Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture: Supplementary Material

These sections contain supplementary materials. Section 1 shows how pure thresholding fails in delineating foreground and background. Section 2 provides a summary of Zernike polynomial for representing morphometric traits. Section 3 summarizes background on non-linear regression methods for identifying molecular targets. Section 4 provides comparative analysis with the Gene Set Enrichment Analysis (GSEA). Section 5 outlines the details of validation protocol that includes quantitative image analysis.

1 Thresholding as a mean for segmentation

Gabor filters eliminate the need for threshold selection and complexities that may arise because of contrast reversal with phase contrast microscopy. Figure 1 shows three examples of thresholding artifacts in our data sets. However, by utilizing Gabor features, these artifacts can be eliminated.

Figure 1: Comparison of thresholding with Gabor filter bank in delineating colonies from background. Clearly, thresholding leaves behind holes and other artifacts.

2 Background on Zernike Polynomial

The Zernike polynomials $V_{mn}(x, y)$ are a set of orthogonal functions that satisfy

$$\int_{x} \int_{y} V_{mn}(x,y)^{*} V_{kl}(x,y) dx dy = \frac{m+1}{\pi} \delta_{mk} \delta_{nl}, \quad x^{2} + y^{2} \le 1,$$
(1)

where δ_{mk} is 1 if m = k, and 0 otherwise. Zernike polynomials expressed in polar coordinates (ρ, θ) are defined as

$$V_{mn}(\rho,\theta) = R_{mn}(\rho)e^{jn\theta},\tag{2}$$

where

$$R_{mn}(\rho) = \sum_{k=0}^{\frac{m-|n|}{2}} (-1)^k \frac{(m-k)!}{k!(\frac{m+|n|}{2}-k)!(\frac{m-|n|}{2}-k)!} \rho^{m-2k}.$$
(3)

The significance of such a representation is that they provide a translation and rotation invariant measure to encode inherent morphometric properties.

3 Molecular predictors of morphological clusters based on nonlinear method

In the non-linear case, the .632+ bootstrap error [1] of the SVM rule with Gaussian kernel is used for identifying differentially expressed genes. Bootstrap is a resampling method for model selection and validation that is shown to perform well for small sample sizes by correcting the bias against sample selection. As discussed by Ambroise and McLachlan [1], the .632+ bootstrap error is estimated by

$$E_{B.632+} = (1-w)E_{resub} + wE_{bs},$$
(4)

where E_{resub} is the proportion of original cell lines misclassified by the SVM rule R, constructed from data associated of all cell lines (i.e., the entire data set is used for training); E_{bs} is the leave-one-out bootstrap error rate for predicting the classification error of a specific cell line, which is not included in the bootstrap samples; and w is the weight. Suppose that K bootstrap samples of size n are obtained by re-sampling with replacement from the original N cell lines of known cluster labels. The re-sampling scheme is designed in such a way that each bootstrap sample contains the same number of cell lines from each morphological cluster. E_{bs} in Eq. (4) is then estimated by

$$E_{bs} = \frac{1}{N} \sum_{i=1}^{N} E_i,$$
 (5)

where

$$E_{i} = \frac{\sum_{k=1}^{K} O_{ik} E_{ik}}{\sum_{k=1}^{K} O_{ik}}.$$
(6)

 O_{ik} is 0 if the *i*th cell line exists in the *k*th bootstrap sample and is 1 otherwise. $E_{ik} = 1$ if the SVM rule R_k , formed from the *k*th bootstrap sample, misclassifies the *i*th cell line, and equals 0 otherwise. The weight w in Eq. (4) is defined by

$$w = \frac{0.632}{1 - 0.368r} \tag{7}$$

where

$$r = \frac{E_{bs} - E_{resub}}{\gamma - E_{resub}} \tag{8}$$

is the relative overfitting rate and γ is the no-information error rate, which is estimated by

$$\gamma = \sum_{i=1}^{c} p_i (1 - q_i), \tag{9}$$

where c is the number of classes or clusters, p_i is the percentage of the cell lines from the *i*th class with respect to the entire population, and q_i is the correct recognition rate as measured by the SVM rule R.

The top genes selected to predict the stellate cluster based on .632+ bootstrap error of SVM with Gaussian kernel are listed in Tables 1, with annotations.

4 Molecular predictors of morphological clusters based on GSEA

We run GSEA on the gene expression data with the label of stellate vs. round/grape-like. Table 2 shows gene sets (gene ontology terms) enriched in the stellate cluster based on the GSEA results. PPARG appears in 4 of the most enriched gene sets.

Gene symbol	Gene description		Expression
			level
PPARG	peroxisome proliferator-activated receptor gamma		+
FADS1///FADS3	fatty acid desaturase 1///fatty acid desaturase 3		+
ZEB1	zinc finger E-box binding homeobox 1		+
PVRL3	poliovirus receptor-related 3		+
AKAP2///PALM2	A kinase (PRKA) anchor protein 2///paralemmin 2///PALM2-		+
///PALM2-AKAP2	AKAP2		
DOCK10	dedicator of cytokinesis 10		+
CLCN6	chloride channel 6		+
CTAGE4///LOC100142659	similar to CTAGE6///CTAGE family, member $4///$ CTAGE fam-	0.0047	-
///LOC441294	ily member		
DAB2	disabled homolog 2, mitogen-responsive phosphoprotein	0.0048	+
	(Drosophila)		
FLJ10357	hypothetical protein FLJ10357	0.0063	+
PALM2-AKAP2	PALM2-AKAP2	0.0095	+

Table 1: Best genes for predicting the stellate cluster based on .632+ bootstrap error of SVM with Gaussian kernel ($E_{B.632+} < 1\%$).

5 Validation

Kenny's lab has been responsible for validation of PPAR γ against the stellate line. Validation against triple negative mammary tissue has been performed by Dr. Baehner, a pathologist. His conclusion is that there is a focal difference in localization of PPAR γ between normal and triple negative tissue sections. Nevertheless, we opted to quantify these differences using a recently developed system. In this system, nuclear regions are segmented, and the regions between neighboring nuclei are partitioned through Voronoi tessellation. Next, the brown signal associated with PPAR γ is deconvolved from hematoxylin (e.g., nuclear labeling blue signal) through non-negative matrix factorization [2]. Finally, the signals within the nuclear regions are accumulated on a cell-by-cell basis. Intermediate results are shown in Figure 2. Each segmented nuclear reveals a distribution corresponding to PPAR γ . These distributions are accumulated for normal and triple negative cells, and results are reported.

References

- 1. Ambroise C, McLachlan G (2002) Selection bias in gene extraction on the basis of microarray geneexpression data. Proc Natl Acad Sci USA 99: 6562-6566.
- 2. Rabinovich A, Agarwal S, Laris C, Price J, Belongie S (2003) Unsupervised color decomposition of histologically stained tissue samples. Arch Pathol Lab Med .

Table 2: Gene sets (gene ontology terms) enriched in the stellate cluster based on GSEA results.						
GO term	Related genes	NES	p-val	FDR		
Positive regula-	ACIN1,ACVR1B,ACVR2A,ADIG,BMP4,BMPR1B,BOC,BTG1,	1.8190	0	0.1928		
tion of cell dif-	CALCA,ETS1,FOXO3,IGFBP3,IL20,IL7,INHBA,NME2, PPARG ,					
ferentiation	RUNX1,SART1,SCIN,SOCS5,TBX5,TGFB2,VWC2,ZAP70					
Contractile	ABRA,ACTA1,CDK5R1,DES,DMD,KRT19,MYBPC1,MYL3,	1.7450	0.0045	0.2780		
fiber	MYL5,MYL6B,MYL9,MYLPF,MYOM1,MYOZ2,NEB,SVIL,					
	TNNC1,TNNI3,TNNT2,TPM1,TPM2,TPM3,TPM4,TTN,VCL					
Contractile	ABRA,ACTA1,DES,DMD,KRT19,MYL3,MYL5,MYL6B,MYL9,	1.8193	0.0032	0.2881		
fiber part	MYLPF, MYOM1, MYOZ2, NEB, SVIL, TNNC1, TNNI3, TNNT2,					
-	TPM1,TPM2,TPM3,TPM4,TTN,VCL					
Response to	ALB,ASNS,CARTPT,CCKAR,CDKN1A,CDKN2B,CDKN2D,	1.7161	0.0154	0.3069		
extracellular	CHMP1A, ENPP1, ENSA, FADS1, GCGR, GHRL, GHSR, GIPR, GNAI2,					
stimulus	LEP.NPY.NUAK2.OGT.PCSK9. PPARG .PPP1R9B.RASGRP4.RPS19.					
	SREBF1,SST,SSTR1,SSTR2,STC1,STC2,TP53,TULP4	-)				
Basolateral	ACTN1.ACTN2.ACTN3.ATP7A.ATP7B.B4GALT1.BCAR1.BEST1.	1.7547	0.0046	0.3160		
plasma mem-	BSND,C9orf58,CADM1,CLDN19,DLG1,DST,ERBB2IP,EVL,LAYN,					
brane	LDLRAP1.LIMA1.MET.MUC20.MYO1C.NEXN.NRAP.PTPRC.					
	SLC16A10.SLC4A11.SNIP.SORBS1.SORBS3.STX2.STX4.TJP1.					
	TRIP6.VCL					
Response to	ALB,ASNS,CARTPT,CCKAR,CDKN2B,CDKN2D,CHMP1A,	1.8270	0	0.5209		
nutrient levels	ENPP1,ENSA,FADS1,GCGR,GHRL,GHSR,GIPR,GNAI2,LEP,					
	NPY,NUAK2,OGT,PCSK9, PPARG ,SREBF1,SST,SSTR1,SSTR2,					
	STC1,STC2,TP53,TULP4					
DNA depen-	BPTF,CHD1,CHD2,CHD3,CHD4,DHX9,ERCC6,ERCC8,G3BP1,	1.5202	0.0465	0.8447		
dent atpase	PIF1,RAD51,RAD54B,RBBP4,RECQL,RFC3,RUVBL2,SMARCA1,					
activity	SMARCAL1,TOP2A,TTF2,XRCC5,XRCC6					
Positive regula-	BCAR1,C2,CADM1,CD1D,CD79A,CDH13,CEBPG,CFHR1,CRTAM,	1.5007	0.0175	0.8855		
tion of response	CX3CL1,EEF1E1,EREG,FYN,GHRL,GHSR,IFNK,IKBKG,IL12A,					
to stimulus	IL12B,IL29,IL8,KRT1,LAT2,MALT1,MAP3K7,MBL2,NFAM1,					
	NPY,PRKCG,PTPRC,SCG2,SLA2,SLIT2,TGFB2,THY1,TLR8,					
	TNFRSF1A,TRAF2,TRAF6,TRAT1,UBE2N					
Regulation of	ACIN1,ACVR1B,ACVR2A,ADIG,BMP4,BMPR1B,BOC,BTG1,	1.5248	0.0101	0.9034		
cell differentia-	CALCA,CARTPT,CDK6,CNTN4,DTX1,EREG,ETS1,FOXO3,FOXO4	,				
tion	GPR98,IGFBP3,IL20,IL27,IL4,IL7,INHA,INHBA,IQCB1,LDB1,					
	MAFB,MAP4K1,NANOG,NF1,NLGN1,NME2,NOTCH1,NOTCH2,					
	NOTCH4,NPHP3,PF4, PPARG ,RUNX1,SART1,SCIN,SHH,SNF1LK,					
	SOCS5,SPI1,SPINK5,TAF8,TBX3,TBX5,TCFL5,TGFB2,TWIST2,					
	USH2A,VWC2,YWHAG,YWHAH,ZAP70,ZBTB16,ZNF675					
Positive regula-	BCAR1,C2,CADM1,CD1D,CD79A,CFHR1,CRTAM,EREG,FYN,	1.4725	0.0152	0.9184		
tion of immune	IFNK,IKBKG,IL12A,IL12B,IL29,KRT1,LAT2,MALT1,MAP3K7,					
response	MBL2,NFAM1,PTPRC,SLA2,TGFB2,THY1,TLR8,TRAF2,TRAF6,					
-	TRAT1,UBE2N					
Extracellular	ACAN,CHI3L1,COL4A2,COL4A4,COMP,DSPP,EFEMP2,FBLN1,	1.5304	0.0308	0.9642		
matrix struc-	FBLN2,FBN1,FBN2,IMPG1,IMPG2,KAL1,LAMA1,LAMA4,					
tural con-	LAMB1,LAMC1,MATN1,MATN3,MEPE,MFAP5,MGP,MUC2,					
stituent	OPTC,PRELP,TFPI2					

Table 2: Gene sets (gene ontology terms) enriched in the stellate cluster based on GSEA results

Table 3: Expression of PPAR γ in 3D vs. 2D in log2 scale. For differential expression between stellate and round/grape-like cell lines in 3D culture, PPAR γ ranks as the top gene with p-value of 9.13E - 15 and FDR-adjusted p-value of 9.54E - 11. In 2D culture, PPAR γ ranks as the 462-th gene with p-value of 0.0023 and FDR-adjusted p-value of 0.0671.

Subpopulation	Cell line	3D	2D					
	600MPE	0.3290	-0.1223					
	BT474	-0.6718	-0.6213					
	BT483	-1.1710	-0.7686					
	HCC1569	0.3118	0.0880					
	HCC70	-0.6482	-0.3973					
Round	MCF12A	-0.5424	0.2205					
	MCF7	-1.1541	0.3275					
	MDAMB415	-0.6063	-0.2282					
	S1	-0.8628	NA					
	T4	-1.2737	NA					
	T47D	-0.9862	-0.3399					
	AU565	NA	-0.2708					
	CAMA1	NA	-0.4964					
	MDAMB361	-1.2273	-0.2731					
	MDAMB453	-0.9527	-0.6809					
Grape-like	MDAMB468	-0.0010	0.3849					
	SKBR3	-0.1549	0.0692					
	UACC812	1.0200	1.1344					
	ZR751	-1.0792	-0.5508					
	ZR75B	-0.8879	-0.6201					
	BT549	2.4880	0.3240					
Stellato	HS578T	2.7509	0.2887					
Stellate	MDAMB231	2.4872	0.9287					
	MDAMB436	2.8415	1.6037					

Figure 2: Quantitative analysis of histological sections: (a) original image; (b) Voronoi tessellation following nuclear segmentation, and (c) non-negative matrix factorization corresponding to PPAR γ .