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Protocol S1 
Section A. Generation of OncoMIM Gene-phenotype database (Material and 
Methods, Table 3 in Text S2, Supporting Figure 8 in Text S1, and 
Dataset S1).  
 We conducted a statistical enrichment analysis of the inheritable cancer 
genes found in the OMIM human disease gene database [Online Mendelian 
Inheritance in Man, http://www.ncbi.nlm.nih.gov/omim/ (downloaded 
Dec. 1, 2006)]. We downloaded files “omim.txt.Z” and “genemap” files at 
http://www.ncbi.nlm.nih.gov/Omim/omimfaq.html#download on May. 17, 2007. 
Thereafter, we extracted the unique identifier of each disease gene or clinical 
finding (MIM), title term, alternate title terms, clinical synopsis terms, or the allelic 
variant terms when they were available. OMIM clinical terms are textual, 
unstructured, and do not have unique identifiers themselves. In order to 
standardize these OMIM “terms”, we computationally mapped them to 
17,182 identifiers from the Systematized Nomenclature of Medicine 
{SNOMED  CT version July 31, 2005 [1] (see Lexical terminology mapping, 
below)}. The SNOMED ontology allowed also to recover relationship between 
related cancer phenotypes and use enrichment statistics that take advantage of 
these classifications as they do in Gene Ontology (see Equation 4 in Material 
and Methods, Protocol S1/Section B, and Supporting Figure 8 in Text S1). 
These clinical OMIM terms were thus encoded in SNOMED’s anatomies, 
morphologies, clinical findings and disease. In addition, the following 
17 relationships were extracted from SNOMED to define disease-anatomical, 
disease-morphology and parent-child relationships: “IS-A”, “Associated 
morphology”, “Specimen source morphology”, “Specimen source topography”, 
“Part of, Associated finding”, “Component”, “After”, “Finding site”, “Direct 
morphology”, “Has focus”, “Procedure site”, “Has definitional manifestation”, 
“Direct Procedure site”, “Due to”, and “Associated with”. The resulting dataset, 
OncoMIM, consists of well-organized cancer-related clinical terms and MIM 
genes and is provided as Dataset S1. We utilized the Lexico-Semantic 
Mapping (LSM) technology that we developed to identify associations between 
human anatomical entities in the SNOMED and the OMIM [2-4]. The mapping 
process was achieved through the following steps: (i) the development of a 
lexical filter over OMIM terms. After systematic examination by clinicians of the 
description and synonyms of the SNOMED, and the title and clinical synopsis of 
the OMIM, semantic filters were applied before conducting lexical mapping to 
filter out erroneous mapping between the SNOMED and OMIM. The categories 
of the filters include OMIM titles containing no clinical description (i.e. zinc finger 
protein), general SNOMED entities irrelevant to the study, SNOMED entities 
pertaining to animal anatomy (i.e. “non-human body structure”), and ambiguous 
SNOMED entities (i.e. “unspecified nutritional deficiency”). 
(ii) Normalization of text. After the filtering process, the terms were 
standardized using the Norm algorithm [5]: the titles, alternate titles, and  clinical 
synopsis of OMIM as well as the anatomies, morphologies, clinical findings, and 
diseases of the SNOMED. (iii) Lexicon terminology mapping. Two types of 
lexicon string mapping were performed. First, identical term mapping was 
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conducted between OMIM’s terms and those of SNOMED. Second, optimized 
partial mapping (OPP) was conducted (OPP Software is provided upon request). 
Our algorithm identifies the entire normalized terms in relevant SNOMED CT 
categories (anatomy, morphology, clinical finding, and disease) that can be 
mapped to the entire OMIM term or a part of this term. After merging the results 
of these two types of mappings, we classified 7,589 distinct clinical OMIM terms 
in 2,553 SNOMED entities categorized as ‘Anatomy and Morphology’, and 7,649 
distinct clinical OMIM terms in 6,558 distinct SNOMED entities categorized as 
‘Clinical finding and Disease’. Using SNOMED’s classification, we identified 
610 distinct OMIM genes that are associated with 438 and 606 distinct cancer-
related identifiers in SNOMED’s morphologies and diseases classification, 
respectively (subsumed by SNOMED ID#108369006 Neoplasm morphology and 
SNOMED ID#55342001 Neoplastic disease). Using the hierarchical classification 
of SNOMED, we further categorized these genes in each relevant cancer 
category. The OncoMIM dataset containing MIM codes to SNOMED codes can 
be downloaded from Dataset S1. 
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Section B. Refinement of the hierarchical P-values in enrichments of GO or 
of SNOMED terms (Table 1 and Table 7 in Text S2, Supporting Figure 8 in 
Text S1).  
 In this study, we conducted enrichment statistics over two ontologies: Gene 
Ontology and SNOMED. These ontologies can be represented as directed 
acyclic direct graphs composed of nodes (classes of genes in the ontology such 
as a GO term or a SNOMED term) and edges (relationships to classes in the 
ontology) [1]. We developed a refinement algorithm to identify and filter out false 
positive p-values derived from enrichment studies in ontologies (hierarchical 
classifications) due to the inheritance of genes in ancestry classes of a 
significantly enriched class, a rarely mentioned problem of enrichment statistics 
that has also been reported by others [2,3]. In this manuscript, this algorithm 
identified from 0% to 59.3% of false positive enrichment results, with an average 
of 30.2% per enrichment (data not shown).  
 Equations S1, S2 and S3 describe our refinement algorithm over the 
statistically significant results in an enrichment study. The ontologies are viewed 
as directed acyclic graphs where nodes are the entities (e.g. Gene Ontology 
terms or SNOMED concepts) and edges of the graphs are hierarchical 
relationships between these entities.  In our enrichment studies, genes are 
classified to these entities/nodes. Nodes must meet the following two inclusion 
criteria: (i) the adjusted P-value of their gene enrichment (Equation 4, Material 
and Methods) is significant (adjusted P ≤ 0.05), and (ii) the number of genes 
classified to this entity/node ≥ 3. 
 Definitions: V  is the set of nodes, and E  is the set of edges. Each 
node, Vvi  , is assigned two types of descriptors of its relation with its 

neighboring nodes: descriptors of iv  are (i) one or more edges notes as Ee ji,   
 

(when iv is parent of jv ) or Ee ij,   
(when jv is parent of iv ), and (ii)  an 

adjusted P-value from the enrichment study symbolized as ip (Equation 4, 

Material and Methods). Each node, iv , is also defined in terms of “ sets” of 

hierarchical relationships (capital letters) as follow: (i) iA  for all parent nodes (1st 

degree ancestors), (ii) iC  for all children, and (iii) iD  for all descendents. These 

hierarchical sets are respectively described as E}e │V{v=A ij,j i  , 

E}e │V v{=C ji,ji   and E}e ,e ,…,e ,e │V v{=D j ,kk ,kk,kk,iji nn1-n211
 . The 

nodes that have the most statistically significant adjusted P-values (lower values) 
as compared to their hierarchic neighbors were identified as “Regional Minimum”, 
noted VRM, as defined in Equation S1.  Among Regional Minimum nodes, we 
further excluded parents that have the same adjusted P-values as their children 
to conserve the most informative nodes: Refined Regional Minimum (VRRM, 
Equation S2). The subsumed significant associations (Significant Descendants 
of Refined Regional Minimum or SDRRM) are defined in Equation S3. Finally, 
Equation S4 defines the subset of included nodes (retained nodes) after 
refinement: those found in either Equation S2 or Equation S3.  
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} pp ,CAv │V v{=V ijiijiRM    (Equation S1) 

 }V v,A v,Vv │V v{=V RMjijRMjiRRM  (Equation S2) 

} V v,V v,D v,Vv │V v{ = V RMiRRMijiRRMjiSDRRM   (Equation S3) 

 } VSDVv│V v{ = V SDRRMRRMiiincluded   (Equation S4) 
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Section C. Details of Functional enrichment analysis of miR-204 targets 
and PPIN using Gene Ontology (Material and Methods, Figures 2B-C, 
Figure 3C, Table 7 in Text S2). 

To provide insights into biological functions and processes potentially 
regulated by miR-204 in HNSCC, we conducted standard statistical enrichment 
analyses based on the functional assignments of gene in Gene Ontology 
(GO) [1] to infer significantly deregulated functions associated with altered miR-
204 target expression in the HNSCC according to their presence in the 
miRNOME and/or the PPINs. Among a total of 1,088 genes predicted as targets 
of miR-204 in the miRNOME, 34 genes were also identified in the differentially 
up-regulated gene list (fold change>2) of the HNSCC GSE6631 transcription 
array. To characterize the functional relationships between 34 predicted targets 
of miR-204, we established the significant statistical enrichment of gene in to GO 
dataset with the following parameters of Onto-Express [2]: GO categories 
(i) “biological process” (GO_BP), and (ii) “molecular function” (GO_MF), 
cumulative hypergeometric distribution, P-value adjusted for multiplicity with FDR, 
and computational refinement of false positive results computationally inherited 
in GO (Protocol S1/Section B). In addition we also filtered out false positive 
enrichment results according to the previously described method that we 
developed (see Protocol S1/Section B, Supporting Figure 8 in Text S1). To 
examine the shared biological functions among 34 predicted miR-204 targets, 
we employed two functional enrichment analyses that prioritized the biological 
processes and molecular functions of (i) 34 miR-204 targets up regulated in the 
HNSCC transcription array GSE6631 with the background of 1,088 miR-204 
targets from miRNOME, and (ii) 1,088 putative miR-204 targets from the 
miRNOME with the background of the whole human genome. We focused our 
evaluation on enriched biological processes and molecular functions (GO terms) 
that contain at least 3 upregulated miR-204 targets in HNSCC and retained the 
GO terms enriched in both above-mentioned enrichment analyses (Table 7 in 
Text S2). Additionally, these dually enriched GO terms also had to meet the 
inclusion criteria of the refinement statistics (see Protocol S1/Section B) to filter 
out false positive results. 30 of the 42 GOs met these criteria (Figure 2B-C, and 
Table 7 in Text S2). Similarly, the double GO enrichment method was applied to 
determine enriched molecular functions and biological processes in the 56 up-
regulated HNSCC genes from GSE6631 that are significantly connected 
(prioritized) in the protein-protein interaction network. For these analyses, two 
enrichment statistics were calculated: (i) the 56 genes prioritized in PPIN against 
the 260 PPIN genes up-regulated in HNSCC transcription array GSE6631 as the 
background, and (ii) the 260 PPIN genes upregulated in HNSCC transcription 
array GSE6631 against the whole human genome as the background. GO terms 
significantly enriched in both analyses and with at least 3 genes were considered 
as valid (Figure 3C).  
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Section D. Details of datasets used to construct the protein-protein 
interaction network (Figure 3, Table 10 in Text S2).  

The protein-protein interaction network (PPIN) was generated by 
integrating seven protein interactions and signaling datasets. Protein interactions 
from each dataset were standardized to a two-column list of pair wise 
interactions between SwissProt accession IDs, with an additional column 
providing the source dataset and references to the literature when available. An 
overview of the seven datasets used in this study is provided in Table 10 in Text 
S2. As a similar database in recent, Jagadish and colleagues have integrated 
different sources of protein interaction data to construct protein-protein network 
[1-3]. 

Protein interaction data was downloaded from BIND [4] open access (now 
BOND: http://bond.unleashedinformatics.com) on October 10, 2006 along with 
the BIND database cross reference file. The interaction list was filtered using 
associated annotation to exclude Homo sapiens interactions inferred from yeast 
two-hybrid experiments. BIND identifiers in the interaction file were used to map 
to SwissProt accession IDs using the BIND-supplied database cross-reference 
file (downloaded October 10, 2006).  Homo sapiens protein interactions were 
downloaded from the BioGRID [5] (http://www.thebiogrid.org/downloads.php, 
version 2.0.25) on March 14, 2007 and the header describing the columns of the 
file was removed. The “all data” dataset of the HUGO Gene Nomenclature 
Committee (HGNC; Table 9 in Text S2) [6] was used to translate the proteins 
identified in the first two columns of the tab-delimited BioGRID file into SwissProt 
accession numbers. Using the information in the “experimental systems” column, 
the dataset was filtered to exclude interactions inferred from Yeast two-hybrid 
system and from “dosage rescue”. Homo sapiens specific data from the 
Database of Interacting Proteins [7] (DIP, file Hsapi20070107, http://dip.doe-
mbi.ucla.edu/dip/Download.cgi) was downloaded on January 7, 2007 and parsed 
to extract pairs of SwissProt identifiers. Data was downloaded from the Human 
Proteome Reference Database [8] (HPRD) (http://www.hprd.org/download) on 
December 6, 2006 and translated to SwissProt accession numbers using a cross 
mapping from the HGNC from Entrez Gene identifiers in the original data. Data 
was then filtered to remove interactions derived from yeast two hybrid 
experiments. This resulted in a two- column list of pair wise interactions between 
SwissProt accession IDs. The KEGG Pathway Database (release 40.0, October 
2006) was downloaded from The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [9] website (http://www.genome.jp/kegg/) and integrated to the PPIN. 
The file containing protein interactions for mammals was downloaded from the 
MINT website [10] (http://mint.bio.uniroma2.it/mint/download.do) on Dec. 5, 2006.  
Annotations pertaining to yeast two-hybrid or to co-localization and visualization 
technologies methods were excluded. Interacting human proteins (NCBI 
Taxonomy ID 9,606) were retained for the PPIN. The second dataset of protein 
interaction in Homo sapiens was downloaded from Reactome.org [11] 
(http://reactome.org/download/index.html) on October 27, 2006. “Reaction” and 
“direct complex” type of interactions were retained. SwissProt accession 
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identifier data was extracted from the columns one and four to create a two-
column file of pairwise interactions between SwissProt accession IDs. 
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