Autophosphorylation Mechanism for Ca²⁺. J Biol Chem 277: 20991-20998.
- 18. Assumed to be slightly less than an ideal (diffusion only limited) interaction between enzyme and substrate; as reported in Copeland, Enzymes, 2000.
- 19. Copeland R (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis. New York: Wiley-VCH. 121 p.
- 20. Extrapolated from published values in reference 2.
- 21. Miller SG, Kennedy MB (1986) Regulation of brain Type II Ca²⁺/Calmodulindependent protein kinase by autophosphorylation: a Ca²⁺-triggered molecular switch. 0092-8674 44: 861-870.