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Quantification of Hierarchical Modularity A network was defined as being hierarchically modular

if it contained first-level modules with significantly non-random modularity, e.g., first-level modules con-

tained submodules. To visually represent the hierarchical community structure of the networks, we used

a co-classification algorithm which iteratively determines hierarchical nodal affinities based on topologi-

cal overlap in the symmetrized matrix and uses this information to determine the relative relationships

between nodes at all hierarchical levels [1]; see Figure 1 and 2 in the main text. The modularity of

these matrices was estimated using the Louvain community detection algorithm [2] and compared to the

modularity distributions (N=100) of two benchmark networks: 1) Pure random networks, i.e., networks

with the same number of nodes and edges as the original network, and 2) Functional random networks,

i.e., those with the same number of nodes and degree distribution as the original networks [3] such that

each edge was rewired on average 15 times. All four network types were found to have modular structure

larger than expected in random networks; see Table 1, top panel.

The topological structure of each network was further characterized by 1) the number of levels found in

the Louvain decomposition, 2) the number of modules in the first level decomposition and 3) the average

modularity of the first-level modules; see Figures 1 and 2 and Tables 1 and 2 in this supplementary text

in addition to Figure 2 in the main text. We found that the number of hierarchical levels defined by the

Louvain decomposition was not significantly different than pure random or functional random networks,

suggesting that this quantity is largely dictated by the number of nodes and number of edges in the

original system; see Table 1, Panel 2. The number of modules in the first level decomposition did not

show any particular relationship to the same quantity in either of the random network types; see Table

1, Panel 3. The average modularity of the first level modules was found to be significantly higher than

expected in random networks in both the C. elegans neural network and the human brain networks derived

from DSI data; see Table 1, bottom panel. While the average modularity of the first-level modules of

the VLSI network and the human brain network derived from MRI data was not different than expected

in a random network, several modules in both networks showed significantly non-random submodular

structure. Figure 2 in the main text shows the hierarchically modular structure of all four network

types in detail. In each of these figures, we first show the first level modules estimated by the Louvain

decomposition. For each module separately, we estimate the modularity. We then iteratively rewire the

module 100 times to create a distribution of functional random modules of the same size and with the

same degree distribution as the original module. We estimate the modularity of these functionally random
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modules as well as the modularity of 100 purely random networks that are the same size (same number

of nodes and edges) as the original module. We perform a 1-tailed t-test to determine if the modularity

of the original module is larger than expected in the distribution of 100 functional random networks, and

a second 1-tailed t-test to determine if the modularity of the original module is larger than expected in

the distribution of 100 pure random networks. In the figures, we report the p-values for these two tests

below the modularity value of each module. By this process of iterative coarse-graining and rewiring, we

are able to characterize the modular, submodular, and in some cases deeper hierarchical structure of the

networks.

Visual inspection of the hierarchical structure of the 4 types of networks from information and nervous

systems (Figure 2 in the main text) suggests that they each decompose slightly differently. The VLSI

network decomposes into many first-level modules, only one of which leads to a tree 4 levels deep.

Like the VLSI network, the human brain MRI network shows hierarchical structure descending from its

medium-sized modules rather than its largest module. Contrarily, throughout the decomposition of the

C. elegans network, there seems to be a direct relationship between the size of a module and the depth

of its hierarchical substructure. The human brain DSI network is the most homogeneous of all, in which

each level is composed of ∼ 2− 3 subcomponents of similar size. Further work is necessary to determine

whether or not these features are characteristic of each type of network and therefore can be used to

distinguish between them.

Estimation of Topological Dimension We first estimated the topological dimension of all four types

of information processing networks by computing the topological Rent exponent, pT , which measures the

configuration of the network in topological rather than physical space [4]. The topological Rent exponent,

pT , is related to the minimal (intrinsic) topological Rent exponent, pmin, by pT ≥ pmin. Since pmin is

related to the topological dimension of the network (by pmin = 1− 1
DT

[5]), we can relate the topological

Rent exponent to the topological dimension of the network: pT ≥ 1− 1
DT

.

Recently, Partzsch et al. examined the topological network of C. elegans and showed that its topo-

logical Rent exponent was high [6]. The estimation method used was a type of spectral partitioning

algorithm which, at its inception in 1994, was suggested to provide “the lowest possible p [Rent’s expo-

nent]”. Since that time, more advanced simulated annealing approaches have been developed such as in

the software hMetis [7] which was used in another recent study of Rentian scaling in biological systems by
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Reda [4]. Interestingly, the topological Rent exponent for C. elegans reported by Reda [4] is lower than

that reported by Partzsch et al. [6] and consistent with both the physical and topological Rent exponents

reported in the present work.

Given this methodological history, we computed the topological Rent’s exponent using the advanced

simulated annealing approach in the software program hMetis version 1.5; results can be seen in Figure

3. In this method, the network is recursively partitioned into halves, quarters, and so on in topological

space. The slope in log-log space of the number of nodes in a partition versus the number of edges

crossing the boundary of the topological partition was defined as the topological Rent’s exponent, pT .

For all of the networks, these log-log plots demonstrated a clear Region I (linear scaling indicating fractal

topology) and Region II (for high partition sizes, where the curve begins to fall like a shepherd’s hook,

indicating topological boundary effects). The presence of topological scaling in Region I indicates that

the networks contain a fractal topology. The slope of the line (measured using weighted linear regression)

through the points in Region I is the topological Rent’s exponent, pT , which was then used to estimate

the dimension of this fractal topology, DT ; see Table S3.

Note: The terms “Region I” and “Region II” are from the VLSI community, and denote where internal

connectivity dominates and where external connectivity starts to dominate respectively. For example, at

the right-most side of the VLSI chip, there are no further nodes to connect to on the right, and instead

there is a much smaller number of expensive connections going off-chip. Thus if a partition covers the

right-most side of the chip, the total count of ‘terminals’ gets markedly reduced. A similar effect holds

topologically. At large scales this effect dominates and accounts for the Region II drop-off in terminal

count.

Since each of the networks portrayed topological Rentian scaling consistent with a fractal topology,

we also directly estimated the fractal dimension of the network topology, DT , using the box counting

algorithm of Concas et. al [8] (see following section for a theoretical comparison of these two methods).

This estimator counts the number of boxes B required to cover all nodes in each network as box size S

is varied between 1 and Smax. The gradient of a straight line fitted to logB versus logS using weighted

linear regression is an estimate of DT whose error decreases as the size of the system increases; see Figure

4. Resulting estimates for DT are consistent with estimates from the topological Rentian scaling method

described in the previous paragraph; see Table S3. Despite this consistency, a limitation of the current

work is that both estimations were performed on a few data points and scaling was present over less than
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a single order of magnitude; therefore results must be interpreted carefully.

As a third method of estimation, we have implemented the renormalization scheme suggested by Song

et al. in [9], which coarse-grains the system into boxes of a given size. This method, originally applied to

networks of several hundred thousand nodes, works by grouping nodes into boxes of different sizes, and

therefore should intuitively show fewer levels or scales within the network than the pure box counting

technique. Indeed, we found that after applying the renormalization scheme, all systems have many fewer

points. The two end points are trivial; there is one box covering all the nodes in the network and there

are N boxes of size 1. Across all four systems, only 1 or at most 2 “middle” points are available for use

in computing the fractal properties, which is far less than the number of points given by the method of

Concas et. al [8].

Topological Rentian Scaling versus Box-Counting There are important differences in fractal be-

haviour for Rentian scaling and Box-Counting measures. Significantly, Rentian scaling is fully compatible

with small-world networks, whereas Box-Counting is not. As many networks including neuronal ones are

likely to be small-world, it is important to elaborate on their differences.

As described above, we estimated the topological dimension of the information processing networks

using both topological Rent exponents and box-counting. We observed that fractal scaling was clearly

visible in the Rentian anaylsis and less visible in the box-counting plots. It is known that small-world

properties affect the scaling measured by a box-counting analysis [10]. Here we compare the effects

of small-world properties on the estimation of the topological dimension of networks using either box-

counting or topological Rentian analysis.

Work by Rozenfeld [10] has shown that there is some compatibility between fractal box-counting

dimension and small-world topologies. However, even though the fractal topology of a network might

be seen at small scales, the small world nature means that there is a single box that covers the entire

network with side-length of order logN . This means that the small-world behaviour rapidly dominates

in box-counting, leading to an exponential cut-off of the power-law behaviour.

Compared to box-counting, Rentian scaling looks at how the number of edges crossing a boundary

scales with the number of nodes inside it. In VLSI, Ozatkas has observed that this can be thought of

as relating the volume of logic inside the boundary, to the flow of information (surface area) across that

boundary in terms of edges [5]. The Rent exponent is then given by the ratio of surface area scaling to
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volume scaling - and can thus be related to the dimensionality of information flow scaling. One can easily

show that large d-dimensional meshes have Rent exponents of p = (d− 1) /d. Moreover, we can define

the Rentian information-flow dimension to be:

d = 1/ (1− p)

Whereas the topological distance used for assessing small-world behaviour and in box-counting anal-

yses examines the number of hops from one node to another, it isn’t concerned with the quantity of

information flow between them. A single link may connect two small world sub-networks, and thus

allow only a small flow of information between these two sub-networks whilst maintaining small-world

behaviour. That is, the single link is shared between all the nodes on one sub-network that want to

communicate with a node on the other sub-network. Although such a network may be small-world, one

has to wonder whether that single link is sufficient for all the information flows required for solving real

computational problems - certainly despite the desire to reduce wiring costs, such connectivity patterns

generally aren’t practical in VLSI. A Rentian analysis, however, is primarily concerned with the quantity

and scaling of communication required, rather than topological distance.

VLSI networks are known to obey both fractal Rentian behaviour and small-world topologies [11,12].

We should emphasise that these are mutually compatible attributes. For VLSI, a clock tree, typically an

H-tree [13], uniformly distributes clock timing information to disparate parts of the logic network, so that

they can synchronise their communication. H-trees are called thus because their basic structure consists

of physical links, in the 2D space of a VLSI chip, that look like the letter H. At each of the four ends

of the H, another H of half the size is attached at its middle, and so on, thus forming a fractal tree of

H’s. Clock trees are very expensive from both a manufacturing and power-consumption standpoint. The

H-tree emerged as a way to achieve the goal of reducing communication skew at leaf nodes (ensuring that

the logic is globally synchronized as a small-world), whilst keeping costs reasonable. We should point

out that clock trees are by no means the only cause for small-world topologies, and that the rest of the

circuitry may also exhibit small-world behaviour for other reasons.

In Figure 5A we see the effect on network-diameter of adding multiple levels of an H-tree versus

adding random links to a 2-D mesh (not torus), resulting in a small-world network for both types. Here,

each “H” of the H-tree consists of four links to a central node. In Figure 5B we also see that the Rentian
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behaviour and exponent are only very slightly affected by the addition of an H-tree, whereas the random

links lead to a large divergence in the Rentian behaviour and exponent. Thus the nature of the small-

world behaviour is important in assessing its impact on Rentian scaling. In the case of random links,

the number of links cut by partitioning approximately grows by the number of nodes in each partition,

whereas in the case of the H-tree, the number of links cut is small and approximately constant at each level

of partitioning. This compares with the 2-D mesh, where the number of links cut grows approximately by

the square-root of the number of nodes in each partition. Importantly, unlike the box-counting metric of

Song [9], where small-world properties dominate over any fractal connectivity, the small-world property

does not necessarily impact on the physical and topological measures of Rentian fractal behaviour.

In VLSI networks, the Rentian behaviour and homogeneity of embedding results in an approximately

power-law distribution of physical wiring distances [12], and is used in roadmaps for costs, manufacturing

processes, design and prediction of future processor performance [14]. It is important to distinguish

between the resultant power-law nature of physical link distances versus the potentially non-power-law

nature of topological distances, especially in small-world networks.

Estimation of Rent’s Exponent While visual inspection of n versus e plots in log-log space suggest

that the two are related to each other by a power-law, it is important to quantify the goodness of fit of

the power-law model in comparison to other possible models. We therefore tested a variety of fits to the

relationship between the number of nodes in a physical partition, n, and the number of edges crossing

the boundary of the partition, e. Using a nonlinear least squares regression, we modeled a power-law,

exponential, logarithmic, linear, quadratic, cubic, and higher order polynomials; each model contained

two free parameters, C and α, and therefore their respective errors were directly comparable. For each

fit, we determined the root mean squared error (rms) of the fit; see Figure 6 for rms error for each fit

over all of the information processing systems. In all networks, the power-law fit provided the least error,

suggesting that a power-law is a good estimate of the relationship between the two variables, n, and e.

Further, there are two sources of possible error in the estimation of Rent’s exponent, p. First, there is

the error in the fit of the power-law to the n versus e plot in log-log space; these errors are, for example,

given in Table 1 of the main text. Secondly, there is an error associated with data sampling. Each data

point represents a physical partition of the system (in which we count n nodes and e edges crossing the

boundaries of the partition). In the current work, we partitioned the system 5000 times (i.e., constructed
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5000 random partitions) and fit the power-law model to these 5000 observations. However, we could

randomly partition the system 5000 more times, and fit the power-law model to these 5000 observations

and maybe get a slightly different estimate of p than in the first partitioning. Therefore, in addition to

quantifying the error associated with the fit, we have also quantified the error associated with the number

of observations (partitions) used to construct the fit as well as the error associated with the random nature

of the sampling; see Figure 7. As is perhaps expected, the error due to resampling decreases as the number

of observations per fit increases. Importantly, however, the average estimated Rent’s exponent remains

relatively independent of the number of observations used to estimate the power-law fit.

Detailed Version of Allometric Scaling Derivation In order to derive a relationship between

allometric and Rentian scaling exponents in the brain, we need to define (1) the number of connections

in a cross-sectional area as a function of the white matter volume, and (2) the number of processing

elements in the whole system as a function of the gray matter volume.

In VLSIs, the wiring of the circuit is located in multiple layers above the logic of the circuit. Thus,

the area of the logic-limited circuit is equal to the area of the logic, V = G. In the human brain, however,

the white matter tracts are embedded in the same space as the “logic” or gray matter. The “wiring” of

the white matter tracts causes the “logic” or gray matter segments to be farther apart from each other.

Thus, the volume of the system is given as V = W + G, which is an increase on G of (W + G)/G or

(1+W/G). This stretching further causes an increase in the white matter volume, W , by increasing axon

length. Since axon length is a one dimensional linear term, the dilated white matter is larger than the

undilated white matter by a stretching constant µ given by the cube root of the total increase:

µ = 3
√

1 +W/G. (1)

Over the scale of the mammalian white matter, this dilation effect is very small. Even if W varies as

widely as W ∼ (0, G], µ will vary as µ ∼ (1, 1.26]. In log10 space, this variation in µ becomes log10(µ)

∼ (0, 0.1] which is a small perturbation of log(W ), over the range of mammalian white matter values.

Thus, it is possible to approximate the dilated white matter volume Wdilated by the undilated white

matter volume Wundilated.

Wdilated ∼Wundilated (2)



10

In the remainder of this derivation, the simple symbol W will be used to refer to Wdilated ∼Wundilated.

To determine the number of connections in the cross-sectional area, S, as a function of the white

matter volume, W , we first approximate the brain as a sphere and therefore the cross-sectional area, A,

of the brain as equivalent to the area of a circle:

A = πr2, (3)

where r is the radius of the sphere, which can be rewritten as

A = π1/3π2/3r2. (4)

We also know that the volume, W , of the sphere is given by

W =
4
3
πr2, (5)

which can be rewritten as
3
4
W = (πr3)2/3 = π2/3r2. (6)

Note that the right hand side of Eq 6 is also found in Eq 4. Substituting, we find that

A = π1/3(π2/3r2) = π1/3(
3
4
W )2/3 = C1W

2/3, (7)

where C1 = π1/3( 3
4 )2/3 contains all constants independent of W .

It is important to note that while we suggest that white matter volume can be approximated by

a sphere, any other 3-dimensional volume will work equally well, as has been previously pointed out

by Prothero [15]. The cross-sectional area of any 3-dimensional object will scale as 2/3 the volume of

that object. Shapes other than a sphere will change the constant, C1, but will leave the exponent, 2/3,

unchanged.

By definition, the number of connections within the cross-sectional area can be written as

S = θA, (8)
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where S is the number of synapses, θ is the number of synapses per unit area, and A is the cross-sectional

area. From prior anatomical data (see [16]), we find that the number of synapses per unit volume is

independent of white matter volume, W , and therefore the number of synapses per unit area, θ, is also

independent of W . So we can now define θ to be

θ = C2. (9)

Substituting Eqs 7 and 9 into Eq 8, we can write the number of synaptic connections S as a function of

white matter volume, W :

S = θA = C1C2W
2/3 = C3W

2/3. (10)

where C3 = C1C2 = π1/3( 3
4 )2/3θ.

To define a relationship between gray matter volume G and the number of processing elements N ,

we first recall that the number of neurons in the brain scales disproportionately slowly with the gray

matter volume as G2/3 while the number of synapses scales directly with G [16]. Therefore, the number of

synapses per neuron, or synaptic complexity of the neurons, is increasing with brain volume. In computer

circuits, we also have gates that vary in complexity, and circuits can even be built up of macrocells that

have very high complexity. However, to perform the gate count needed for Rentian analysis in VLSIs, we

must count computing elements in comparable terms, typically of the simple 2-input logic gate (NAND2).

Thus, larger and more complex computing elements are counted as multiple NAND2 gates. In order to

work with the same counting statistics in the human brain, we define a constant-complexity processing

unit as using a fixed number of synapses. Since the number of synapses scales with G, then so does the

number of constant-complexity computing units in the gray matter:

N = φG, (11)

where φ is the number of constant-complexity computing elements per unit volume.

Now we can rewrite the Rentian scaling relationship

S = kNp, (12)
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where k is the Rent coefficient and p is the Rent exponent, in terms of white matter W and gray matter

G volumes:

C3W
2/3 = k(φG)p, (13)

or

W = C4G
3p/2, (14)

where C4 is kφp

C3
= kφp

π1/3( 3
4 )2/3θ

.

Neglecting this constant, we can write the allometric scaling relationship more simply as W ∼ G
3p
2 .

Thus, the allometric scaling exponent a = 3p
2 should be multiplied by 2/3 to find an estimate of the Rent

exponent, p.
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Methodological Limitations There are several limitations to the current work. The human networks

provide a necessarily coarse-grained sketch of anatomical wiring on the most global scale. Complete

neuronal wiring diagrams for the human brain are not likely to become available in the near future.

The small size of both the human and C. elegans networks particularly affects the estimation of the

fractal topological dimension, DT . In future studies, it will be useful to apply finer grained parcellation

templates to human neuroimaging data to improve precision of fractal dimension estimation. However,

to date the template used for the DSI dataset (with 1000 ROIs) is the largest published template.

The complementary MRI dataset uses the Brodmann area template whose regions are approximately

coincident with cytoarchitecturally defined cortical areas [17]. Thus, the two types of networks reported

in this study include the most fine-grained view to date of whole brain white matter tract connectivity and

the classical cytoarchitecturally constrained view of whole brain gray matter connectivity. We combined

both complementary lines of inquiry to assess consistency, replicability, and robustness of our findings

across different data modalities. We expected that the global network architecture of the two types of

human networks would be largely consistent based on previous work indicating that individual connections

making up these global networks are reproducibly predicted by both modalities [18–21].

The use of covariation in morphometric variables as an indirect measure of structural connectivity

between brain regions began in the context of assessing the structural dysconnectivity in schizophrenia

possibly due to dysplasia [22–24]. The hypothesis is that reciprical afferent connections benefit both

neurons involved by providing a mutually trophic effect; therefore, brain regions whose neurons connect

to one another are likely to have positively correlated volumes [18, 24]. Several recent studies have

provided experimental validation of this hypothesis by comparing pairs of regions with highly correlated

morphometric properties to known fiber tracts established using diffusion tensor imaging [18–21] and tract

tracing studies [25–27]. The human MRI network construction method used in the present study is based

upon this hypothesis, and has been used previously in the context of both health and disease [19,28,29].

As opposed to network contruction based on tract tracing or diffusion imaging, this method only indirectly

measures connectivity between brain regions (N=104) over subjects (N=259), thus producing a group

network (data and results as in [29]). It is therefore not possible to look at individual variation in the

properties of this MRI network. The error in the estimation of the Rent exponent in the MRI network,

p̂MRI , may be smaller than the between-network variability we would measure if we had several MRI

networks from multiple groups of 259 healthy controls. However, we are not aware of further available
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datasets of this size given that the study this dataset originates from [29] remains the largest of its kind

to date.

The diffusion spectrum imaging network contains an inherent distance bias [30], meaning that long

distance connections have a lower probability of being included in the network than short distance con-

nections. While Hagmann and colleagues did use a distance bias correction in the preprocessing of these

networks, the most complete correction method remains a matter of ongoing debate [30]. It is possible

that some distance bias remains in the current dataset which may artefactually decrease the topological

dimension, DT , the Rent exponent, pDSI , and the average wiring length, r̄. However, it is not the purpose

of the current study to evaluate the available methods for distance bias correction and we have instead

used this recently published dataset which represents one of the currently accepted methods for distance

bias correction.

This previously published DSI dataset [30] includes data for 5 subjects with 1 subject scanned twice.

As such, this dataset is not adequate to assess the inter-scan reliability or inter-subject reliability of the

anatomical structural properties we are studying in this work. Recently, it has been shown that similar

whole-brain networks derived from functional MEG data have reproducible topological properties [31].

However, a similar study in anatomical networks has not yet been published, and it will be important in

future work to describe the reproducibility of network architecture in terms of both topology and physical

embedding.

In this work, the distance between any two network nodes was defined as the Euclidean distance

between the center of mass of the brain regions (in the human) or neuronal cell bodies (in C. elegans).

While this definition is currently widely used [19, 28, 29, 32], it provides an indirect estimate and likely

an under-estimate of the true length of white matter tracts and axons in these neural systems, which

may take convoluted paths to connect a given pair of nodes. Future advances in diffusion imaging may

provide us with better length estimates for white matter tracts in the the human while advances in the

characterization of neuronal tissue by reconstruction of electron microscopy images may provide us with

better estimates of individual axonal pathways.

The placement embedding for the VLSI circuit required the use of simulated annealing. The estimated

Rent exponent based on placement, p = 0.901, was less optimal than a previously reported Rent’s

exponent based on partitioning [12]. It is important to be aware that Rent’s exponents based on placement

and based on partitioning may not provide the same estimation; the partitioning method does not require
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simultaneous physical embedding of all gates in the entire system. We have chosen to use the placement

embedding technique to make the results most comparable to the C. elegans and human brain network

results. In a similar vein, it is important to note that we used the formalism of graphs and edges rather

than hypergraphs and hyperedges. The latter are often used in the analysis of VLSI circuits but the

concepts are not simply transferable to the biological networks studied here. Thus we have chosen to use

simple edges in all reported analyzes to facilitate comparability across systems.

The relationship between allometric scaling and Rentian scaling could be further supported by study-

ing Rentian scaling in MRI or DSI/DTI datasets from a range of mammalian species rather than the

human alone. In particular, it would be interesting to discern whether there is a difference in isometric

Rentian scaling between mammalian and non-mammalian species as well as between marine and terres-

trial mammals who arguably show distinct volumetric scaling relationships [33, 34]. The construction of

a comparable species-dependent MRI network would require structural scans from over 200 animals in

that species. While no such data is currently available or likely to become available in the near future,

the application of DTI specifically to the macaque monkey is a pressing line of current inquiry.
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Table 1. Hierarchical modularity in computational and nervous systems for the VLSI (Column 1 ), C. elegans
(Column 2 ), and human brain (MRI, Column 3 ; DSI, Column 4 ). Top Panel Modularity of the entire observed network
and comparable functional random and pure random networks. Second Panel Number of hierachical levels found in the
multi-layer decomposition of the Louvain community detection algorithm. Third Panel Number of modules found in the
first-level decomposition and their average modularity (Fourth Panel). All functional random networks retained the same
degree distribution as the observed network; all pure random networks were pure random networks that did not retain the
degree distribution of the observed network. Means and standard deviations are over 100 random network instantiations.

Network VLSI C. elegans Human brain (MRI) Human brain (DSI)
Single Layer Decomposition
Modularity
Observed 0.51 0.40 0.24 0.59±0.02
Random, functional 0.23±0.01 0.20±0.01 0.19±0.01 0.10±0.01
Random, pure 0.17±0.01 0.20±0.01 0.18±0.01 0.15±0.00
Multi-Layer Decomposition
Number of Levels
Observed 4 3 2 3
Random, functional 4±0 2.86±0.34 2.35±0.47 2.25±0.43
Random, pure 4.95±0.21 3.01±0.10 2.80±0.40 2.98±0.14
First Level Stats
Number of Modules
Observed 6 3 7 9
Random, functional 3.23±0.96 4.22±4.50 7.82±4.38 7.00±0.00
Random, pure 15.02±3.27 4.53±1.41 3.92±2.98 3.62±1.85
Average Modularity
Observed 0.50 0.30 0.14 0.50
Random, functional 0.50±0.01 0.21±0.01 0.14±0.02 0.15±0.01
Random, pure 0.45±0.03 0.23±0.01 0.06±0.03 0.16±0.01
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Figure 1. Full hierarchical modularity decomposition for the C. elegans neuronal network Dendrogram
displays the significant modular and sub-modular structure for the neuronal system of the nematode worm. The
modularity, m, of each of these matrices was estimated using the Louvain community detection algorithm [2]; p-values for
1-tailed t-tests indicate where the modularity of the observed network was higher than the modularity of a functional
random (pf ), and pure random (p) network. The matrices were decomposed into their sub-modules, and each sub-module
was tested for modularity, m, greater than functional and pure random networks (pf , p) of the same size as the module
being tested. This process was iteratively performed: sub-modules were tested for non-random modularity, and if
sub-sub-modules were identified in this way then each of them was in turn tested for non-random modularity.
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Figure 3. Topological Rentian scaling in the observed VLSI, C. elegans and human brain networks The
network topology of each system was iteratively partitioned in topological space. The number of nodes found in each
partition was plotted in log-log space as a function of the partition size. All networks contained a linear scaling regime
(so-called Region I, filled circles) and a regime at larger partition sizes where linear scaling broke down due to boundary
effects (so-called Region II, empty circles). The slope, pT , of the line through points within Region I was estimated using
a weighted linear regression; see Table 3. Note: Data and linear fits for all six DSI scans are shown in D.
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Figure 4. Box-Counting Fractal Dimension of the Observed and Minimally Wired VLSI, C. elegans and
Human Brain Networks The fractal dimension of the observed (Top Row) and minimally wired (Bottom Row) VLSI
circuit (A,D), C. elegans (B,E) and Human (C,F ) networks is calculated as the slope of the weighted linear regression
(using all points except the first, e.g., all filled points) on the number of boxes versus the size of the boxes determined
based on the box-counting algorithm of Concas et al. [8]. Human datasets derived from magnetic resonance imaging
(MRI) given in green [29] and from a single subject’s diffusion spectrum imaging (DSI) given in red [30].
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A

B

Figure 5. Dependence of Topology on Addition of Random and H-tree Links A Plot of the network diameter
as a function of the number of random (green) or H-tree (red) links added to a 128x128 2D-mesh. B Plot of topological
Rentian scaling, i.e., the number of terminals as a function of the number of nodes for varying number of random and
H-tree links added to a 128x128 2D mesh.
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Figure 6. Goodness of Fit in Modeling the Rentian Relationship in physical (A) and topological space (B)
between the number of nodes, n, in a partition and the number of edges crossing the boundary of a partition, E. Nine
different models were tested (see legend), including the power-law, exponential, logarithmic, linear, and higher order
polynomials. All fits contained 2 free parameters: C and a. Here the goodness of fit, as measured by the root mean
squared error, is plotted (on the y-axis) for each informational system (x-axis). Note: hMRI = human MRI network, hDSI
1 = human DSI network scan 1, hDSI 2 = human DSI network scan 2, etc.

Figure 7. Error Associated With the Number of Partitions and Random Sampling Plot of the estimated
physical rent’s exponent for all systems under study as a function of the number of partitions (x-axis); error bars indicate
standard deviation over 100 resamplings.
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Figure 8. Rentian Characteristics of Minimally Wired Versions of a VLSI (A), C. elegans (B) and the human
(C-D) as estimated from a group network using magnetic resonance imaging (C ), and a single subject’s network using
diffusion spectrum imaging (D). A least squares regression was used to construct the best fit line where the exponent of
the VLSI was found to be p = 0.509± 0.005 (with p = 0.5 expected for a 2D graph homogeneously embedded in 2D), and
for the human was found to be p = 0.93± 0.01 (MRI) and p = 0.68± 0.004 (DSI) (with p = 0.67 expected for a 3D graph
homogeneously embedded in 3D). The characteristics of these scaling relationships are heavily influenced by the degree of
heterogeneity of node locations in each system. The lowest Rentian exponents are found in both the VLSI and DSI
networks where nodes are equally placed in a 2 or 3 dimensional lattice. The MRI and C. elegans networks both have
heterogeneous node locations with the highest heterogeneity found in the C. elegans system. Because of this
heterogeneity, minimally wiring the C. elegans system completely eradicates Rentian scaling. The inset panel shows the
hierarchical modularity of each system, which has been represented by a co-classification matrix where red/brown colors
highlight modules or clusters of nodes with high local interconnectivity and relatively sparse connectivity to nodes in other
modules [1].



24

Table 2. Hierarchical modularity in DSI data for Subject 1, scan 1 (Column 1 ), Subject 1, scan 2 (Column 2 ),
and Subjects 2 through 5 (Columns 3-6. Top Panel Modularity of the entire observed network and comparable functional
random and pure random networks. Second Panel Number of hierachical levels found in the multi-layer decomposition of
the Louvain community detection algorithm. Third Panel Number of modules found in the first-level decomposition and
their average modularity (Fourth Panel). All functional random networks retained the same degree distribution as the
observed network; all pure random networks were pure random networks that did not retain the degree distribution of the
observed network. Means and standard deviations are over 100 random network instantiations.

DSI Data Subject 1 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Single Layer Decomposition
Modularity
Observed 0.56 0.56 0.62 0.58 0.60 0.60
Random, functional 0.10±0.00 0.10±0.00 0.11±0.00 0.10±0.00 0.10±0.00 0.10±0.00
Random, pure 0.15±0.00 0.15±0.00 0.15±0.00 0.15±0.00 0.15±0.00 0.15±0.00
Multi-Layer Decomposition
Number of Levels
Observed 3 3 3 3 3 3
Random, functional 2.25±0.43 2.11±0.31 2.17±0.37 2.09±0.28 2.08±0.27 2.16±0.36
Random, pure 2.98±0.14 2.99±0.10 2.98±0.14 2.94±0.23 2.98±0.14 2.99±0.10
First Level Stats
Number of Modules
Observed 9 16 23 6 7 11
Random, functional 7.00±0.00 14.0±0.0 21.0±0.0 5.00±0.00 5.00±0.00 9.00±0.00
Random, pure 3.62±1.85 3.27±2.131 3.50±2.12 3.98±3.65 3.59±2.17 3.40±1.27
Average Modularity
Observed 0.50 0.46 0.50 0.52 0.46 0.46
Random, functional 0.15±0.01 0.14±0.01 0.14±0.00 0.14±0.00 0.14±0.00 0.14±0.01
Random, pure 0.16±0.01 0.15±0.01 0.15±0.01 0.15±0.01 0.15±0.00 0.15±0.00

Network Partitioning Box Counting
pT D̂T (pT ) DT

VLSI 0.73±0.04 3.81±1.04 4.02±0.66
C. elegans 0.77±0.06 4.42±1.06 4.52±0.49
Human MRI 0.75±0.07 4.12±1.07 5.07±1.58
Human DSI (1) 0.78±0.07 4.54±1.07 4.68±0.77
Human DSI (2) 0.80±0.06 5.06±1.06 4.59±0.76
Human DSI (3) 0.77±0.09 4.42±1.08 4.56±0.81
Human DSI (4) 0.79±0.06 4.97±1.06 5.24±0.39
Human DSI (5) 0.79±0.07 4.84±1.07 4.60±0.82
Human DSI (6) 0.78±0.08 4.73±1.09 4.63±0.76

Table 3. Topological Rentian Scaling and Fractal Topology. The topological Rent’s exponent, pT , was
estimated using a topological partitioning algorithm implemented in hMetis, version 1.5. The slope of the log of the
number of nodes in a partition versus the log of the partition size was estimated using a weighted linear regression; errors
indicate standard error of coefficient estimates. Since pT ≥ pmin = 1− 1

DT
, we estimated the fractal dimension, bDT (pT ),

implied by this topological rent’s exponent (see Column 3). In a complimentary analysis, we directly estimed DT using a
box counting algorithm similar to Concas et. al [8] (see Column 4).
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Subject p d r̄ κ

1 0.770±0.004 31.0±24.6 4.28 1.87
2 0.807±0.005 37.5±33.3 5.17 2.32
3 0.783±0.006 30.7±25.9 4.24 1.92
4 0.768±0.004 33.4±27.9 4.61 1.72
5 0.780±0.004 32.3±25.9 4.47 2.00
6 0.786±0.004 32.8±25.2 4.53 2.01

Table 4. Individual measures of physical embedding of human DSI networks. p, observed Rent exponent; d
length (mean and standard deviation) of connections in mm; r̄, mean connection distance between nodes; κ, measure of
cost-efficient embedding for the five subjects available in the DSI dataset provided at the Brain Connectivity Toolbox
http://sites.google.com/a/brain-connectivity-toolbox.net/bct/. Note: Scans 1 and 2 are from the same subject.
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