Supplementary Information 
Flow-based cytometric analysis of cell cycle via simulated cell populations

S0 Cell Population Model (CPM) Overview
The CPM generates a virtual population of cells (vpopulation, vp or vcells), the properties of which are attained from a biparameter flow cytometry data set, E0, at time, t0. In this particular case, experimental measurements are obtained for 10,000 cells in the form of two fluorescence readouts which correspond to two independent reporters that reflect cell cycle position; the first the DNA content and the second to the GFP-Cyclin B1 content or expression of a cell respectively (Details of these cellular reporters are summarized in the Materials and Methods section of the manuscript).  The status of this two dimensional (2D) distribution was then monitored from time series flow data with and with out a drug perturbation (e.g. the topoisomerase II inhibitor ICRF-193) represented at t0, t1, t2…… .

The two cellular reporters are used at t0, as the initial coordinates in the 2D intensity space, by the CPM to relatively position each member (ie 10,000 cells) of the populace within this domain. The intention is then to use the CPM to evolve these individual coordinates from t0 to a later time in the time series (eg t1), where a second flow cytometry data set, E1, is used, to determine and ‘make a judgment’ of the correlation of the updated intensity coordinates of the vpopulation to that of E1. To maximize correlations between these data sets E0 and E1 a differential evolution (DE) algorithm is employed to optimize the important ensemble parameters, such as intermitotic time (IMT). 
To construct a framework by which temporal evolution of the vpopulation maybe achieve several initialization stages on the set E0 are required:
(1) The experimental data E0 requires a sensible gating strategy to ensure that we consider only the viable intact fraction, vf, of reporting cells, e.g. we do not include debris and dead cells and importantly we remove the non-reporting GFP-cyclin-B1 fraction. The intensity properties of viable fraction initialise the properties of the vpopulation at t0 .i.e. (vp(t0)  ≡  vf  ( E0).

(2) The intrinsic properties of vp are used to determine numerical strategies to enable cell cycle progression or evolution in the intensity space for each vcell member as a function of time. Also, these allow assignment of additional components to every member of the vpopulation; these components describe initial temporal position within the cell cycle at t0, taking into account heterogeneity across the populace compounded by the variation of intensity of each component.

(3) Using information gained from point 2 above, each member of vp are assigned two further attributes. The first describes the intensity coordinates of the vcell following mitosis, which can be thought of as its position in intensity space at its local time zero point. The second details the magnitude of the DRAQ5 (DNA content) intensity labeling entrance of the vcell into the G2/M phase from the G1/S phase of the cell cycle. This magnitude is determined by simply doubling the value of the DRAQ5 signal at its local time zero point.

Thus, section S1, details the numerical strategies and postulates employed to accomplish the above points. Following this in S2, we detail how the information gathered in S1 can be used to initialize vcell parameters required for their evolution in the 2D intensity domain, discussed in section S3 and S4. We also, indicate the optimization strategy employed (section S5) when fitting the evolved vpopulation to a second flow cytometry data set at time t1.
All numerical algorithms developed during the course of this work have been written in the MATLAB environment; fragments of pseudo-code for some important aspects of the CPM are given in S7.
S1 Gating

Gating of the data is required to infer a reporting/viable fraction of cells, vf, from within the measured experimental data set E0, i.e. vf ( E0. Gating of the experimental data set is important as there will exist a  fraction of non-reporting cells that will be detected by the flow cytometer (e.g. with a 1D DNA content only attributes); further these may also be derived from  dead cells or cells that have been damaged or stressed in some way. However, we show that the intensity profiles of this non-viable and reporting subset does not adhere to that exhibited by the general population. The grey and red markers of Figure S1, indicate the experimentally acquired data set, E0. It is quite evident that there are three main populations of cells; (1) low DRAQ5 (< 50 intensity units) with a range of GFP signal – this is cellular debris and dead cells (2) low GFP (< 100 intensity units) with a normal range of DRAQ5 signal – these are viable GFP-cyclin B1 empty (non-transfected) cells that only have access to the DRAQ5 reporter and (3) the predominant dual labeled viable fraction, which the gating procedure seeks to locate. In this case, vf is deduced by a simple density cut-off technique. Here the 2D intensity space, encompassing both GFP-cyclin B1 and DRAQ5 signals is binned into a square grid; each square element has side of 15 intensity units. Each intensity element is then sequentially visited and the number of data points,
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, within it deduced. If  is above a set threshold criterion (in this case 25 cells (data points)) the elemental area is labelled active. The set of all active elemental areas, A, are connected to form a closed N-sided polygon, defining the contour (dashed line) see manuscript Figure 1(b).   The last step of the gating procedure calculates the intersection of sets A and E to give the set vf, (vf = A ( E) of data points that lie on or within the contour.

The set vf, initializes the intensity coordinates of the virtual cell population at time, t0, i.e. vp(t0)  ≡  vf  ( E0). Thus, when either the DRAQ5 or GFP-cyclin B1 signal is subsequently referred to, we mean this to be the viable fraction of these signals deduced from gating. The distribution of the gated intensity coordinates of the vpopulation members are indicated in red (Figure S1). 

This simple gating procedure is applied to all time-series experimental data sets (e.g. see figures 5(a) – (c) in the manuscript) to allow objective segmentation of data at all time points. However, due to the dilution, in intensity space, of the experimental data at later times; a fairly low threshold criterion was employed causing the contouring algorithm to include regions of intensity space seemingly devoid of cells. Future versions of the CPM will implement more sophisticated segmentation methods.
S2 Initialization of time in cell cycle index 

The second initialization section of the CPM develops numerical strategies to evolve the intensity coordinates of the vpopulation as a function of time. The fluorescent intensity signals of the virtual cells convey relative position within a cell cycle (described in this case by two parameters); they contain no direct temporal information. In order to achieve a chronological assignment, the CPM assumes the following criteria to be true: (i) the vcells are randomly distributed throughout the IMT interval and (ii) that the DRAQ5 signal is monotonically increasing throughout the cell cycle, therefore the minimum and maximum intensities of this signal correlates and therefore defines the start and end of the cell cycle. These two important criteria, present a temporal framework in which each vcell can be assigned a third component: an initial time coinciding with their relative position in intensity space with respect to other members of the populace. Furthermore, these linked postulates provide a means to update both their DRAQ5 and GFP fluorescence intensity coordinates as a function of time, allowing evolution of the populace through interphase up to mitosis and subsequent evolution of progeny (daughter) vcells through their corresponding cell cycle.

S2.1 Intensity signal transformation
Before temporal assignment, it is numerically convenient to transform the DRAQ5 and GFP components of the vcell populace to the [0 1] × [0 1] unit square in the plane 2 with corners (0,0), (1,0), (0,1), and (1,1). This transformation is easily achieved by normalization of the intensity coordinates through equation S1.2.1.
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refer to the original and normalized values of intensity of the ith vcell. The values of 
[image: image8.wmf])

max(

x

 and 
[image: image9.wmf])

min(

x

 for each intensity signal are stored to permit renormalization to the experimentally measured intensity domain from that of the unit square. Figure S2 displays the normalised intensity coordinates of the virtual populace. Also highlighted (red markers) on this plot are the vcells with the lowest DRAQ5 signal, the significance of their 2D location is discussed below.
S2.2 vpopulation Dynamics 
In order to initialize a relative position of each vcell within the cell-cycle we first make use of the postulates (i) and (ii); numerically sorting the normalized DRAQ5 component of the populace in ascending order, we transform the data once more to form a monotonically increasing stepped-function, akin to an empirical cumulative distribution [1], which for convenience we call 
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. The step features present in 
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, arise from both the finite experimental resolution when measuring the intensity signal and intrinsic cell heterogeneity;  
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 is plotted as a function of vcell index in figure 3(b) of the manuscript. The significance of this curve is that if we believe postulates (i) and (ii) and that cells double their DNA content in a uniform manner if unperturbed then 
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describes how the DRAQ5 intensity component of a vcell will evolve through its respective cell cycle. Furthermore, adherence to these criteria places temporal boundaries on the vpopulation, i.e. minima and maxima of 
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 refer to the start (local cell time = zero) and finish (or total time or intermitotic time) of the cell cycle. Thus by fitting, 
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via a suitable polynomial function we reveal a means to dynamically update the DRAQ5 coordinate of every member of the vpopulation as a function of time.

To ease fitting of the polynomial to 
[image: image16.wmf]n

CF

D

we reduce 
[image: image17.wmf]n

CF

D

so that at each discrete intensity bin, 
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, closest to the median of the spread, i.e. 
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We next numerically fit 
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 to reveal a continuum curve describing how the DNA content of a vcell will vary over time. The black data points display the 
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 and the solid blue line represents a polynomial in time fitted to
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. The inset in figure 3(b), displays an enlargement of 
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revealing its stepped nature and the continuum of the 
[image: image30.wmf])

(

5

t

p

DRAQ

curve; the x-axis of this figure is the normalized vcell sorted index number of
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, i.e. the number of vcells divided by Ncells, so that we occupy the unit interval due to the postulates detailed above, this unit interval can now be thought of as the intermitotic time.
This procedure cannot be strictly applied in the same manner to reveal a second polynomial function that represents the GFP component evolution because unlike the DRAQ5 intensity the properties of this intensity distribution, in general, need not be monotonically increasing throughout the cell cycle. We therefore use the normalized GFP coordinates of the vcells that are members of the set 
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, which we label 
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. We can then similarly fit a second polynomial, 
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, to this reduced data set to provide a mechanism to evolve the GFP intensity coordinate of each vcell as a function of time. This distribution along with a curve depicting a polynomial fit to the data is displayed in figure 3(c) of the manuscript; the black markers and solid blue line respectively. Figure 3(c), is clearly illustrates the variability associated to the distribution
[image: image35.wmf]n

g

, which complicates the process by-which an initial cell cycle time is assigned to each member of the vpopulation. If this variability were not present, an initial time could be deduced directly from 
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 (see figure 3(b)), i.e. simply assign a time according to sorted DRAQ5 position over the interval [0 1], values of which can be multiplied by an appropriate intermitotic time to reflect ‘real’ cell cycle dynamics (N.B. the intermitotic time is a CPM optimization variable). The actual method for initial cell cycle assignment is detailed in the following sub-section; this sub-section has used two important postulates about the experimental data set obtained to deduce two polynomial functions that describe how both the DRAQ5 and GFP-cyclin B1 signal may vary in magnitude over a vcells cell-cycle.

S2.3 Time during cell cycle allocation

To assign an initial cell-cycle to time to the virtual population we make use of the two previous deduced polynomial functions 
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 and their derivatives to implement a 2D Newton-Rhapson minimisation routine [3]. The function to be minimised is:
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here, 
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 are vectors of length Ncells (i.e. describing the Ncells members of the virtual population) referring to the polynomial values at time t0 and 
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refer to the magnitudes of the DRAQ5 and GFP signals of the vpopulation respectively. The initial time, t0, allocated to the each member populace are generated from Ncells random numbers uniformly distributed over the unit interval [0 1]. These initial temporal values are then iteratively refined through the expression:
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is the Jacobian, deduced from the ratio of equation [S2.3.1] and its derivative, which gives a numerical update to the initial temporal values t0 assigned to the virtual populace. This iterative procedure if repeated until the magnitude of the L2-norm of the Jacobian falls below 10-8. Members of the minimised set of temporal values at the start of the virtual experiment, tE=0, are then assigned to the corresponding vcells.
In figure S3, we show the ‘median line’ of the populace in intensity space that is deduced plotting the DRAQ5 and GFP polynomials against one another. Due to the postulates detailed in the previous sub-section, the intensity coordinates of each vcell will follow a similar shaped trajectory, only its relative position in intensity space will be shifted. The red arrows of three randomly chosen vcells in figure S3 indicate the area to which the shift is limited. Thus, the minimization procedure effectively re-positions or calculates the root of the median line with the DRAQ5 and GFP coordinates of the each vcell in order to assign an initial time within the cell cycle. Furthermore, the allocation of a randomly assigned from the intermitotic time interval to initialize the Newton-Rhapson minimisation routine maintains the relative intensity signal broadening. 
S 2.4 Polynomial fits
In both cases, the CPM works to find the lowest order polynomial describing the variation of the two intensities; this is mediated by monitoring and minimizing the L2-norm [1] against polynomial order, i.e. if the L2-norm is decreased by less than 5% going from order n to n+1, the nth order is retained. Figure S3 displays the solid black line is the curve resulting from the combination of the two fitting polynomials. It is evident from the curve that there are two linear regions at its extremities; these are present to inhibit numerical infinities that are manifest in the polynomial functions near the two temporal boundaries, a consequence of the sorting procedure. To avoid these numerical deficiencies linear functions are employed to describe the evolution of the DRAQ5 and GFP intensity coordinates of the vcells for cell cycle times less than 5% and greater than 95% of the mean intermitotic time. The two roots for each curve describing polynomial intersection with these linear functions were determined via a Newton-Rhapson iteration scheme [3]; the locations of the roots are indicated by the red circles in figure S4. The location of these two roots numerically defines the bounded cell cycle system. The gradients of the linear functions were optimized to allow a continuous path across the roots to avoid discontinuities in both DRAQ5 and GFP signals.
S3 Cell population model – vcell evolution

Once initialized, each member of the population has three discriminating properties corresponding to, tE=0 (i) DRAQ5, (ii) GFP-cyclin B1 fluorescence intensities (or coordinates) and (iii) a cell cycle time index at the start of the experiment. In order to mimic DNA synthesis and subsequent path through mitosis, two further parameters for each vcell are required. These are the DRAQ5 and GFP coordinates at the start of the cell cycle subsequent to a mitotic event, i.e. this temporal position is the ‘local’ (to each vcell) start or time zero of the individual cell cycle of the populace, tt=0.
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The magnitude of both the DRAQ5 and GFP intensity at tt=0 are calculated via expression S3.1, this is the summation of the individual vcell intensity at time zero and that at the start of the experiment, tE=0 minus the initialized magnitude at tE=0 deduced experimentally. Figure S5, indicates the vpopulation together with the intensity coordinates of three randomly chosen members of vp, marked in yellow also shown is the corresponding tt=0 intensity coordinates of these vcells  (marker in red). Thus, after the procedure each vcell has five distinguishing features, DRAQ5 and GFP intensities at tE=0, tt=0 and a time tt=0 in cell cycle. From the values DRAQ5(tt=0) we can deduce one further quantity, DRAQ5DNA2 =  2×DRAQ5(tt=0), that is the magnitude of DRAQ5 intensity after DNA synthesis through S-phase each individual vcell has to surpass for an effect transition from G1/S phase to the G2/M phase of the cell cycle. The CPM directly identifies this point to the point at which a real cell has doubled its DNA content. Monitoring of the simulated DRAQ5 intensity then allows identification of vcells that have multiplied their DNA content allowing placement of each into the following sub-groups: normal cycle – DNA index, DI = 2N (G1) or 4N (G2/M); polyploidy cycle - DI = 4Np (G1p) or 8Np (G2p/Mp). Once a vcell has passed the DRAQ5DNA2 point and entered the G2/M phase the CPM stochastically samples the individual to test for the mitotic event; this stochastic decision process is detailed in the following sub-section and a flow diagram detailing every step of the CPM is displayed in figure 2 of the manuscript. Once the aforementioned parameters have been defined for each member of the vpopulation, the CPM is now in a position to evolve this set to a new temporal point, i.e. 
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where 
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is the same as that defined in equation S3.1. To illustrate the evolution process, the solid black lines in Figure S5 indicate the 2D intensity trajectories of three randomly chosen vcells, from the virtual populous. These curves represent how these vcells (labelled by the yellow markers) and their subsequent off-spring, evolve through their intermitotic cell cycle unless perturbed by pharmacodynamic agents.
S4 Cell population model – stochastic mitotic event
This section describes the stochastic process by which the CPM determines if a vcell present in the 4N DNA index (G2/M) undergoes mitosis or evolves further in this phase. The CPM employs the stochastic decision similar to that detailed in [4] to determine whether or not a mitotic event as occurred. Each vcell has an associated with it a cumulative frequency distribution, CDF, the mean (and associated standard deviation) of which, corresponds to the mean intermitotic time (and its error) of the virtual population. These two parameters are to be optimized via the evolutionary algorithm (detailed in section S5) to best fit a second set of flow data obtained at a later time, t1. Once a vcell is deemed to have entered the 4N DNA phase (i.e. DRAQ(t) > DRAQ5DNA2) the associated CDF of that vcell at the time t is deduced producing a real number, RCDF, within the interval [0 1]. This CDF is then stochastically sampled by generating a random number, RRND, in the unit interval, if RRND < RCDF then the vcell undergoes a mitotic event, on the other hand if RRND < RCDF then the vcell remains in the 4N DNA phase and its intensity coordinates are updated accordingly. If the former is true then mitosis is deemed to occur and the CPM generates two daughter cells at the intensity coordinates DRAQ5(tt=0)  and GFP(tt=0) deduced previously for the parent (see sub-section S3) and are left to evolve in time with the inherited properties: DRAQ and GFP (detailed in equation S3.1). Thus if the later is true at the subsequent time increment, this individual vcell will have an increased probability of undergoing mitosis due to the fact that its CDF is monotonically increasing to unity as a function of time.
S5 Differential Evolution

The second component of the simulation procedure is an evolutionary computing technique, named differential evolution (DE) [4]. Like most evolutionary algorithms, DE follows the traditional modus operandi: initialisation, mutation, selection and recombination. However, compared to other evolutionary strategies DE has many additional attractive characteristics: it employs a differential operator to create new candidate solutions, uses a one-to-one competition scheme to select new population members and naturally employs real numbers [5].
The cell population model is defined by a set of parameters specific to the flow cytometry experiment conducted. Optimization of the fit between simulation and experiment is dependent upon selection and minimization of the population variables, in our case: the mean inter-mitotic time, its standard deviation and a parameter detailing the presence of a drug in the vpopulation. The upper and lower bounds for these optimisation parameters were set at 10-50 hours, 0-25 hours and 0-1 respectively.

The DE algorithm is initialised by randomly sampling from these bounds developing a population and assigning these three values as vector components in sample space. This process is repeated for the initial vector population of Np members. These vectors are then used to optimise the CPM optimisation parameters by searching the parameter space for a global minima related to the correspondence of the vpopulation distribution in intensity space at a time t1, to that of a second flow Cytometric data set acquired also at t1. The correspondence or fitness the DE algorithm seeks, between the real and virtual data sets, is the maximisation of the ratio of vcells to that of the experimentally measured within a numerically defined gated area (see figures 5(a-c) of the manuscript for examples). Termination of the DE algorithm is determined when fitness magnitude varies by less than 1% over five subsequent DE generations.
S6 Video - vpopulation simulation 

(See movie attachment)

S7 MATLAB code
Below are examples of the functions used for the gating procedure detailed in S1 and the assignment of a temporal location through minimization detailed in S2-3. A diagrammatic illustration of the full numerical procedure is displayed in figure 2 of the manuscript.

S.7.1 Gating 

function [x y xi yi] = clean_data(x,y,N,NpA)
% The function gating finds the experimental cells within a calculated
% contour or gating region, which is itself determined from the density of
% cells per unit elemental area. 
% Inputs:
%               x - DRAQ5 coordinates of vcells
%               y - GFP coordinates of vcells
%               NpA - cut-off parameter to inform elemental region is
%               active or not
% Outputs:
%               x - DRAQ5 coordinates of vcells within contour
%               y - GFP coordinates of vcells within contour
%               xi - DRAQ5 coordinates of contour
%               yi - GFP coordinates of contour
%               
% This function calls the following subfunctions:
% contourc - intrinsic MATLAB function
% inpolygon_mrb - modified intrinsic MATLAB function

maxv = max(max([x y],[],1));
minv = min(min([x y],[],1));
dI = (0:15:maxv)’;

N = numel(dI)
z = zeros(N,N);
% built 2D density map
for iy = 1:N-1
    for ix = 1:N-1
        xu = dI (ix+1);

xl = dI (ix);
        yu = dI (iy+1);

yl = dI (iy);
        counter = sum((x > xl & x <= xu) & (y > yl & y <= yu)) ;
        if counter > NpA
            z(ix,iy) = 1;
        end
    end
end
% Get 2 colour contours
N_c = 2;
C = contourc(dI, dI,z', NpA)';
isolines_xy = cell(N_c,1);
isolines_v = zeros(N_c,2);
i = 1;j = 1;
NelC = numel(C(:,1));
while j < NelC
       isolines_v(i,:) = C(j,:);
       idx = j+1:j+C(j,2);
       isolines_xy{i,1} = C(idx,:);
       j = idx(end) + 1;
       i = i + 1;
end

isolines_v = isolines_v(1:i-1,:);
isolines_xy = isolines_xy(1:i-1,:);
% delete repeated contours
id = isolines_v(:,1) == NpA;
isolines_v = isolines_v(id,:);
isolines_xy = isolines_xy(id,:);
% locate longest contour
[isolines_v iu_isolines] = max(isolines_v(:,2));
isolines_xy = isolines_xy(iu_isolines,:);
% Get contour
xy = isolines_xy{1};
xi = xy(:,1);            yi = xy(:,2);
% Get points on and within contour
in = inpolygon_mrb(x,y,xi,yi);
x = x(in);              y = y(in);
S.7.2 Temporal position in cell cycle

function [t S] = temporal_position(S,x,y)

% The function temporal_position locates a relative temporal position in

% the cell% cycle for each vcell.
% Inputs:
%               x - DRAQ5 coordinates of vcells
%               y - GFP coordinates of vcells
%               S – a structure whose entries contain vcell information see S2 and

%     
        S3 for details
% Outputs:
%               t – time in cell cycle
%               S – a structure whose entries contain vcell information see S2 and

%     
        S3 for details

%               
% This function calls the following subfunctions:
% norm_renom_xy – (re)normalise intensity coordinates equation [S1.2.1]
% find_time – calculates equation [S2.3.1]
% xu_lmu_eval - calculates equation [S3.1-2]
% normalise data
[xn yn] = norm_renorm_xy(S,x,y,0);
t = rand(S.N,1,);
tol = 1e-8;
err = S.N;
it = 0;
% newton iteration
while err > tol && it < 1000
    [f df] = find_time(S,xn,yn,t);
    J = - f./(df);
    t0 = t + J;
    dt = (t0-t);
    err = sum(dt.*dt)/S.N;
    t = t0;
    it = it + 1;
end
% find minimum of DRAQ and GFP signal to allow determination of G1S-G2M phase
S.dx = xu_lmu_eval(S,t,0,0);

S.dy = xu_lmu_eval(S,t,1,0);
% find minimum of DRAQ and GFP signal @ t = 0
t0 = 0;
S.x_t0 = xu_lmu_eval(S,t0,0,0);
S.y_t0 = xu_lmu_eval(S,t0,1,0);
% re-normalise data
[S.dxn S.dyn] = norm_renorm_xy(S,S.dx,S.dy,1);
S.t = t;
%%%%%%%%
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Figure S1: Flow cytometry data set indicating the DRAQ5 and GFP-cyclin B1 fluorescence intensities of a measured cell population. This plot highlights the raw data (grey) and the subsequent gated fraction (red); also, the three principle sub-fractions present within the raw data are numerically labelled.
Figure S2: Fluorescence intensity plot of the normalised vpopulation; vcells highlighted in red refer to those with the lowest normalised DRAQ5 values. 
Figure S3: Plot indicating the curve 
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 over the cell cycle interval [0 IMT], and the vpopulation, 3 members of which have been highlighted (yellow markers) with DRAQ5 and GFP intensity differences (red arrows) corresponding to equations [S2.3.2]. 
Figure S4: Figure indicating location of the roots (yellow markers) between the median intensity line and linear functions (that enclosed by red ellipses) describing evolution of DRAQ5 and GFP intensity coordinates as a function of time.
Figure S5: Intensity plot highlighting the properties of three randomly chosen vcells. These properties include: their vcells intensity coordinates at both tE=0 and tt=0 marked in yellow and red respectively and their corresponding intensity trajectory through their cell-cycle (solid black lines). 
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