

Figure S2 (A) This heatmap matrix shows the number of reactions used in all MBPs in the R_{19} network. Each element (i, j) shows the length of the shortest path from a_{i} to a_{j}, not counting the transport reactions to allow entry of a_{i} or exit of a_{j}. For example, element (1 , 1) $\left(a_{1} \Rightarrow a_{1}\right)$ requires 0 reactions, while $(1,19)\left(a_{1} \Rightarrow a_{19}\right)$ requires 6 for a minimal pathway. (B) This heatmap shows how many MBPs with an equal number of reactions were calculated in the R_{10} network using the EFM method. Each element (i, j) shows how many MBPs exist to convert a_{i} to a_{j}. For example, There is only one path to convert a_{1} to a_{2}, but 25 that convert from a_{7} to a_{9}.

