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Supplemental Material 

“Stochastic Model of Integrin-mediated Signaling and Adhesion Dynamics at 
the Leading Edges of Migrating Cells,” by Cirit et al. 

Text S1: Stochastic Modeling Details 

One-compartment simulations 

 Here we define the propensity functions for each of the stochastic transitions in the 

model.  As prescribed in the main text, we relate dimensionless model variables to numbers of 

molecules by scaling factors, indicated with an asterisk, e.g. N = N*n, where N is the absolute 

number of nascent adhesions in the control volume and n is the corresponding dimensionless 

variable.  Based on the formulation of Eqs. 1-7 for the dimensionless variables, the other scaling 

factors are related to N* as follows. 
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The present model contains both mechanistic and phenomenological elements, and therefore the 

stochastic version of the model is not automatically specified in the way that a mass-action 

model would be.  Our propensity functions, akin to reaction rates (given in units of number of 

molecules per minute), are as follows. 
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 PAK activation (
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In these functions, the dimensionless values r, s (v is a function of r and s), m, and p are 

calculated according to r = R/R*, etc. 

 One point that warrants additional discussion is the way in which paxillin 

phosphorylation and PAK activation are handled above.  As in the deterministic model, we 

collectively account for turnover and maturation of all nascent adhesions N; N subsumes X 

(nascent adhesion complexes with phosphorylated paxillin), which in turn subsumes P (nascent 

adhesion complexes harboring active PAK).  An alternative way to model this is to define N as 

the subset of nascent adhesions without paxillin phosphorylated; handled that way, the 

propensity functions for 
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respectively (with N – X replaced with N), and additional transitions 
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X " S  (maturation) would be needed.  Accordingly, one would be inclined to define X as the 

subset of nascent adhesions with paxillin phosphorylated but not harboring active PAK, in which 

case the propensity functions for 
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replace X with X + P.  These two model variations give approximately identical results provided 

that the values of the rate constants kd,x and kd,p are sufficiently large (consistent with the 

assumption of fast kinetics in Eqs. 5 and 7).  Rapid equilibration among N, X, and P also ensures 

that the quantities N – X and X – P remain ≥ 0 throughout the simulation. 

 

Spatially extended simulations 

 As explained in the main text, we implemented spatially extended stochastic simulations 

using the Next Subvolume Method.  In addition to the reaction propensities specified in the 

previous section, the spatial simulations account for diffusion of species i between adjacent 

compartments, each modeled as a “hopping” reaction with first-order rate constant Di/L2, where 

Di is the diffusivity of species i, and L is the node spacing between adjacent compartments.  This 

formulation may be applied to systems with d = 1, 2, or 3 spatial dimensions, where each 

compartment has 2d nearest neighbors.  Thus, in the absence of other reactions, the mean-

squared displacement of species i is equal to 2dDit, where t is time. 
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 A suitable compromise between numerical accuracy and computational expense is 

generally achieved by setting the node spacing L equal to the smallest of the dynamic length 

scales, 
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, where τi is the mean lifetime of diffusible species i.  In the simulations shown 

in Fig. 6, only active Rac (r) is diffusible, and τr = 1/kd,r.  As explained in the main text, we used 

literature estimates of Dr and kd,r to obtain L = Lr ≈ 2 µm. 

 We assume a one-dimensional (d = 1) geometry, corresponding to the contour of a 

leading edge, with periodic boundary conditions.  To be certain, this is an abstraction of the 

actual system (see the illustration below).  As the leading edge advances, adhesions move 

relative to the frame of reference, in the dimension orthogonal to the leading edge, by 

convection.  This is handled implicitly in the model.  For reasons that are not yet completely 

clear, the zone where nascent adhesions are found is apparently confined to that of actin 

polymerization/depolymerization at the leading edge; accordingly, nascent adhesion turnover 

depends on dimensionless protrusion velocity v because this determines how fast nascent 

adhesions arrive at the rear of this zone.  The disappearance of stable adhesions also depends on 

v but for a different reason: it is reasoned that the influence of stable adhesions on protrusion is 

progressively reduced as the leading edge moves farther away from them. 
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 Rac diffuses laterally in the plane of the membrane, i.e. both along and orthogonal to the 

leading edge.  What is not explicitly accounted for in the model is the loss of active Rac by net 

diffusion from the rear of the modeled domain.  If we assign a dimension W to represent the 

width of each compartment in the direction orthogonal to the leading edge (corresponding to the 

thickness of the nascent adhesion zone described above), the critical question is the size of W 

relative to Lr.  It is readily estimated that the fraction of active Rac molecules that would be lost 

to the interior of the cell is given by 
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the remaining fraction being lost to deactivation within the modeled domain.  Perhaps not 

coincidentally, indications are that W ~ Lr.  For W = Lr, 43% of the active Rac molecules 

generated are lost by net diffusion; in that case one might be inclined to adjust the value of kd,r by 

a factor of (1 – 0.43)-1 = 1.76.  Alternatively, considering that the adhesion dynamics are 

considerably slower than the time scale of 1/kd,r, one could simply reduce the definition of the 

node spacing according to 
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i.e., L = 0.75Lr for W = Lr.  Such an adjustment was deemed unnecessary in our analysis, because 

its magnitude is probably not larger than the uncertainties associated with the values of Dr, kd,r, 

and W. 


