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Molecular Predictors of 3D Morphogenesis by Breast Cancer
Cell Lines in 3D Culture: Supplementary Material

These sections contain supplementary materials. Section 1 shows how pure thresholding fails in delin-
eating foreground and background. Section 2 provides a summary of Zernike polynomial for representing
morphometric traits. Section 3 summarizes background on non-linear regression methods for identify-
ing molecular targets. Section 4 provides comparative analysis with the Gene Set Enrichment Analysis
(GSEA). Section 5 outlines the details of validation protocol that includes quantitative image analysis.

1 Thresholding as a mean for segmentation

Gabor filters eliminate the need for threshold selection and complexities that may arise because of contrast
reversal with phase contrast microscopy. Figure 1 shows three examples of thresholding artifacts in our
data sets. However, by utilizing Gabor features, these artifacts can be eliminated.
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Figure 1: Comparison of thresholding with Gabor filter bank in delineating colonies from background.
Clearly, thresholding leaves behind holes and other artifacts.

2 Background on Zernike Polynomial

The Zernike polynomials Vmn(x, y) are a set of orthogonal functions that satisfy
∫

x

∫

y

Vmn(x, y)∗Vkl(x, y)dxdy =
m + 1

π
δmkδnl, x2 + y2 ≤ 1, (1)

where δmk is 1 if m = k, and 0 otherwise. Zernike polynomials expressed in polar coordinates (ρ, θ) are
defined as

Vmn(ρ, θ) = Rmn(ρ)ejnθ, (2)

where

Rmn(ρ) =

m−|n|
2∑

k=0

(−1)k (m− k)!

k!(m+|n|
2 − k)!(m−|n|

2 − k)!
ρm−2k. (3)
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The significance of such a representation is that they provide a translation and rotation invariant measure
to encode inherent morphometric properties.

3 Molecular predictors of morphological clusters based on non-
linear method

In the non-linear case, the .632+ bootstrap error [1] of the SVM rule with Gaussian kernel is used for
identifying differentially expressed genes. Bootstrap is a resampling method for model selection and
validation that is shown to perform well for small sample sizes by correcting the bias against sample
selection. As discussed by Ambroise and McLachlan [1], the .632+ bootstrap error is estimated by

EB.632+ = (1− w)Eresub + wEbs, (4)

where Eresub is the proportion of original cell lines misclassified by the SVM rule R, constructed from
data associated of all cell lines (i.e., the entire data set is used for training); Ebs is the leave-one-out
bootstrap error rate for predicting the classification error of a specific cell line, which is not included in
the bootstrap samples; and w is the weight. Suppose that K bootstrap samples of size n are obtained
by re-sampling with replacement from the original N cell lines of known cluster labels. The re-sampling
scheme is designed in such a way that each bootstrap sample contains the same number of cell lines from
each morphological cluster. Ebs in Eq. (4) is then estimated by

Ebs =
1
N

N∑

i=1

Ei, (5)

where

Ei =
∑K

k=1 OikEik∑K
k=1 Oik

. (6)

Oik is 0 if the ith cell line exists in the kth bootstrap sample and is 1 otherwise. Eik = 1 if the SVM rule
Rk, formed from the kth bootstrap sample, misclassifies the ith cell line, and equals 0 otherwise. The
weight w in Eq. (4) is defined by

w =
0.632

1− 0.368r
(7)

where
r =

Ebs − Eresub

γ − Eresub
(8)

is the relative overfitting rate and γ is the no-information error rate, which is estimated by

γ =
c∑

i=1

pi(1− qi), (9)

where c is the number of classes or clusters, pi is the percentage of the cell lines from the ith class with
respect to the entire population, and qi is the correct recognition rate as measured by the SVM rule R.

The top genes selected to predict the stellate cluster based on .632+ bootstrap error of SVM with
Gaussian kernel are listed in Tables 1, with annotations.

4 Molecular predictors of morphological clusters based on GSEA

We run GSEA on the gene expression data with the label of stellate vs. round/grape-like. Table 2 shows
gene sets (gene ontology terms) enriched in the stellate cluster based on the GSEA results. PPARG
appears in 4 of the most enriched gene sets.
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Table 1: Best genes for predicting the stellate cluster based on .632+ bootstrap error of SVM with
Gaussian kernel (EB.632+ < 1%).

Gene symbol Gene description EB.632+ Expression

level

PPARG peroxisome proliferator-activated receptor gamma 0 +

FADS1///FADS3 fatty acid desaturase 1///fatty acid desaturase 3 0 +

ZEB1 zinc finger E-box binding homeobox 1 0.0013 +

PVRL3 poliovirus receptor-related 3 0.0024 +

AKAP2///PALM2

///PALM2-AKAP2

A kinase (PRKA) anchor protein 2///paralemmin 2///PALM2-

AKAP2

0.0036 +

DOCK10 dedicator of cytokinesis 10 0.0037 +

CLCN6 chloride channel 6 0.0043 +

CTAGE4///LOC100142659

///LOC441294

similar to CTAGE6///CTAGE family, member 4///CTAGE fam-

ily member

0.0047 -

DAB2 disabled homolog 2, mitogen-responsive phosphoprotein

(Drosophila)

0.0048 +

FLJ10357 hypothetical protein FLJ10357 0.0063 +

PALM2-AKAP2 PALM2-AKAP2 0.0095 +

5 Validation

Kenny’s lab has been responsible for validation of PPARγ against the stellate line. Validation against
triple negative mammary tissue has been performed by Dr. Baehner, a pathologist. His conclusion
is that there is a focal difference in localization of PPARγ between normal and triple negative tissue
sections. Nevertheless, we opted to quantify these differences using a recently developed system. In this
system, nuclear regions are segmented, and the regions between neighboring nuclei are partitioned through
Voronoi tessellation. Next, the brown signal associated with PPARγ is deconvolved from hematoxylin
(e.g., nuclear labeling blue signal) through non-negative matrix factorization [2]. Finally, the signals
within the nuclear regions are accumulated on a cell-by-cell basis. Intermediate results are shown in
Figure 2. Each segmented nuclear reveals a distribution corresponding to PPARγ. These distributions
are accumulated for normal and triple negative cells, and results are reported.
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Table 2: Gene sets (gene ontology terms) enriched in the stellate cluster based on GSEA results.
GO term Related genes NES p-val FDR

Positive regula-

tion of cell dif-

ferentiation

ACIN1,ACVR1B,ACVR2A,ADIG,BMP4,BMPR1B,BOC,BTG1,

CALCA,ETS1,FOXO3,IGFBP3,IL20,IL7,INHBA,NME2,PPARG,

RUNX1,SART1,SCIN,SOCS5,TBX5,TGFB2,VWC2,ZAP70

1.8190 0 0.1928

Contractile

fiber

ABRA,ACTA1,CDK5R1,DES,DMD,KRT19,MYBPC1,MYL3,

MYL5,MYL6B,MYL9,MYLPF,MYOM1,MYOZ2,NEB,SVIL,

TNNC1,TNNI3,TNNT2,TPM1,TPM2,TPM3,TPM4,TTN,VCL

1.7450 0.0045 0.2780

Contractile

fiber part

ABRA,ACTA1,DES,DMD,KRT19,MYL3,MYL5,MYL6B,MYL9,

MYLPF,MYOM1,MYOZ2,NEB,SVIL,TNNC1,TNNI3,TNNT2,

TPM1,TPM2,TPM3,TPM4,TTN,VCL

1.8193 0.0032 0.2881

Response to

extracellular

stimulus

ALB,ASNS,CARTPT,CCKAR,CDKN1A,CDKN2B,CDKN2D,

CHMP1A,ENPP1,ENSA,FADS1,GCGR,GHRL,GHSR,GIPR,GNAI2,

LEP,NPY,NUAK2,OGT,PCSK9,PPARG,PPP1R9B,RASGRP4,RPS19,

SREBF1,SST,SSTR1,SSTR2,STC1,STC2,TP53,TULP4

1.7161 0.0154 0.3069

Basolateral

plasma mem-

brane

ACTN1,ACTN2,ACTN3,ATP7A,ATP7B,B4GALT1,BCAR1,BEST1,

BSND,C9orf58,CADM1,CLDN19,DLG1,DST,ERBB2IP,EVL,LAYN,

LDLRAP1,LIMA1,MET,MUC20,MYO1C,NEXN,NRAP,PTPRC,

SLC16A10,SLC4A11,SNIP,SORBS1,SORBS3,STX2,STX4,TJP1,

TRIP6,VCL

1.7547 0.0046 0.3160

Response to

nutrient levels

ALB,ASNS,CARTPT,CCKAR,CDKN2B,CDKN2D,CHMP1A,

ENPP1,ENSA,FADS1,GCGR,GHRL,GHSR,GIPR,GNAI2,LEP,

NPY,NUAK2,OGT,PCSK9,PPARG,SREBF1,SST,SSTR1,SSTR2,

STC1,STC2,TP53,TULP4

1.8270 0 0.5209

DNA depen-

dent atpase

activity

BPTF,CHD1,CHD2,CHD3,CHD4,DHX9,ERCC6,ERCC8,G3BP1,

PIF1,RAD51,RAD54B,RBBP4,RECQL,RFC3,RUVBL2,SMARCA1,

SMARCAL1,TOP2A,TTF2,XRCC5,XRCC6

1.5202 0.0465 0.8447

Positive regula-

tion of response

to stimulus

BCAR1,C2,CADM1,CD1D,CD79A,CDH13,CEBPG,CFHR1,CRTAM,

CX3CL1,EEF1E1,EREG,FYN,GHRL,GHSR,IFNK,IKBKG,IL12A,

IL12B,IL29,IL8,KRT1,LAT2,MALT1,MAP3K7,MBL2,NFAM1,

NPY,PRKCG,PTPRC,SCG2,SLA2,SLIT2,TGFB2,THY1,TLR8,

TNFRSF1A,TRAF2,TRAF6,TRAT1,UBE2N

1.5007 0.0175 0.8855

Regulation of

cell differentia-

tion

ACIN1,ACVR1B,ACVR2A,ADIG,BMP4,BMPR1B,BOC,BTG1,

CALCA,CARTPT,CDK6,CNTN4,DTX1,EREG,ETS1,FOXO3,FOXO4,

GPR98,IGFBP3,IL20,IL27,IL4,IL7,INHA,INHBA,IQCB1,LDB1,

MAFB,MAP4K1,NANOG,NF1,NLGN1,NME2,NOTCH1,NOTCH2,

NOTCH4,NPHP3,PF4,PPARG,RUNX1,SART1,SCIN,SHH,SNF1LK,

SOCS5,SPI1,SPINK5,TAF8,TBX3,TBX5,TCFL5,TGFB2,TWIST2,

USH2A,VWC2,YWHAG,YWHAH,ZAP70,ZBTB16,ZNF675

1.5248 0.0101 0.9034

Positive regula-

tion of immune

response

BCAR1,C2,CADM1,CD1D,CD79A,CFHR1,CRTAM,EREG,FYN,

IFNK,IKBKG,IL12A,IL12B,IL29,KRT1,LAT2,MALT1,MAP3K7,

MBL2,NFAM1,PTPRC,SLA2,TGFB2,THY1,TLR8,TRAF2,TRAF6,

TRAT1,UBE2N

1.4725 0.0152 0.9184

Extracellular

matrix struc-

tural con-

stituent

ACAN,CHI3L1,COL4A2,COL4A4,COMP,DSPP,EFEMP2,FBLN1,

FBLN2,FBN1,FBN2,IMPG1,IMPG2,KAL1,LAMA1,LAMA4,

LAMB1,LAMC1,MATN1,MATN3,MEPE,MFAP5,MGP,MUC2,

OPTC,PRELP,TFPI2

1.5304 0.0308 0.9642
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Table 3: Expression of PPARγ in 3D vs. 2D in log2 scale. For differential expression between stellate
and round/grape-like cell lines in 3D culture, PPARγ ranks as the top gene with p-value of 9.13E − 15
and FDR-adjusted p-value of 9.54E − 11. In 2D culture, PPARγ ranks as the 462-th gene with p-value
of 0.0023 and FDR-adjusted p-value of 0.0671.

Subpopulation Cell line 3D 2D

Round

600MPE 0.3290 -0.1223
BT474 -0.6718 -0.6213
BT483 -1.1710 -0.7686

HCC1569 0.3118 0.0880
HCC70 -0.6482 -0.3973

MCF12A -0.5424 0.2205
MCF7 -1.1541 0.3275

MDAMB415 -0.6063 -0.2282
S1 -0.8628 NA
T4 -1.2737 NA

T47D -0.9862 -0.3399

Grape-like

AU565 NA -0.2708
CAMA1 NA -0.4964

MDAMB361 -1.2273 -0.2731
MDAMB453 -0.9527 -0.6809
MDAMB468 -0.0010 0.3849

SKBR3 -0.1549 0.0692
UACC812 1.0200 1.1344

ZR751 -1.0792 -0.5508
ZR75B -0.8879 -0.6201

Stellate

BT549 2.4880 0.3240
HS578T 2.7509 0.2887

MDAMB231 2.4872 0.9287
MDAMB436 2.8415 1.6037
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Figure 2: Quantitative analysis of histological sections: (a) original image; (b) Voronoi tessellation
following nuclear segmentation, and (c) non-negative matrix factorization corresponding to PPARγ.


