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Text S2 Derivation of the PDE Model

In this section we derive an approximation to the mechanistic model of Heinrich and Rapoport [23], for a
ribosome distribution with low and nearly uniform amplitude, conditions satisfied physiologically [18]. In
this case, the number of ribosomes over a ribosome length at any position on the chain is small compared
to one, namely

∑L

j=1 xs+j ≪ 1 and thus xj ≪ 1/L, for all j’s. Numerical work [23], has shown that if
initiation is low enough, there exist steady state solutions satisfying these requirements. In addition, for
the derivation of our time-delay model we assume a situation of ribosome excess as discussed in Text S1.

Using the non-dimensional variables from the Results section, ribosome dynamics on mRNA chains
are modeled by

µ
d

dt
(x1) =vI − v1, (4a)

µ
d

dt
(xj) =vj−1 − vj , j = 2, . . . , N (4b)

where the non-dimensional fluxes are

vI =αµ

(

1 −

L
∑

s=1

xs

)(

rT − µ

N
∑

s=1

xs

)

, (5a)

vj =µβjxj

1 −
∑L

s=1 xj+s

1 −
∑L−1

s=1 xj+s

, j = 2, . . . , N − L, (5b)

vj =µβjxj , j = N − L + 1, . . . , N − 1, (5c)

vT =µγxN , j = N. (5d)

The parameters rT , α, βj ’s and γ are allowed to be time-dependent. Additionally, for notational conve-
nience, from here on we will denote γ by βN .

We use a perturbative expansion to obtain a simplified version of the model given by Eq. S2.1, in
which the solution is given by a slowly-varying quasi-steady state plus deviations of smaller order. We
obtain thus a systematically derived approximation which keeps track of the order of the error.

To carry out the expansion we introduce a small parameter ǫ. In the situation of great ribosome excess
(Text S1), we may disregard the depletion of free ribosomes and αrT /Nc is an estimate of the number of
ribosomes per mRNA initiating in a time 1/Nc. This is the time required to advance one codon, and so
x1 ∼ αrT /Nc. A small parameter giving the magnitude of initiation is thus defined as

ǫ2 ≡
〈α〉〈rT 〉

Nc
, (6)

where 〈·〉 represents a time average. It is shown here that under suitable conditions, this gives rise to
solutions of amplitude xj ∼ ǫ2.

We choose the scaling of L, L ∼ ǫ−1, to satisfy low ribosome packing,
∑L

r=1 xj+r ≪ 1, or Lǫ2 ≪ 1.
The mRNA size is taken as N, Nc ∼ ǫ−2, and so βj ∼ ǫ−2 since βj = Nc · O(1). Finally from biological
evidence, 1/L, µ ∼ 1/10 , so for our investigations the dimensionless mRNA concentration, µ, is assumed
to be µ ∼ ǫ. In order to work with O(1) quantities, the following scalings are used

βj = ǫ−2β̂j , µ = ǫµ̂, (7)

where quantities with a circumflex are O(1).
Two timescales are introduced

t0 = t, t−2 = ǫ−2t, (8)
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the first represents the timescale on which the whole elongation process takes place, whereas the second
one is the fast time of order 1/N on which the elongation of one single codon happens. If the parameters

of the problem vary only on the long timescale, i.e., α̇
α
,

β̇j

βj
, ṙT

rT
∼ 1, then slowly varying, quasi-steady

state solutions xqss j exist, obtained by solving

vI = v1, vj = vj−1, j = 2, 3, . . .N (9)

for the xqss j ’s in terms of the slowly time varying parameters. Approximate solutions may be found to
these nonlinear algebraic equations by using a perturbation expansion

xqss j = ǫ2x
(2)
qss j + ǫ3x

(3)
qss j + . . . (10)

in the equations, such that the first few terms are

x
(2)
qss j =

β̂1

β̂j

x
(2)
qss 1, x

(3)
qss j =

β̂1

β̂j

x
(3)
qss 1, (11)

with x
(2)
qss 1 and x

(3)
qss 1 expressed as

x
(2)
qss 1 =

αrT

β̂1

, (12a)

x
(3)
qss 1 = −

α

β̂1

x
(2)
qss 1

[

rT ǫ

L
∑

r=1

β̂1

β̂r

+ ǫ2µ̂

N
∑

r=1

β̂1

β̂r

]

. (12b)

Note that since L ∼ ǫ−1 and N ∼ ǫ−2, sums of O(1) quantities of the form ǫ
∑L

r=1 and ǫ2
∑N

r=1 are O(1).
We study solutions that are close to the slowly-varying quasi-steady state with deviations from it that

depend on the fast timescale

xj(t) = xqss j(t0) + x̃j(t−2), (13)

where, as shown above, xqss j ∼ ǫ2 and the deviation is assumed to be small, x̃j ∼ ǫ3. When expressing
the time derivative of this function as ẋj(t) = ∂t0xqss j(t0)+ ǫ−2∂t−2

x̃j(t−2) and inserting the expansions

xqss j = ǫ2x
(2)
qss j + ǫ3x

(3)
qss j , (14a)

x̃j = ǫ3x̃
(3)
j + ǫ4x̃

(4)
j , (14b)

into Eqs. S2.1, several terms cancel out due to the construction of the functions xqss j . After dividing
by µ on both sides, the terms of lowest order that remain are O(ǫ) and satisfy the linear ODE problem:

∂t−2
x̃

(3)
1 = − β̂j x̃

(3)
1 , (15a)

∂t−2
x̃

(3)
j =β̂j−1x̃

(3)
j−1 − β̂j x̃

(3)
j , j = 2, 3, . . .N. (15b)

The associated matrix of this linear problem has purely negative eigenvalues and so solutions decay
exponentially. To O(ǫ2):

∂t−2
x̃

(4)
1 = − β̂1x̃

(4)
1 − ∂t0x

(2)
qss 1

− αµ̂ǫ2
N
∑

r=1

x̃(3)
r − αrT ǫ

L
∑

r=1

x̃(3)
r , (16a)

∂t−2
x̃

(4)
j =β̂j−1x̃

(4)
j−1 − β̂j x̃

(4)
j − ∂t0x

(2)
qss j , (16b)

j = 2, 3, . . .N.
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The homogeneous component has the same matrix as before and so has purely negative eigenvalues while
the forcing terms are O(1). Thus, there is no exponential blow-up of solutions.

An analysis of the linear system in Eq. S2.12 shows that although all the x̃
(3)
j decay to zero on the

fast scale t−2, the effect of a nonzero initial condition in x̃
(3)
1 reaches the end of the chain only after a

time t0 ∼ 1. We use the approximation x̃
(3)
1 = 0 which produces an error of order O(ǫ3) in x1 while still

taking into account the time delay due to information propagating down the chain.
In summary, the approximation to be used in the dynamical equations is

µ
d

dt
(xj) =vapp j−1 − vapp j + O(ǫ4), j = 2, . . . , N (17)

where the approximate fluxes vapp j are simply expressed by defining modified rate constants, β∗

j :

vapp j = µβ∗

j xj j = 1, 2 . . .N (18)

where

β∗

j = βj

1 −
∑L

r=1 xqss j+r

1 −
∑L−1

r=1 xqss j+r

. (19)

The dynamics of x1 in the fast scale are neglected, and this function is then determined from the quasi-
steady state ‘boundary condition’:

µβ∗

1x1 = vI + O(ǫ2) (20)

with

vI =αµ

(

1 −

L
∑

r=1

xr

)(

rT − µ

N
∑

r=1

xr

)

. (21)

From the order of the terms dropped, one concludes that the dynamics of the xj ’s are resolved to the first
term only, O(ǫ2); in contrast, steady states, when parameters are in fact time-independent, are resolved
to three terms, that is, up to O(ǫ4).

Our next step is to replace the functions xj(t), equal to the number of ribosomes per codon, by a
continuous distribution via the transformation

xj(t) =

∫ j

j−1

z(s, t)ds. (22)

Here z(s, t) is equal to the number of ribosomes per unit length of the mRNA. The discrete index which
labels the codons, j = 1, 2, . . .N , is replaced by a continuous variable s, 0 ≤ s ≤ N ; codon j corresponds
to the segment j − 1 < s < j of the complete domain.

The modified elongation rate constant, β∗

j (t), is also extended to a continuous version, cE(s, t), such
that cE(j, t) ≈ β∗

j (t). This new function is referred to as a velocity function, being related to how fast
ribosomes advance on the chain.

The rate constants βj are chosen to be slowly varying from codon to codon in such a way that the
velocity function has the properties:

cE ∼ ǫ−2, ∂scE ∼ ǫ−1, ∂sscE ∼ 1. (23)

Slowly varying rate constants yield a quasi-steady state which is also slowly varying along the chain, see
Eq. S2.8. We further assume that the ribosome distribution is sufficiently close to the slowly-varying
quasi-steady state such that

z ∼ ǫ2, ∂sz ∼ ǫ3, ∂ssz ∼ ǫ4. (24)
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Then

xj =

∫ j

j−1

zds = z(j, t) −
1

2
∂sz(j, t) + O(ǫ4). (25)

The mean value theorem is used to define points s∗j , s∗∗j ∈ (j − 1, j) such that

β∗

j−1xj−1 − β∗

j xj

= − ∂s(cEz)|s∗

j
+

1

2
∂s(cE∂sz)|s∗∗

j
+ O(ǫ2)

= − ∂s(cEz)|s∗

j
+ O(ǫ2). (26)

Moreover, since xj = z|s∗

j
+ O(ǫ3), one has, after using Eq. S2.23 in the dynamical Eqs. S2.14

∂tz|s∗

j
= −∂s(cEz)|s∗

j
+ O(ǫ2). (27)

For the boundary condition of Eq. S2.17, x1 = z|s=0 + O(ǫ3) and β∗

1 = cE |s=0 + O(ǫ−1) are used:

cE(0, t)z(0, t) =α

(

1 −

∫ L

0

zds

)(

rT − µ

∫ N

0

zds

)

+ O(ǫ) (28)

To assess the quality of the approximations, one takes z as z = zqss(s, t0)+ z̃(s, t−2), where the quasi-
steady state is O(ǫ2) and the deviation from it is order O(ǫ3). Using this in Eqs. S2.24 and S2.25 reveals
that both dynamics and steady state solutions of z(s, t) are only resolved up to O(ǫ2). The accuracy of
steady states would be improved if the velocity function had derivatives that vanished to a higher order.
Additionally, in the case of time-independent parameters, the quasi-steady state is a true steady state
and from its linear stability (see next section), small perturbations from it decay to zero.

It is necessary to verify that Eq. S2.21 is consistent with the dynamics given by the approximate model
obtained. Analyzing the evolution of z, ∂sz and ∂ssz along the characteristics of Eq. S2.24 reveals that
these three quantities evolve exponentially with a growth rate given by −∂scE and so exponential growth
results if ∂scE < 0. In order to avoid a growth of this order, in addition to ∂scE ∼ ǫ−1 it is required that
this function averages out to a non-negative value throughout the length of the chain. From a physical
point of view of ribosomes moving along mRNA chains, this has the simple interpretation that ribosomes
tend to pile up at places where the velocity decreases and sufficient pile-up would render the low density
approximation invalid.

Extending Eq. S2.24 to the whole domain and putting everything together, the approximate PDE
model takes the form

∂tz(s, t) + ∂s (cE(s, t)z(s, t)) = 0, (29a)

for 0 < s < N, 0 < t

z(s, 0) = z0(s), 0 ≤ s ≤ N, (29b)

z(0, t) = z1(t), t > 0, (29c)

with

cE(0, t)z1(t) = α(t)

(

rT (t) − µ

∫ N

0

z(s, t)ds

)

·

(

1 −

∫ L

0

z(s, t)ds

)

. (30)
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The function z0(s) is the initial distribution of ribosomes on the mRNAs.
The ribosomal density at the s = 0 boundary is not known a priori, but must be determined by the

boundary condition of Eq. S2.27. The initiation rate, η(t) ≡ α(t)µ
(

rT (t) − µ
∫ N

0 zds
)(

1 −
∫ L

0 zds
)

, is

proportional both to the concentration of free ribosomes, rT (t) − µ
∫ N

0
zds and to the concentration of

mRNA chains with free initiation sites,
(

1 −
∫ L

0
zds
)

· µ, since it deals with a bimolecular reaction. The

constant of proportionality is the initiation rate constant, α(t).
We emphasize at this point that if the parameters of the problem are not chosen in a way such

that the original model gives low, slowly varying ribosomal density, then the continuum approximation
may give unphysical results. For certain velocity functions cE(s, t) and α big enough, it is possible to
obtain a distribution with more ribosomes on the chain than the ones that actually fit, N/L, as ribosome
interaction is not taken into account in our PDE model.

However, the form of the boundary condition guarantees that regardless of parameter values and
velocity function the following hold: (i) the density z(s, t) is always positive, (ii) the number of ribosomes

on the initiation site per mRNA is always less than one,
∫ L

0
zds < 1 and finally, (iii) the number of

ribosomes bound to all chains is less than the total number of them available µ
∫ N

0
zds < rT .


