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1. Details of MCMC algorithm 

The posterior distribution was sampled by proceeding according to the following MCMC algorithm:  

(1). Starting values of the kernel and time-to-report are assumed to follow a gamma distribution. 

The duration between infection and report for each outbreak are repeatedly drawn from a 

uniform proposal distribution of between 1 and 30 days until a possible augmented starting 

set of infection times (i.e. every outbreak except for the first to occur has a potential source of 

infection) is obtained. 

(2). Each kernel and time to report parameter are updated using a standard, random-walk single-

component Metropolis-Hastings algorithm where proposed updates are drawn on a log-scale 

from a normal distribution centred on the existing parameter value with a variance calibrated, 

by assessing the ratio of proposed moves which are accepted, so as to achieve good MCMC 

mixing (ideally as close to the „golden‟ acceptance ratio of 23%[1] but a ratio of 10-50% was 

ajudged to represent adequate mixing). 

(3). The duration between infection and report, and thus the infection time itself, of individual 

outbreaks are updated using a Metropolis-Hastings independence sampler[2] with the same 

proposal distribution as that used in step (1) to obtain a starting set. Using  now to denote 

the set of current infection times,  the current infection time  of a randomly selected 

commune  is replaced with the proposed infection time with probability 

 

where  denotes the set of infection times with the proposed replacing the 

current infection time. As the likelihood is conditional on the existence a unique initial 

infection, any move resulting in more than one initial outbreak was allocated zero likelihood 

and rejected. In order to achieve faster convergence it is desirable to update more than one 

infection time during this step (updating 10% of infection times appears to be a reasonably 

good rule of thumb). Evaluating the entire likelihood for each of these proposed time results 

in the algorithm becoming computationally intensive. In view of this the sampler was 

designed to calculate the acceptance probability by comparing the existing and proposed 

likelihood in the interval , the only section of the likelihood 

affected by the proposed move.  

Steps (2) and (3) are repeated for a „burn in‟ period of 20000 moves, determined by examining 

parameter traces from different starting parameter values, at which point the MCMC is deemed to 

have converged to its stationary distribution and subsequent moves are treated as samples of the 



posterior distribution of each of the parameters. The chain is then run until its stopping time, 

determined by examining Monte Carlo standard errors and estimates of the posterior distribution of 

the parameters using different starting values, 250000 moves later. Resulting parameter estimates 

from two chains per wave, each run for the required 270000 moves of the MCMC algorithms from 

different starting values are presented in Table S1 and sample MCMC output in Fig. S1. 

Fig. S1| Sample MCMC output. Plots show a, log likelihood and b, power kernel parameter  traces of 

the 2007 outbreak data under the baseline model assumption for two sets of initial parameter values: 

,  (blue lines) and ,  

 

2. Estimating the change in infectivity between waves 

Estimating the proportional change in infectivity between outbreaks is an easily interpretable measure 

of the incremental effect of control policies. This is particularly the case when estimating the overall 

protective effect of a vaccination campaign.  One method for estimating this statistic from the fitting 



procedure is to fit the model to two waves simultaneously, allowing only the kernel parameter  and 

the infection time parameters to vary between the waves.  

3. Comparing Risk Maps  

Where risk maps are being used to estimate the effects of control policies it is necessary to standardise 

the risk maps by using the same denominator poultry population for each set of posterior parameter 

distribution. Fig. S2 shows the results of comparing the posterior estimates of the model parameters 

obtained from 2004/5 and 2007 wave of outbreaks in this way, standardising to the 2007 estimates of 

poultry densities. 

Fig. S2| Comparing local reproductive numbers before and after vaccination. Map highlighting 

communes where the mean posterior estimate of R exceeded 1 or 2 either only 2004/5 or only in 2007, 

with poultry populations standardised to those caluclated for 2007. Map shows an 11% (191 communes) 

reduction in number of communes with R>1 and a 14.1% (79 communes) reduction in those with R>2. 

 

 

 

 

 

 



4. Reconstructing the epidemic process.  

When the times at which a commune is infected and remains infectious are observed the reproductive 

number and the expected distance over which infection was transmitted can by estimated by 

reconstructing the epidemic tree[3]. The probability that commune  is infected by  is then 

 

However, when the times of infection are not available a sufficiently large number of samples of  

have to be drawn at regular intervals during the MCMC.  The probability that  is infects  is then 

estimated by: 

 

where  is the posterior mean of  estimated by calculating the mean of the obtained samples. 

From this the expected distance  of an infected commune  from the commune which infected it can 

then be defined as  

 

Furthermore, the effective reproductive number of an infected commune can be calculated by 

summing the infection probabilities between the commune and all potential offspring communes: 

 

This provides an indication of how the reproductive number changes as the outbreak wave progresses 

due to changes in the level of susceptibility within the communes around outbreaks and the 

application of control measures. If the reproductive number remains below unity for a sufficiently 

long period of time the epidemic has a high probability of dying out. 

5. Evaluating the effects of more rapid detection and culling 

Once the epidemic process has been reconstructed, the effect of detecting and removing an outbreak 

at an earlier time-point can be assessed. First a sample epidemic tree is drawn by assigning a source of 

infection for each outbreak probabilistically from the list of communes which were infectious on the 

day the outbreak commune was first infected. From this, secondary infections which arose between 

the “real-life” removal time of an outbreak and a putative earlier removal time, occurring as a result of 

improved surveillance, are identified, according to the assumed impact of this surveillance. Then, by 

pruning clades of outbreaks attributed to these secondary infections, the epidemic tree which would 



have occurred as a result of the earlier removal time is obtained (assuming pruned outbreaks would 

not have been infected from alternative sources at a latter stage of the wave).  Sampling epidemic 

trees repeatedly (100000 draws in our analysis) provides an estimate of the effects of the earlier 

detection for a given set of parameters and infection times and, in turn, repeating this for the sets of 

infection times and model parameters at regular intervals during the MCMC provides an estimate of 

the posterior distribution of the impact of this earlier detection. 

We used this to estimate the size and duration of the wave which would have occurred in 2007 had the 

rate of detection been maintained to that estimated for either of the earlier waves in our analysis.  To 

do this we calculated the percentile of the time to report distribution represented by the time between 

infection and report  , in each outbreak. The day the outbreak would have been detected during a 

previous wave,  was then calculated so that 

 

where  and  are the time to report distributions of the 2007 and the earlier wave respectively, with 

the latter drawn randomly from the posterior distribution obtained from fitting the model to the 

outbreak data of that wave.  The epidemic tree is then pruned according to this new set of removal 

times. This is then repeated 100000 times at regular intervals during the MCMC, randomly sampling a 

different  each time.  

6. Sensitivity analyses 

Here we assess the robustness of our main qualitative findings to the key assumption made during the 

model formulation: 

i. 24 hour duration between report and removal 

Thus far our analysis is based upon the assumption that outbreaks in all three of the waves are 

removed according to the guidelines distributed to veterinary paraprofessionals in the field[4] and that 

a combination of movement restrictions, quarantine measures and the immediate culling of flocks 

within which infection has been detected combine to ensure the outbreak is removed from the wave 

within 24 hours of the outbreak being reported. In reality, it is likely that it takes a longer time to 

achieve effective control in some, or even all cases. We assess the sensitivity of our results to this 

uncertainty by repeating the analysis with different report to cull durations. As expected, we found 

that as the assumed report to cull duration increased our estimates of the infection to report 

distribution decreased. However, as Fig. S4 illustrates, if the duration between report and removal 

remains constant across all three waves, our estimates still suggest that outbreaks were not detected as 

rapidly during the 2007 wave. 



Whilst the estimate of the reduction in per-capita infectivity following vaccination (obtained by 

following the methodology detailed in section 5) is incrementally muted as the duration between 

reporting and removal is increased across the three waves (arising from the disproportionate increase 

in the estimated infectious period of the two earlier waves relative to that in 2007 (Fig. S4)), these 

estimates are still consistent with a reduction in infectivity and remain statistically significant until the 

report-to-removal delay reaches approximately ten days (Table S2). 

Another plausible scenario we tested was that, as a possible consequence of it being a more 

complicated intervention to implement or the time needed for vaccine-induced immunity to be 

acquired[5], outbreaks in 2007 took a longer time to be effectively controlled by ring vaccination in 

comparison to the mass culling campaigns during the 04/05 and 2005 waves. However, we found that 

even if outbreaks took over a week longer to control in 2007, the estimated mean detection time 

remained greater than during the previous two waves (Fig. S4), whereas the reduction in infectivity 

became more pronounced (Table S2).  

Fig. S3| Sensitivity analysis of the time between the report of an outbreak within a commune and the 

removal time of the outbreak. Estimated probability distribution of the duration between the beginning 

of an outbreak and the date it is reported (plotted values are the posterior mean parameter estimates) for 

the 2004/5 wave (red lines), 2005 wave (blue lines) and 2007 wave (green lines) under the assumption that 

communes remain infectious for at a constant level for 1 day (solid lines), 3 days (dashed lines) and 8 days 

(dotted lines). 
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Table S1| Sensitivity analysis of the assumed duration between the report and the removal of an 

outbreak.  

Time between report and 

removal during 04/05 wave 

Time between report and 

removal during 2007 wave 

Relative infectivity 

(95% C.I.s) 

1 day 1 day 0.55 (0.37-0.8) 

1 day 6 days 0.41 (0.28-0.58) 

3 days 3 days 0.65 (0.45-0.91) 

3 days 6 days 0.58 (0.38-7.5) 

6 days 6 days 0.7 (0.53-0.96) 

11 days 11 days 0.82 (0.63-1.01) 

 

ii. Constant infectivity profile 

As an alternative to the assumption that the communes remain infectious at a constant intensity 

throughout the duration of the infectious period, we explored a second scenario where we assumed 

infectiousness increased monotonically until the outbreak was detected, increasing rapidly during the 

early stages of infection but saturating quickly. For this we used the cumulative distribution function 

of an exponential distribution, with parameter  calibrated so as to level off by the 10th day of the 

outbreak: 

. 

Following the reporting of an outbreak the infectivity of the commune was then assumed to decay 

exponentially for the following week, with a 24 hour „half-life‟. 

Fitting this infectivity curve to the outbreak data we once again found that the model estimated that, 

for the average duration of infection of the earlier waves, infectivity was lower following vaccination 

but that this was offset by a longer infectious period (Fig. S5).  

 

 



Fig. S4| Modelling non-constant infectivity throughout the infectious period. Estimates of infectivity for 

the 2004/5 (red line), 2005 (blue line) and 2007 (green line) waves. Values shown correspond to an 

outbreak with wave specific mean infectious period and show the per-bird instantaneous probability of 

transmission to a susceptible commune 25km away (corresponding to the estimated median transmission 

distance calculated for the 2007 wave). 

 

 

iii. Impact of unobserved outbreaks 

Applying the fitting procedure to a wave where some outbreaks remain unobserved and unreported 

throughout the duration of infection would result in connecting outbreaks which are further apart in 

both time and space. As a result, especially at a high level of unreported outbreaks, the fitting 

procedure is likely to overestimate the commune-level infectious period. As this factor is of particular 

concern following a vaccination campaign where „silent spread‟ may be an issue[6,7], we assessed 

whether it could explain the observed differences in the estimates of the infectious period and 

infectivity following vaccine. 

We simulated an outbreak wave and then randomly selected unobserved outbreaks. Having selected a 

set percentage of unobserved outbreaks, we fitted the model to the remaining infections. We found 

that, as expected, the estimate of infectious period increases as the proportion of detected outbreaks 

decreases. However, as the wave is increasingly „thinned out‟ in this way, the fitting procedure 

increasingly estimates transmission over longer distances. This produces a kernel which 

underestimates short range and overestimates long range transmissibility (Fig. S5). These results 

suggest that it is unlikely that an increased proportion of unobserved outbreaks during the 2007 wave 
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is the explanation for the reduction in the estimate of inter-commune transmissibility between waves 

whilst the notion of an increase in the level unobserved outbreaks does of course support the 

conclusion that there has been a decrease in overall detection capacity. It should be noted, however, 

that this assumes that the ability to detect outbreaks is uniform throughout Vietnam and throughout 

the wave of outbreaks and also that the infectious period of an outbreak would not affect, or be 

affected by, whether or not the outbreak was reported. In reality it is highly probable that this will not 

be the case. For example, short-lived outbreaks may be less likely to be detected and unreported 

outbreaks may remain infectious for a longer length of time than would have been the case had it been 

detected.  

Fig. S5| Simulation study of the effect upon model estimates of underreporting. Figure showing a, how the 

probability of transmission scales by distance according to the spatial kernel and b, the commune level 

infectious period. Plotted values are those used to generate the simulated outbreak (dashed grey lines), 

those calculated using the posterior mean model parameter estimates obtained from the complete 

simulated dataset (solid black lines), the overall mean posterior parameter estimates from fitting the 

model to five datasets where 20% of outbreak are randomly not observed and therefore treated as 

susceptible throughout the wave (dashed black lines) and five datasets where 50% of outbreaks are 

randomly not observed. 
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