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SOMITOGENESIS CLOCK-WAVE INITIATION REQUIRES
DIFFERENTIAL DECAY AND MULTIPLE BINDING SITES FOR

CLOCK PROTEIN.

MARK CAMPANELLI AND TOMÁŠ GEDEON

1. Introduction

This supporting information contains five sections with details on the mathematical
model, production and decay curves for the clock-gene, parameter value/range selection,
parameter estimation, and parameter sensitivity. In the section on parameter selection,
we describe how we selected fixed parameter values, or, in the case of ten parameters,
biologically realistic ranges for parameter estimation purposes, followed by a short section
that provides a tabulation of parameter estimation results. We also give additional infor-
mation on the sensitivity of the estimated parameters. In the section on the mathematical
model, we provide details about modeling the control protein gradient, about computation
of the proportion of monomers, homodimers, and heterodimers in an equilibrated mixture
of clock protein and control protein, and about the Shea-Ackers derivation of the mRNA
transcription regulatory functions. In the section on production and decay curves for the
clock-gene, we give representative curves for clock mRNA production and total protein
decay.

2. Parameter Values and Parameter Range Selection

We present first all parameters whose values are fixed in our model and the reasons for
our choice of these values. We then specify ranges for parameters which, to the best of
our knowledge, have not been determined experimentally. From these ranges we search
for parameter values conducive to clock-wave formation. Note that copy numbers per
compartment can be converted to molar concentration using a nuclear volume Vnuc =
4
3π (2.5 µm)3 = 65.4 µm3, and a cytosolic volume Vcyt = 4

3π
(
(5 µm)3 − (2.5 µm)3

)
=

458 µm3, where the nuclear diameter is 5 µm [1] and the cell diameter is assumed to be
10 µm.

2.1. Fixed parameters.

λ The number of cells per anterior-to-posterior somite length. While this number is
not strictly constant across the PSM in zebrafish, the constant value λ = 5 cells
per somite is a reasonable approximation over a good portion of the tissue [2].
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µ The somite formation rate in somites per minute in the anterior PSM. While the for-
mation rate is not strictly constant throughout somite development in zebrafish, µ
is roughly constant over a good portion of developmental time [3,4]. The somite for-
mation rate is observed to be equal to the frequency of oscillation in the tailbud [2].
In all clock-wave simulations, an initial settling time occurs in which oscillations
stabilize before any cells enter the PSM, which correlates with the initiation of syn-
chronized oscillatory expression in the early embryo before somitogenesis begins.
After the settling time, the oscillation period, T , is computed and this computed
period is used to determine µ = 1

T . µ determines the exit times Tk of cells from
the tailbud using the following relationship:

(1) Tk =
k − 1
λµ

.

In zebrafish, the oscillatory gene expression in the tailbud has a period of 30 minutes
at 28◦C [2], so at this temperature µ = 1

30 somites per minute. If for any reason
the oscillation period cannot be computed after the settling time, the default value
µ = 1

30 somites per minute is used.

τ 1
2

The half-life, in minutes, of the total control protein in a given cell. The half-life
is the time after a cell leaves the tailbud when the level of total nuclear protein
is reduced to 1

2 Ĝ
max. To the best of our knowledge, quantitative data for this

parameter for the control protein Her13.2 in zebrafish are unavailable. Simulations
have shown that a range of values is typically acceptable, e.g., 45–75 minutes. The
choice of τ 1

2
can affect both the initial shape and axial positioning of the clock-wave.

All simulations in this work use τ 1
2

= 60 minutes, so that the half-life is not too
short in relation to the oscillation period in the zebrafish tailbud.

τC The delay, in minutes, arising from clock protein production at the ribosomes and
subsequent transport into the nucleus. The value τC = 1.7 minutes from [1] is used
in all simulations.

αC , αS The production constants, in protein copies per mRNA copy per minute, of clock
and signaling protein, respectively. The common value αC = αS = 4.5 protein
copies per mRNA copy per minute from [1] is used in all simulations except the
Her7 knockdown experiment.

γc, γs Production constants, in mRNA copies per minute, of clock and signaling mRNA,
respectively. γc = γs in all simulations, and the common value is computed from
the chosen value of ρ so that the baseline mRNA production rate in the absence of
repressors or activators is the following value cited in [1]:

(2) γc

(
ρ

ρ+ 1

)
= γs

(
ρ

ρ+ 1

)
= 33 mRNA copies/minute.
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ρN The promoter binding affinity of the activator N , with units of inverse copy number.
To the best of our knowledge, this constant has not been measured in zebrafish. In
the generation of oscillatory gene expression in zebrafish, the intercellular signaling
does not dominate the intracellular self-repression of the clock-gene [5]. Following
the critical concentration parameters used in [6], the activator N is given one tenth
the binding affinity of the repressor C:C in all simulations, i.e., ρN = ρC:C

10 .

ωN The unitless cooperativity between simultaneously bound activator N and RNAP-
II complex at the promoter. This number is strictly greater than one. To the best
of our knowledge, this parameter has not been measured in zebrafish, so a typical
value ωN = 25 is used in all simulations, which is taken from [7].

δc The decay constant, in inverse minutes, of clock mRNA. In all simulations the
value used is δc = 0.206 minute−1 from [6], which is estimated from experiments
on zebrafish [5].

τS The delay, in minutes, arising from coordinating signal protein production at the
ribosomes and subsequent transport through the cell membrane into the nuclei of
adjacent cells. The value τS = 20 minutes from [1] is used in all simulations.

βS The decay constant, in inverse minutes, of coordinating signal protein. The value
βS = 0.23 minute−1 from [1] is used in all simulations.

τs The delay, in minutes, arising from coordinating signal mRNA transcription at the
DNA, post-transcriptional processing, and subsequent transport into the cytosol.
The value τs = 12.4 minutes from [6] is used in all simulations. This value was
taken from a experimentally determined range for zebrafish, which was obtained
as a sum of a (non-measured) initiation delay that is assumed to be in the range
of 3 to 8 minutes in [5]. This initiation delay is added to the experimentally
determined range of 8.4 ± 1.2 minutes. In [6] the initiation delay is taken to be
4 minutes resulting in the value 8.4 + 4 = 12.4 minutes. Using the full range of
initiation delays and full range of measured delays gives the range [7.2+3, 9.6+8] =
[10.2, 17.6] minutes.

δs The decay constant, in inverse minutes, of coordinating signal mRNA. In all sim-
ulations the value used is δs = 0.273 minute−1 from [6], which is estimated from
experiments on zebrafish [5].

2.2. Parameters Estimated from a Range of Values.

Ĝmin The minimum level of total control protein, which occurs in the intermediate PSM
and has units of copy number per nucleus. In zebrafish, this parameter represents
the minimum level of total nuclear Her13.2 protein. To the best of our knowl-
edge, quantitative data for this parameter in zebrafish are unavailable, so Ĝmin is
estimated from the range 0–2500 copies per nucleus.
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Ĝmax The maximum level of total control protein, which occurs in the tailbud and
posterior-most PSM and has units of copy number per nucleus. In zebrafish, this
parameter represents the maximum level of total nuclear Her13.2 protein. To the
best of our knowledge, quantitative data for this parameter in zebrafish are unavail-
able, so Ĝmax is estimated from the range 0–2500 copies per nucleus. This allows
the maximum control protein level to be on the same order of magnitude as the
typical mean level of the oscillatory total clock protein.

ρ The unitless product of the binding affinity ρP for RNAP-II complex to a gene’s
promoter and the copy number P of the complex, i.e., ρ := ρPP . The assembly
of the RNAP-II complex is assumed to be a fast process at equilibrium so that P ,
and therefore ρ, may be treated as constant. To the best of our knowledge, data
for zebrafish are unavailable, so ρ is estimated from the range 1

3 – 3, which can be
interpreted as a 25% – 75% probability of the complex binding in the absence of
any other repressors or activators. Note that the lumped parameter ρ may include
effects of several constitutively expressed transcription factors in the PSM, such as
DeltaD and Su(H) in zebrafish [8, 9].

τc The delay, in minutes, arising from clock mRNA transcription at the DNA, post-
transcriptional processing, and subsequent transport into the cytosol. Previous
work [1] has shown that the existence and period of sustained oscillations is sensitive
to the total system delay. Because of this sensitivity, τc is estimated from the
range 2.3 – 8.1 minutes. This range is derived from the experiments in [5], which
estimated τc = 3.7 ± 1.4 + Tinit minutes, where Tinit is an unmeasured initiation
delay assumed to be in the range of 3 to 8 minutes. Because of differences in the
present model from the model in [6], Tinit was taken to be in the range 0 – 3 minutes,
giving the minimum value 3.7 − 1.4 + 0 = 2.3 minutes, and the maximum value
3.7 + 1.4 + 3 = 8.1 minutes. Subsequent analysis of the parameter sensitivities
verified that this is an adequate range for modeling oscillations in zebrafish. See
Figures 1 and 3.

ρC:C The binding affinity of the C:C repressor to a gene’s promoter, with units of inverse
copy number. To the best of our knowledge, this constant has not been measured in
zebrafish, so ρC:C is estimated from the biologically realistic range 0.01 – 1, which
is taken from the range given in [7], and which includes the (roughly equivalent)
critical concentration used in [1].

ωC:C The unitless cooperativity between two C:C repressors simultaneously bound to a
gene’s promoter. To the best of our knowledge, this constant has not been measured
in zebrafish, so ωC:C is estimated from the biologically realistic range 1 – 100 taken
from [7]. The value of this parameter is irrelevant for a single binding site, i.e.,
when n = 1.
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βC The decay constant, in inverse minutes, of clock protein monomer. Previous
work [1, 10] has shown that the existence and period of sustained oscillations is
sensitive to the protein decay rate. Because of this sensitivity and the fact that the
present model explicitly tracks the distribution of total clock protein as monomer,
homodimer, and heterodimer, βC is estimated from the range 0.2 – 0.5 minute−1,
which includes the value 0.23 minute−1 from [1] corresponding to a protein monomer
half-life of ln 2

0.23 = 3 minutes.

κG:G, κC:C , κC:G The protein dimer dissociation constants with units of copy number. To the
best of our knowledge, values for these constants have not been measured in ze-
brafish, so each dissociation constant is independently estimated from the range 10
– 1000 copies, which is based on the range cited in [11].

2.3. Parameters for Model Scenarios I–IV.
n The number of binding sites for C:C repressor at the clock-gene’s promoter. Previ-

ous work [12] has shown that the number of binding sites can be a key parameter
affecting oscillations produced through delayed negative feedback. In model sce-
narios I and II, n = 1 corresponds to a single binding site. In model scenarios III
and IV, n = 2 corresponds to two binding sites.

βC:C , βC:G The respective decay constants, in inverse minutes, of clock protein homodimer
and heterodimer with control protein. In all simulations, these parameters share
a common value, i.e., βC:C = βC:G. Attention to the findings in [11], concerning
differential decay of monomers and dimers, suggests consideration of two limiting
cases. In model scenarios I and III, βC:C = βC:G = 0 corresponds to monomer
only clock protein decay and thus nonlinear decay of total clock protein. In model
scenarios II and IV, βC:C = βC:G = βC corresponds to equivalent decay of all clock
protein forms and gives linear (i.e., first order) decay of total clock protein.

3. Parameter Estimation Tabulations

3.1. Tabulations of ∆T , main article Figure 1B. For model validation stage one, the
following table gives the number of simulated solutions out of 40,000 total simulations that
had an oscillatory solution with period 30± 3 minutes for some level of Ĝ ∈ [0, 2500] and
had ∆T in the given range. Note that ∆T ≥ 15 minutes is needed for formation of a
realistic posterior clock-wave.
Scen. \ ∆T Int. [0, 2.5) [2.5, 5) [5, 7.5) [7.5, 10) [10, 12.5) [12.5, 15) [15, 17.5)
III 1267 1050 584 229 77 32 8
IV 10364 3875 1139 129 2 0 0

4. Sensitivity of Estimated Parameters in scenarios III and IV

Recall that we selected parameters ρ, τc, and βC uniformly from their ranges, but since
the ranges for ρC:C , ωC:C , κG:G, κC:C , and κC:G are characterized through the range of
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Figure 1. Parameter sensitivities for model scenario III, part 1.
ρ, τc, ρC:C , and ωC:C . Graphs give the number of simulated solutions out of
40,000 total simulations satisfying the specified criteria. All parameters are
randomly selected from distributions whose ranges are given by the x-axis
limits in a way described in the text.

powers of 10, for these parameters we selected uniformly the power. These histograms
reflect the sensitivity of clock-wave formation to individual parameters in two ways. Com-
paring the bottom row of the Figures the sensitive parameters have narrow distributions,
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Figure 2. Parameter sensitivities for model scenario III, part 2.
βC , κG:G, κC:C , and κC:G. Graphs give the number of simulated solutions
out of 40,000 total simulations satisfying the specified criteria.All parame-
ters are randomly selected from distributions whose ranges are given by the
x-axis limits in a way described in the text.

which reflect the need for a precise value of this parameter for proper clock-wave forma-
tion, while insensitive parameters have wide distributions. On the other hand, comparing
histograms along the columns of the Figures 1 and 2 show the selective strength of the four
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requirements on each parameter. We summarize the data for the most interesting data
selection processes in scenario III and scenario IV, see Figures 1, 2, 3 and 4. In scenario III
attaining the proper period of oscillation (30 ± 3) was most sensitive to the clock mRNA
production delay τc. Furthermore, attaining sufficiently large ∆T for clock-wave forma-
tion was most sensitive to the clock homodimer binding affinity ρC:C and cooperativity
ωC:C , the clock monomer decay rate βC , and the dimer dissociation constants κG:G, κC:C ,
and κC:G. While both scenarios showed sensitivity of the dimer dissociation constants to
increasing ∆T , scenario IV showed additional sensitivity to the heterodimer dissociation
constant κC:G.
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Figure 3. Parameter sensitivities for model scenario IV, part 1.
ρ, τc, ρC:C , and ωC:C . Graphs give the number of simulated solutions out of
40,000 total simulations satisfying the specified criteria. All parameters are
randomly selected from distributions whose ranges are given by the x-axis
limits in a way described in the text.
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Figure 4. Parameter sensitivities for model scenario IV, part 2.
βC , κG:G, κC:C , and κC:G. Graphs give the number of simulated solutions
out of 40,000 total simulations satisfying the specified criteria. All parame-
ters are randomly selected from distributions whose ranges are given by the
x-axis limits in a way described in the text.

5. Production and Decay Curves for the Clock-Gene

In the main text we argue that the differential decay of monomers and dimers (coopera-
tive stability) and two binding sites for the repressor dimers combine to produce large ∆T
and a significant change in oscillation rate along the PSM. One of the effects can be seen in
Figure 5 where we compare the linear decay rate (scenarios II and IV) and the differential
decay rate (scenarios I and III) as a function of the level of total clock protein. Because the
proportion of dimers to monomers increases with the level of total clock protein, and only
monomers decay under differential decay, the marginal decay rate decreases with the level
of total clock protein and the overall decay rate is always below the corresponding linear
rate. The level of total control protein Ĝ has also some effect on the differential decay rate
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Figure 5. Total clock protein decay curves for model scenarios
I–IV. In scenarios I and III, total clock protein Ĉ decay as a function of
Ĉ is nonlinear and depends on the level of total control protein Ĝ. In
scenarios II and IV, total clock protein Ĉ decay is a linear function of Ĉ
and is independent of the level of total control protein Ĝ. For comparison
the optimal parameter set for scenario III is used.

(but not on the linear decay rate), because in the tailbud Ĝ = 330 and a certain portion
of clock protein is sequestered as heterodimer with control protein (see Figure 3B of the
main paper.)

The two binding sites primarily affected the production of the clock mRNA, since they
increased the effective Hill coefficient of the nonlinearity. Figure 6 compares the nonlinear
production curve of clock mRNA as a function of total clock protein level. The production
curves for scenarios III and IV (two binding sites) were shifted toward low levels of total
clock protein as compared to production curves for scenarios I and II (single binding site).
Observe that the production curve is shifted even lower as a function of decreasing Ĝ.
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Ĉ (copy #)

γ c
F

1
(C

:C
,N

)
(c

op
y

#
/m

in
)

c Production, Scenario I
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Figure 6. Clock mRNA production curves for model scenarios I–
IV. Clock mRNA c production as a function of Ĉ. In scenario I, N = 18
for Ĝ = 0, N = 18 for Ĝ = 330. In scenario II, N = 36 for Ĝ = 0, N = 48
for Ĝ = 330. In scenario III, N = 520 for Ĝ = 0, N = 497 for Ĝ = 330. In
scenario IV, N = 631 for Ĝ = 0, N = 707 for Ĝ = 330. For comparison the
optimal parameter set for scenario III is used.

Finally, note different scale on the x-axis in scenario I and II figures and scenario III
and IV figures, which shows the effect of multiple binding sites on the nonlinearity of the
production curves.

6. Mathematical Model

6.1. The Control Protein. In validation stage two, the level of total control protein in
the kth axial cell was prescribed by Ĝk(t) = Ĝmin +

(
Ĝmax − Ĝmin

)
g(t− Tk; τ 1

2
), where g
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is the following continuously differentiable function of time:

g(t; τ 1
2
) =





1, t ≤ 0,

1− 1
2 e

2

„
t−τ 1

2

«/
t
, 0 < t ≤ τ 1

2
,

1
2 e

2

„
t−τ 1

2

«/„
t−2 τ 1

2

«
, τ 1

2
≤ t < 2 τ 1

2
,

0, 2 τ 1
2
≤ t,

(3)

where τ 1
2
> 0 is the half-life parameter. The function g is sigmoidal, concave down for

0 < t < τ 1
2
, and concave up for τ 1

2
< t < 2 τ 1

2
, see Figure 8 in the main article. Tk is the

time that cell k enters the PSM, given by equation (1) above.
Our simulation work indicated that clock-wave formation is more sensitive to the size of

the period change ∆T than the half-life τ 1
2

of the total control protein. We tested values
of τ 1

2
∈ [10, 120] minutes. The shortest τ 1

2
values produced a disorganized wave because

the control protein changed too quickly, while longer half-lives shifted generation of the
clock-wave anteriorly, even though the clock-wave still formed. All stage two simulations
described in this work were run with τ 1

2
= 60 minutes. The precise shape of the gradient

function g(t, τ 1
2
) was not found to be critical; for example, for the optimal scenario III

solution, an exponential decay of the total control protein with τ 1
2

= 60 minutes also
generated a reasonably good clock-wave. The shape of g was chosen to qualitatively match
the profiles computed in [13].

6.2. Competitive Dimerization. Given the amount of total control protein Ĝ and total
clock protein Ĉ in a cell’s nucleus at any given time, we compute the relative amounts of
protein monomers, homodimers, and heterodimers. Equilibration of all protein monomers
and dimers is assumed to be very fast relative to production and decay of protein and
mRNA [11, 14]. The following relationships between total protein, monomer, and dimers
hold for control and clock protein, respectively:

(4) Ĝ = G+ 2G:G+ C:G, Ĉ = C + 2C:C + C:G.

There are three possible dimerization reactions:

2 G
k+

G:G


k−G:G

G:G, 2 C
k+

C:C


k−C:C

C:C, and C +G
k+

C:G


k−C:G

C:G,

where the forward and reverse (positive) reaction rates are given above and below the
arrows, respectively. Mass action kinetics at equilibrium leads to the following dimerization
equations:

(5) G:G =
G2

κG:G
, C:C =

C2

κC:C
, C:G =

C G

κC:G
,
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where κG:G := k−G:G

k+
G:G

, κC:C := k−C:C

k+
C:C

, and κC:G := k−C:G

k+
C:G

are the respective dimer dissociation

constants. Equations (5) can be used to replace dimers with monomers in equations (4),
giving

(6)
Ĝ = G+

2G2

κG:G
+
C G

κC:G
,

Ĉ = C +
2C2

κC:C
+
C G

κC:G
.

We rewrite (6) as quadratic equations in G and C, respectively, giving

(7)
0 =

2
κG:G

G2 +
(

1 +
C

κC:G

)
G− Ĝ,

0 =
2

κC:C
C2 +

(
1 +

G

κC:G

)
C − Ĉ.

We have implemented two methods to solve this system of equations. In our two-cell sim-
ulations we have used Newton’s method with quadratic convergence. However, Newton’s
method is more difficult to vectorize in matlab for the general case of N cells, and com-
putations can be slowed down by the use of for loops and the computation of the inverse
Jacobian. Therefore for this case we have implemented an iterative formula, described
below, which is slower (typically a linear convergence rate), but it is easy to vectorize in
matlab.

To describe the iterative scheme, we start by solving equations (7) for non-negative roots
G and C, respectively. This gives

(8)

G =
1
4



√(

κG:G

(
1 +

C

κC:G

))2

+ 8κG:G Ĝ− κG:G

(
1 +

C

κC:G

)
 ,

C =
1
4



√(

κC:C

(
1 +

G

κC:G

))2

+ 8κC:C Ĉ − κC:C

(
1 +

G

κC:G

)
 .

Equations (8) define a map from R2
+ into itself

(Gn+1, Cn+1) := f(Gn, Cn)

given by

(9)

Gn+1 =
1
4



√(

κG:G

(
1 +

Cn
κC:G

))2

+ 8κG:G Ĝ− κG:G

(
1 +

Cn
κC:G

)
 ,

Cn+1 =
1
4



√(

κC:C

(
1 +

Gn
κC:G

))2

+ 8κC:C Ĉ − κC:C

(
1 +

Gn
κC:G

)
 .
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A fixed point of this map solves (7). By composing the two component maps and
computing a straightforward bound on the maximum absolute value of the derivative of
the composition we find that if

1
16
κG:G κC:C

κ2
C:G


1− κG:G√

κ2
G:G + 8κG:G Ĝ




1− κC:C√

κ2
C:C + 8κC:C Ĉ


 < 1

then the map is a contraction and convergence is linear to a unique non-negative fixed
point.

This sufficient condition is verified for many parameter combinations, but in practice,
convergence occurs under less stringent conditions on the protein dissociation constants.
We verify convergence by ensuring a sufficiently small residual in (7). Once the monomer
concentrations G and C are approximated sufficiently, the dimer concentrations G:G, C:C,
and C:G may be computed directly using equations (5).

6.3. Gene Regulation by Transcription Factors. The function Fn represents the com-
bined effect of the repressor C:C and activator N on clock mRNA production. Using the
approach of Shea and Ackers [7, 14,15], Fn is given by the following probability ratio:

Fn(C:C,N) =
ZON

ZON + ZOFFn
,

where ZON and ZOFFn are sums of terms representing states where RNAP-II complex is
bound or unbound, respectively, to the clock-gene’s promoter. The positive integer n is
the number of cis binding sites for the repressor, while the activator is assumed to have
only one binding site. The binding of the repressor and RNAP-II complex is assumed
to be mutually exclusive, however binding of repressor and activator is not assumed to be
mutually exclusive. Transcription proceeds only in those states in which RNAP-II complex
is bound, which may or may not occur cooperatively with activator.

Consideration of the two possible RNAP-II bound states gives

ZON = ρP P
(
1 + ωN (ρN N)

)

= ρ (1 + ωN (ρN N)) ,

where ρ := ρP P . ρN is the binding affinity of the activator N induced by adjacent cells’
coordinating signal protein S. The assumption that intercellular coupling is weak relative to
intracellular negative feedback means that ρN � ρC:C . ωN > 1 is the binding cooperativity
between the activator N and the RNAP-II complex.

For one repressor binding site, consideration of all the RNAP-II unbound states gives

ZOFF1 = 1 + ρC:C C:C + ρN N + ωN -C:C (ρN N) (ρC:C C:C) ,



SUPPORTING TEXT 1 – CLOCK-WAVE INITIATION IN SOMITOGENESIS 15

where ωN -C:C represents the cooperativity between simultaneously bound repressor and
activator molecules. Consideration of two repressor binding sites gives

ZOFF2 = 1 + ρC:C-�C:C + ρ�-C:C C:C + ωC:C (ρC:C-�C:C) (ρ�-C:C C:C) +

ρN N + ωN -C:C-� (ρN N) (ρC:C-�C:C) + ωN -�-C:C (ρN N) (ρ�-C:C C:C) +

ωN -C:C-C:C (ρN N) (ρC:C-�C:C) (ρ�-C:C C:C) ,

where ωN -C:C-�, ωN -�-C:C , and ωN -C:C-C:C represent the cooperativity between simultane-
ously bound repressor and activator molecules, with the first, second, and both repressor
site(s) occupied, respectively. The binding affinities for the C:C homodimer to the first
and second binding site are ρC:C-� and ρ�-C:C , respectively, with simultaneous binding
cooperativity ωC:C .

To the best of our knowledge, no experimental data are available on the binding affinities
and cooperativities for the repressor and activator in PSM cells. In response to this lack
of knowledge, two straightforward, simplifying assumptions are as follows:

(1) The activator N and the repressor C:C bind independently of each other, so that
for one binding site

ωN -C:C = 1,

while for two binding sites

ωN -C:C-� = ωN -�-C:C = 1 and ωN -C:C-C:C = ωC:C .

(2) For two binding sites, the binding affinity of the repressor at each binding site is
the same, i.e.,

ρC:C-� = ρ�-C:C =: ρC:C .

Applying these assumptions on the parameters for one binding site gives

ZOFF1 = 1 + ρC:C C:C + ρN N + (ρN N) (ρC:C C:C)

= 1 + ρC:C C:C + ρN N (1 + ρC:C C:C)

= (1 + ρN N) (1 + ρC:C C:C)

= (1 + ρN N) (1 + Ψ1(C:C)) ,

where Ψ1(C:C) := ρC:C C:C. For two binding sites,

ZOFF2 = 1 + 2 (ρC:C C:C) + ωC:C (ρC:C C:C)2 +

ρN N + 2 (ρN N) (ρC:C C:C) + ωC:C (ρN N) (ρC:C C:C)2

= 1 + 2 (ρC:C C:C) + ωC:C (ρC:C C:C)2 +

ρN N
(

1 + 2 (ρC:C C:C) + ωC:C (ρC:C C:C)2
)

= (1 + ρN N)
(

1 + 2 (ρC:C C:C) + ωC:C (ρC:C C:C)2
)

= (1 + ρN N) (1 + Ψ2(C:C)) ,
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where Ψ2(C:C) := 2 ρC:C C:C + ωC:C (ρC:C C:C)2. Altogether, for n = 1 or 2, the function
Fn is given by

(10) Fn(C:C,N) :=
ρ (1 + ωN ρN N)

ρ (1 + ωN ρN N) + (1 + ρN N) (1 + Ψn(C:C))
.
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