

**Figure S5.** Relationship between steady state dose-response and overshoot kinetics in two-component systems. A. Monte Carlo sampling suggests a limit to overshoot level ( $\Delta_{os}$ ) related to the maximum deviation in total phosphoylated response regulator between the system with feedback and the equivalent open-loop system with basal gene expression levels: max( ${}^{\Delta_{s}}_{/[RRP_{tot}]_{ss}}$ ). B. Illustration of the relationship between  $\Delta_{os}$  and  $\Delta_{ss}$ . C-D. Violation of this rule may arise if intermediate steady state differences contribute to overshoot. Parameters for the case violating the rule:  $k_{ap}$ =0.11218,  $k_{ad}$ =2.1113,  $k_{pl}$ =0.42707,  $k_{tp}$ =1.6747,  $k_b$ =6.6956,  $k_d$ =1.8197,  $k_{bl}$ =0.011620,  $k_{dl}$ =0.0041530,  $k_{RRPdm}$ =3.1596,  $k_{RRPmd}$ =2.0857,  $k_{txn}$ =0.000014292,  $k_{SKtsn}$ =0.038183, tsn mult=13.463,  $k_{txnbasal}$ =4.0570×10<sup>-6</sup>,  $K_{mDS}$ =0.0040868,  $K_m$ =0.0063422,  $k_{mRNAdeg}$ =0.015268,  $k_{exp}$ =0.0025826,  $K_{mexp}$ =0.64509,  $k_{exd}$ =0.000044020,  $K_{mexd}$ =1.56357.