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1. Sparse Bayesian Regression models 

1.1 Hyperparameters setting 

In this paper we use  and , allowing the number of predictors to range 

between 0 and 12, a sensible choice in keeping with biological knowledge on the number 

genetic controls. In order to judge the sensitivity of the results to the prior on the model 

size, we also ran our SBR and SBMR models with an alternative setting:  and 

, that is a priori the number of predictors ranges roughly between 0 and 5. 

Overall, for the single tissues analyses, the results did not change demonstrating that the 

information contained in the data dominates the prior distribution on . Note that the 

adaptive level of shrinkage provided by  stabilises the results with respect to different 

choices of the prior model size. 
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While for the SBR model the error variance follows an Inverse Gamma distribution, 

 with  and  chosen such that the prior on  is non-informative 

( , ), setting the parameter  for the expectation of the error variance in 

the SBMR model, , is more complicated and, in contrast to previous reported 

analyses [1], we found some sensitivity to the value of  even when the degrees of freedom 

are very small such as . Here we propose a practical way to fix the hyperparameter  

in the spirit of an Empirical Bayes approach [2]: firstly, given a probe set, for every tissue, 

, we perform a stepwise regression (SWR), on the whole set of markers which 

enables us to derive an approximate estimate of the error variance . Combining the 

results derived from the stepwise regressions in the four tissues, we fix  to be the average 

of the approximate error variance for each tissue, . 

1.2 Number of sweeps and convergence 

We chose the number of chains to be run in parallel equal to four, which guarantees a 

sufficient ability of ESS to explore far apart regions of high posterior density . In 

the SBR model the algorithm is run for 25,000 sweeps, which 5,000 as burn-in. In the 

SBMR model we decided to increase the number of sweeps by roughly a factor of four such 

that the number of sweeps becomes 110,000 with 10,000 as burn-in. For 770 markers the 

average computational time for SBR is around 21 minutes ran on a desktop computer with a 

2GHz processor and 2Gb memory, while for SBMR the computational time ranges between 

80 and 115 minutes depending on the number of control points found during the search. 

Performance of the ESS algorithm in the SBR case was extensively tested by 

simulations, including a test case based on HapMap on a set of 775 non-redundant SNPs 
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and real data examples in a space up to 10,000 predictors. Typically the stationary 

distribution is reached by the end of the burn-in period and the simulated effects have high 

posterior probability of inclusion. For SBMR, the search of a set of markers that jointly 

predict the level of gene expression in the four tissues is complicated due to the fact that 

marginally each tissue can be potentially associated to a different groups of covariate 

(mainly trans effects) and share some others (mainly cis effects). For that reason, after 

running the ESS for the selected 2,000 probe sets for the SBMR model with 110,000 

sweeps, we recorded, in a post processing analysis, how many times the algorithm visited 

the top model ranked by the posterior probability 

   

where  is the sequence of sweeps after burn-in and 

. If the algorithm reached the top model less than 25 

times in each of the two halves of the sweeps, we increased the number of sweeps to ensure 

a faithful exploration of the posterior probability. According to this criterion, we reran ESS 

for SBMR in 557 probe sets (~28%) using 510,000 sweeps with 10,000 sweeps as burn-in. 

Only for seven (< 1%) of the remaining probe sets, the top ranked model was visited less 

than 25 times in each of the two halves: in these cases, we visually inspected the trace of 

 and checked that the algorithm reached the top model at nearly evenly spread 

intervals, reassuring that the search detect a good combination of markers. 
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1.3 Effects size 

Given a value of  and , , the matrix of regression coefficients and , the error 

variance matrix, can be simulated as follows [3] 

 , (S.1)

 , (S.2) 

where 

• , 

• , 

• , 

•  

with , the  matrix of solutions of the least squares given the set of covariates 

selected in the  model. For , we average the posterior values of  and 

over the set of  that are associated with the best model visited. 

1.4 Illustrative examples of filtered best model and noticeable effects 

Here we show that the inclusion of non-redundant closely linked markers helps ESS to 

identify trans-acting eQTLs that would have been missed otherwise. We present here an 

example for transcript 1371960_at in heart tissue. Figure 1 below shows the posterior 

probability of inclusion for the visited models with  > , 
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. The best model visited has four genetic control points: Igf2 on chromosome 1 

at 151.2 cM; D1Arb22 on chromosome 1 at 154.2 cM; Jak2 on chromosome 1 at 193.9 cM, 

and D5Rat38 on chromosome 5 at 1003.7 cM, indicated by the arrows. The first three 

markers are trans-acting loci (Figure 1, insert) while the marker on chromosome 5 is a cis-

acting eQTL for transcript 1371960_at. For comparison reasons with other non-Bayesian 

methods, we collapsed markers in the best model visited that we found within a 5 cM 

window, giving rise the filtered best model that includes two distinct trans-eQTLs and one 

cis-eQTL. However, inclusion of both non–redundant markers, Igf2 and D1Arb22, is 

essential to discover (at least) one of the two trans-acting eQTLs. To show this, we 

excluded Igf2 from the list of markers and ran ESS for the same number of iterations as 

before. The cis-acting eQTL was found in the best model visited, but neither D1Arb22 nor 

Jak2 were detected. This suggests that the ESS exploits the combined effects of tightly 

linked markers to facilitate identification of secondary effects, i.e., trans-eQTLs. 

The second illustrative example shows the steps that we took to reduce the 

dimension of the best model visited for transcript 1374907_at for the four tissues together. 

ESS indentifies a group of nine distinct genetic control points indicated with arrows in 

Figure 2A below. As described in Materials and Methods, we perform the following steps 

to highlight noticeable effects: 

1. for each of the nine markers we count the fraction of times  is different from zero 

in the set of visited model above the suitable FDR cut-off for the Jeffrey’s scale; 

2. five markers out of nine, having marginal posterior probability of inclusion > 0.5, 

are declared having noticeable effects (indicated in red in Figure 2A), reducing 

nearly by half the number of control points: D1Rat42 on chromosome 1 at 124.2 
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cM; D1Rat47 on chromosome 1 at 136.7 cM; D2mit6 on chromosome 2 at 68.8 cM; 

D6Cep8 on chromosome 6 at 12 cM; Fh on chromosome 13 at 88.3 cM; 

3. conditionally on the best visited model , we simulate the effects using (S.1) and 

(S.2), reporting only the effects corresponding to the markers that fulfilled the above 

condition (Figure 2 panels B-E, for each tissue separately). 

The transcript 1374907_at is located on chromosome 1, the cis-acting eQTL (D1Rat47) has 

marginal posterior probability equal to one, with a consistent negative effect in all tissues, 

while the other trans-acting eQTL on chromosome 1 (D1Rat42) shows a weaker marginal 

association with the gene expression level. For D1Rat42, visual inspection of the simulated 

regression coefficients indicates that the contribution to the linkage provided by kidney is 

less pronounced than for the other tissues. A similar situation arises for D2mit, that is the 

stronger trans-acting eQTL according to the marginal posterior probability of inclusion: the 

posterior distribution of the regression coefficient in kidney is concentrated near zero, while 

is large and negative in adrenal and relative small and positive in fat and heart indicating 

tissue-specific allelic effects. The choice of a 0.5 cut-off level for the fraction of times  is 

different from zero is a pragmatic choice although larger values can be specified to select 

more parsimonious models. Alternatively, to control FDR level, the threshold level can be 

chosen following Chen et al. [4]. 
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Figure 1. Marginal posterior probability of inclusion of each genetic marker for transcript 1371960_at in the 
heart tissue. Arrows indicate the best model visited, defined by four distinct genetic control points (Igf2 on 
chromosome 1 at 151.2 cM; D1Arb22 on chromosome 1 at 154.2 cM; Jak2 on chromosome 1 at 193.9 cM, 
and D5Rat38 on chromosome 5 at 1003.7 cM). The filtered best model is obtained by removing redundant 
markers within a 5 cM window, thus resulting in three distinct eQTLs. Insert, magnification of the region 
comprising Igf2, D1Arb22 and Jak2 genetic markers. The marginal probability of inclusion is calculated 
conditionally on all visited models whose log10 Bayes Factor is above the calibrated threshold controlling 
FDR at 5% level. 

Igf2 & D1Arb22 

Jak2 
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Figure 2. A) Marginal posterior probability of inclusion of each genetic marker for transcript 1374907_at in 
all tissues identified by the SBMR model. Arrows indicate the nine control points in the best model visited 
(FDR < 5%). The distinct eQTLs with noticeable effects are highlighted in red. B-E) Posterior density of the 
regression coefficients (i.e., effect size) for each marker with noticeable effect in each tissue. For each effect, 
the posterior interquantile range is indicated by the vertical bars, and the posterior median with a star. 
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2. Comparison with non-Bayesian mapping approaches 

2.1 Adapted two-stage Sequential Search Method (SSM) 

The two-stage Sequential Search Method, SSM hereafter, proposed by Storey et al. [5] for 

each gene expression trait, maps the most significant QTL and then sequentially identifies 

an additional QTL conditional on the first QTL found. With a slight modification of 

Storey's notation, the joint statistics for the 2-QTLs model is calculated based on 

  (S.3) 

where , , is the transcript level for the tissue,  is the intercept,  is the 

normal error term, , and finally  and  with 

, . 

In this paper, we have adapted SSM to make it comparable with the SBR and QTL 

Reaper analyses. The sequential method for locating the two loci remained the same, but 

the epistatic interaction between the primary and secondary locus, i.e.  in 

(S.3), is not considered. The model given below by  is then directly comparable to the 

additive the SBR model which does not consider epistatic interactions between eQTLs 

although its inclusion would not be difficult, but requires a different specification for the 

prior probability of the epistatic interaction [6]. The modified SSM that we consider is 

  (S.4) 

A Bayesian representation of the posterior probability of linkage for the models in (S.4) 

was adopted. The R package -value available at the web site 
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http://www.genomine.org/qvalue/, was used to calculate the posterior probability of linkage 

[7] for the adapted SSM. 

This above SSM approach was applied to the RI strains population, consisting of 29 

distinct observations [8]. Across tissues, 65% to 81% of the transcripts found by SBR to 

have one significant eQTL were also identified by SSM. However, SBR found 12-15% of 

the transcripts with at least one significant eQTL are under polygenic control, whereas SSM 

found no transcripts with more than one locus significantly associated with it. Using SSM, a 

population size of 29 strains does not have enough power to identify any significant 

multiple eQTL interactions as the method is limited by the power of the Wilcox test for the 

secondary locus (data not shown). 

2.2 Comparison between SBR and SSM 

Figure 3 below shows the number of transcripts which were found by the SBR model (FDR 

< 5% across all tissues), by the SSM model and those in common between the two methods 

when one locus found in the filtered best SBR model (see Materials and Methods) is also 

called significant by SSM (after removing redundant eQTLs, see Materials and Methods) at 

FDR < 5% across all tissues. Consistently across tissues, SBR found similar number of 

eQTLs (or more eQTLs that SSM), with the majority of them identified using both 

approaches. Figure 4 below shows the cis- and trans-regulated transcripts which were 

found by both methods for each tissue. The commonly detected eQTLs are primarily 

regulated in cis (66% to 72% across tissues), 14% to 24% of common loci were trans 

regulated and the rest had unreliable positions, suggesting that the both methods have high 

power to detect cis-acting effects within individual tissues. 

However, out the transcripts identified by both methods, the SBR model identified several 

transcripts per tissue that had polygenic control (12% to 15%) while modified Storey's 
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approach did not find any transcripts with polygenic control. Figure 5 below shows the total 

number of transcripts found by both methods. Those transcripts that the SBR model found 

to have polygenic control and SSM found to have monogenic control are given in grey, and 

those which both found to be monogenic are given in black (Figure 5). 
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Figure 3. Number of significant transcripts found by SBR and SSM at FDR < 5%. Transcripts were 
considered to be in common if one locus in the filtered best SBR model matched one locus found by SSM 
after removing redundant eQTLs which may result from linkage of expression values to multiple adjacent 
markers. 
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Figure 4. Number of cis-acting, trans-acting and unknown eQTLs found in common between SBR and SSM 
(in significant transcripts). Transcripts were considered to be in common if one locus in the filtered best SBR 
model matched one locus found by SSM after removing redundant eQTLs which may result from linkage of 
expression values to multiple adjacent markers. An eQTL was called cis-acting if it fell into a 10 Mb region 
around the localization of the transcript (see Materials and Methods). 
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Figure 5. Number of transcripts that have one locus in common between SBR and SSM at FDR < 5% and that 
have the filtered best SBR model with multiple loci (polygenic control). No polygenic control was found by 
SSM at 5% FDR. 
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2.3 Comparison between SBR and QTL Reaper 

eQTLs were also mapped using the QTL Reaper programs [9] which employs a standard 

regression approach and permutations to assess genome-wide corrected p-values (PGW). 

Figure 6 below shows the number of transcripts found by the SBR model (FDR < 5% 

across all tissues), by QTL Reaper ( , FDR < 5% across all tissues) and those 

found in common by both methods. The SBR method found a greater number of significant 

transcripts as compared to QTL Reaper in each of the four tissues (~ 2 fold more eQTLs). 

The vast majority of transcripts found by QTL Reaper were also found by SBR. Figure 7 

below shows the number of cis-acting, trans- acting and unknown eQTL in the transcripts 

found significant by both methods at 5% FDR. The majority of the commonly detected 

eQTLs are cis regulated (72% to 78%), 8% to 14% are trans regulated with the rest having 

unreliable positions. Both methods appear to have higher power in detecting cis-acting 

effects within individual tissues. Like the SSM method, QTL Reaper failed to detect any 

transcripts under polygenic control, while the SBR method found 12% to 20% of 

commonly detected transcripts to be under polygenic control. Figure 8 below shows the 

number of transcripts found by both the SBR model and QTL Reaper. The number of 

transcripts that the SBR model found to be under polygenic control and QTL Reaper found 

to be under monogenic control is given in grey and those which both methods found to be 

under monogenic control is give in black (Figure 8). 
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Figure 6. Number of significant transcripts found by SBR (FDR < 5%) and QTL Reaper (PGW = 0.001, FDR 
< 5%). Transcripts were considered to be in common if one locus in the filtered best SBR model matched one 
locus found by QTL Reaper after removing redundant eQTLs which may result from linkage of expression 
values to multiple adjacent markers. 
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Figure 7. Number of cis-acting, trans-acting and unknown eQTLs found in common between SBR (FDR 
<5%) and QTL Reaper (PGW = 0.001, FDR < 5%). Transcripts were considered to be in common if one locus 
in the filtered best SBR model matched one locus found by QTL Reaper after removing redundant eQTLs 
which may result from linkage of expression values to multiple adjacent markers. An eQTL was called cis-
acting if it fell into a 10 Mb region around the localization of the transcript (see Materials and Methods). 
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Figure 8. Number of transcripts that have one locus in common between SBR (FDR < 5%) and QTL Reaper 
(PGW = 0.001, FDR < 5%) that have the filtered best SBR model with multiple loci (polygenic control). No 
polygenic control was found by QTL Reaper at 5% FDR. 
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2.4 Comparison between SBR, SSM and QTL Reaper 

Figure 9 below shows the number of transcripts found in common between all three 

methods, SBR, SSM and QTL Reaper at 5% FDR. Both SBR and SSM found a greater 

number of significant transcripts than QTL Reaper and the vast majority of those found by 

QTL Reaper were also found by SBR and SSM. Figure 10 below shows the number of 

eQTL which are cis-acting, trans-acting and unknown for the transcripts found in common 

between the three methods, with the highest proportion being cis-acting (72% to 78%) and 

8% to 15% being trans-acting. Figure 11 below shows the number of transcripts that SBR 

found to be under polygenic control out the transcripts found in common between all three 

methods. SBR found 13% to 18% of common transcripts to be under polygenic control 

(shown in grey), whereas the rest are under monogenic control (given in black). 
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Figure 9. Number of significant transcripts found by SBR (FDR < 5%), SSM (FDR < 5%), and QTL Reaper 
(PGW = 0.001, FDR < 5%) Transcripts were considered to be in common if one locus in the filtered best SBR 
model matched one locus found by SSM and QTL Reaper after removing redundant eQTLs which may result 
from linkage of expression values to multiple adjacent markers. 
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Figure 10. Number of cis-acting, trans-acting and unknown eQTLs found in common between SBR (FDR < 
5%), SSM (FDR < 5%) and QTL Reaper (PGW < 0.001, FDR < 5%). Transcripts were considered to be in 
common if one locus in the filtered best SBR model matched one locus found by SSM and QTL Reaper after 
removing redundant eQTLs which may result from linkage of expression values to multiple adjacent markers. 
An eQTL was called cis-acting if it fell into a 10 Mb region around the localization of the transcript (see 
Materials and Methods). 
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Figure 11. Number of transcripts that have one locus in common between SBR (FDR < 5%), SSM (FDR < 
5%) and QTL Reaper (PGW = 0.001, FDR < 5%) and that have the filtered best SBR model with multiple loci 
(polygenic control). No polygenic control was found by either SSM or QTL Reaper at 5% FDR. 
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2.5 Comparison between SBMR and Hotelling’s -test 

The SBMR model identified 531 transcripts under common regulatory control across all 

tissues by one or more eQTLs, whereas the Hotelling’s T2-test found 459 transcripts at FDR 

< 5% (Table 1 below). An additional set of 72 transcripts were detected only by the SBMR, 

and 49 transcripts (69%) were under complex regulatory control by at least two eQTLs. 

 

Table 1. Comparison between SBMR and the Hotelling’s T2-test 
                    SBMR               Hotelling’s T2-test 

Cis1 368 69% 369 80% 

Trans2 137 26% 68 15% 

undefined* 26 5% 22 5% 

Total 531  459  
1For each transcript indentified by the SBMR or Hotelling’s T2-test we indicated whether there is at least one 
cis-eQTL, or one cis-eQTL and other trans-eQTL(s). 2For each transcript indentified by the SBMR or 
Hotelling’s T2-test we indicated whether it mapped to at least one trans-eQTL. Percentages are calculated with 
respect to the total number of transcripts indentified within each analysis, i.e., 531 for SBMR and 459 for the 
Hotelling’s T2-test. 
 

373 transcripts were found to be under common regulatory control in all tissues by both 

methods. When both methods find evidence for genetic regulation for the same transcript, 

we observed enrichment for cis-regulation (277 commonly detected cis-eQTLs, Table S6). 

Amongst the common set of transcripts, on average SBMR found more trans-eQTLs when 

compared with the Hotelling’s T2-test (Table 2 below). 

Within the set of 373 transcripts detected by both methods, the percentage of 

polygenic regulation by ≥ 2 eQTLs was ~40% in the SBRM and only 16% in the 

Hotelling’s T2-test analysis (Figure 12 below). This suggests that although both methods 

found a large common set of probe sets under genetic control, the SBMR was more 

powerful to detect complex regulatory mechanism by multiple genetic control points. 
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Table 2. Transcripts found by both the SBMR and the Hotelling’s T2-test 

1For each of the transcripts indentified by both the SBMR and Hotelling’s T2-test we indicated whether there 
is at least one cis-eQTL, or one cis-eQTL other trans-eQTL(s). 2For each of the transcripts indentified by both 
the SBMR and Hotelling’s T2-test we indicated whether it mapped to at least one trans-eQTL. Percentages are 
calculated with respect to the total number of transcript indentified by both methods, i.e., 373. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Number of transcripts under monogenic or polygenic control (≥ 2 eQTLs) found by the SBMR and 
Hotelling’s T2-test within the set of 373 transcripts (commonly detected by both approaches at FDR <5%). 
HOT, Hotelling’s T2-test. 
 

                      SBMR               Hotelling’s T2-test 

Cis1 291 78% 317 85% 

Trans2 63 17% 37 10% 

undefined* 19 5% 19 5% 

Total 373  373  
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In addition to the commonly detected 373 transcripts, the SBMR and the Hotelling’s T2-test 

identified a distinct set of 158 and 86 transcripts detected by one or the other method, 

respectively. The SBMR approach found that the 69% of the 158 transcripts were under 

complex regulation by two or more eQTLs, whereas only 2% of the 86 transcripts that were 

identified only by Hotelling’s T2-test showed polygenic regulation by ≥ 2 eQTLs (Figure 13 

below). 

Overall, the SBMR identified more transcripts under polygenic control than the Hotelling’s 

T2-test, and found 284 transcripts (14% of the total 2,000) with complex trans-acting 

genetic control, including 42 (2%) trans-acting eQTLs, 147 (7%) trans-acting eQTLs that 

are observed in combination with a cis-eQTL and 95 (~5%) models with multiple trans-

eQTLs for the same transcript. In contrast, the Hotelling’s T2-test found only 68 transcripts 

(3% or the total 2,000) with complex trans-acting genetic control. 
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Figure 13. Number of transcripts found just by SBMR (158) or just Hotelling’s T2-test (86) at FDR <5% that 
are under monogenic or polygenic control by at least 2 eQTLs. HOT, Hotelling’s T2-test. 



 28 

2.6 Power comparison with Hotelling’s T2-test and GFlasso 

In order to assess the power of SBMR, we simulated six different cases: i) null model, i.e. 

no association; ii) single cis-acting eQTL model; iii) co-existing cis- and trans-acting 

regulation model; iv) a bigenic model with two trans-acting eQTLs; v) co-existing cis- and 

four trans-acting regulation model; vi) four trans-acting eQTLs. For each model we 

considered strong (pairwise correlation among the four tissues is between 0.95 and 0.90), 

medium (pairwise correlation is between 0.45 and 0.40) and low correlation pattern 

(pairwise correlation is no greater than 0.05). We simulated the gene expression level in the 

four tissues using equation (1) of main text, with a covariance matrix  derived from the 

correlation structure described above and a fixed marginal variance for each tissue equal to 

0.25. We obtained the mean level  multiplying the real maker data set X with a suitable 

matrix of regression coefficients B. In particular the (pleiotropic) cis-effect can assume 

values (4, 3, 2.5, 2), while the (pleiotropic) trans-effect has smaller size (1.5, 1.25, 1, 0.75) 

and closer to the variance level. For type-I error and power calculation, we simulated for 

each of the 18 cases (four genetic control models and three correlation structures), one 

hundred data sets. For each of the 1,800 data sets, we run SBMR, the Hotelling’s T2-test 

and a recently proposed generalised Lasso-type algorithm, the GFlasso algorithm [10], 

using the default specifications provided by the authors. For GFlasso, the output of the 

algorithm returns the non zero effects found for each tissue. Based on this, several 

definitions of an eQTL that is detected across tissues are possible, and for the presentation 

of results we defined a “detected eQTL” when GFlasso found at least one non-zero effect in 

one of the four tissues (see discussion below). 

Table 3 below shows the type-I error for SBMR when the decision rule we adopted to select 

relevant markers was based on FDR level of 5% using the methods described in [4]. Type-I 
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error is very small in all the cases with a maximum value around 10-4 and with no error in 

the first four scenarios when the simulated correlation structure is very strong; a small type-

I error is detected in the two highly polygenic models. In order to perform the power 

calculation, we fixed the error at 1 × 10-4 that corresponds to the maximum observed type-I 

error with 5% FDR decision rule. The greater power of SBMR is clear in all simulated 

cases and it decreases slightly as the correlation structure becomes weaker in the case of the 

highly polygenic models (case v and vi). As expected the Hotelling’s T2-test is competitive 

only when a single cis-acting eQTL is simulated. In the case of the polygenic models, since 

Hotelling’s T2-test is not multivariate in the predictors, it faces more difficulties in 

discovering the truth signal. The GFlasso is constantly outperformed, competing with 

SBMR just in the single cis-QTL scenario: its power constantly decreases (even faster than 

Hotelling’s T2-test) as more complex polygenic models are simulated. Note that these 

results are obtained even when we have adopted a “loose definition” of detected eQTL (i.e., 

at least a non zero effect in one of the four tissues) based on the estimated effects provided 

by the algorithm. Using a more stringent definition of detected eQTL (i.e., effects different 

from zeros in all tissues), we found an even lower power for the GFlasso. For the most 

difficult scenarios (co-existing cis and four trans eQTLs or four trans eQTLs with weak 

correlation) the SBMR power is around 45% and 63%, respectively, while both the 

Hotelling’s T2-test and GFlasso have less than half and about 1/5-1/10 of the SBMR power 

for case v and vi, respectively (Table 3). 
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Table 3.  Power calculation for a fixed level of Type-I error for the SBMR, the Hotelling’s T2-test and 
the GFlasso [10]. 

  SBMR Hotelling’s 
T2-test GFlasso 

Genetic 
model 

 
Correlation 
between 
tissues* 

Type-I error 
at 5% FDR 

  Power at  
1 × 10-4 

Type-I error 

Power at  
1 × 10-4 

Type-I error 

Power at  
1 × 10-4 

Type-I error 

Strong 0 - - - 

Medium 0 - - - Null 

Weak 1.56 × 10-4 - - - 

Strong 0 1.000 0.950 1.000 

Medium 1.30 × 10-5 1.000 0.930 0.990 
One 
pleiotropic 
cis-eQTL Weak 1.30 × 10-5 1.000 0.960 0.970 

Strong 0 0.935 0.475 0.570 

Medium 2.60 × 10-5 0.920 0.485 0.540 
Pleiotropic 
cis and 
trans-eQTLs Weak 6.51 × 10-5 0.965 0.465 0.550 

Strong 0 0.975 0.625 0.360 

Medium 6.51 × 10-5 0.910 0.355 0.385 
Two 
pleiotropic 
trans-eQTLs Weak 9.11 × 10-5 0.925 0.280 0.355 

Strong 1.31 × 10-5 0.640 0.355 0.155 

Medium 3.92 × 10-5 0.485 0.245 0.145 
Pleiotropic 
cis and four 
trans-eQTLs Weak 2.61 × 10-5 0.445 0.185 0.173 

Strong 2.61 × 10-5 0.810 0.076 0.056 

Medium 1.04 × 10-4 0.656 0.133 0.050 
Four 
pleiotropic 
trans-eQTLs Weak 2.61 × 10-5 0.630 0.116 0.056 

*Strong: pairwise correlation among the four tissues is between 0.95 and 0.90; Medium: pairwise correlation 
is between 0.45 and 0.40; Weak: pairwise correlation is no greater than 0.05 
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3. Validation of microarray gene expression data 

We conducted reverse transcription quantitative PCR (RT-QPCR) across all RI strains to 

validate the linkage data of two cis-regulated transcripts, two trans-regulated transcripts and 

one transcript representing the Hopx gene showing cis and trans regulation in the heart. In 

the case of Hopx and EndoG, cDNA was generated from left ventricle total RNA using 

iScript (Bio-Rad) and then amplified with SYBR Green JumpStart Taq Ready Mix (Sigma) 

with gene-specific primers (sequences below). In the case of Irf7 and Stat4, one-step RT-

PCR was carried out on total RNA with One-Step RT-PCR Master-Mix reagent (Applied 

biosystems) and predesigned Taqman probes (Irf7 - Rn01450778_g1; Stat4 – 

Rn01437242_m1) (Applied biosystems). The expression level of hypoxanthine 

phosphoribosyltransferase (HPRT) housekeeping gene was used for normalization.  

values were analysed using the  method of Livak and Schmittgen [11]. Forward and 

reverse primers are given below.  
 

Gene Forward primer Reverse primer 

Hopx AGGAGCAGACGCAGAAATGGT CCGTGACCGATCTGCATTC 

HPRT TGACTATAATGAGCACTTCAGGGATTT CGCTGTCTTTTAGGCTTTGTACTTG 

EndoG CCAATCACCGCTGGAGTCA AGGCCCTGTGCAGACATAAAC 
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