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S4. A link to BCM

From an information-theoretic perspective, it is interesting to relate our approach to previous work
on maximizing information transmission between neuronal input and output by optimizing synaptic
learning [1]. This optimization procedure results in a spike-based rule that implements a generalized
version of the classic BCM rule. A link between BCM and IP-based learning has been noted previously [2],
when it has been argued that the slow sliding threshold of BCM could play a homeostatic role similar to
that of IP. Here we address this question again, from the perspective of learning.

For this comparison, we use the minimal triplets STDP model [3]. When combined with an additional
sliding threshold, this model was previously shown to exhibit input selectivity [3]. However, to our
knowledge, the case when several independent sources are present in the input at the same time was not
investigated before with spiking neurons.

The triplet model we consider here is a generalization of STDP learning, which takes into account the
effects of spike triplets [3]. Under certain assumptions, it is equivalent to the model in [1], i.e. BCM-like,
but computationally simpler. Specifically, the model computes one presynaptic (r1) and two postsynaptic
(o1 and o2) activity traces, with different time scales:
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where δ is the Dirac function and t
f
pre/post

is the time of firing of the pre- and post-synaptic neuron,

respectively. The timescales of integration τ+ and τ− are similar to those in classical STDP (τ+ = 16.8 ms,
τ− = 33.7 ms), while τy is slower (τy = 114 ms).

The change in weight can be computed as:
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,

with the parameters A+
3 = 6.5 × 10−4, A−

2 = 7.1 × 10−4 and Θgoal = 25 is a scaling parameter which
implicitly defines the goal mean firing rate of the neuron.

Here, we study the relation of IP-based and BCM learning by comparing two variants of the basic
triplet rule, extended by a sliding threshold Θ that depends quadratically on the firing history or by
intrinsic plasticity. For implementing sliding threshold BCM, the original triplet model model is enhanced
with a slowly varying threshold Θ, which estimates a low-pass filtered version of the square of the
postsynaptic firing rate, similar to the classical BCM sliding threshold [3]. Namely:
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2,

with τth = 100 s.
When trying to compare IP-guided learning and sliding-threshold BCM one should note there is a

fundamental difference between the two. While the sliding threshold of BCM has a direct effect on
learning (by changing the threshold between potentiation and depression), IP affects plasticity only
indirectly, through a change in neuronal output. As an illustration, consider the classic BCM weight
change curve in Fig. 1A (blue curve), obtained with the minimal triplets STDP model described above.
Unlike the standard representation, the horizontal axis represents the total input to the neuron u and
not the postsynaptic firing rate. In the classic sliding threshold BCM framework, the threshold between
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Figure 1. Comparing sliding threshold BCM with IP (A) Weight changes for the minimal
triplets model. Depending on the neuronal history (by f = ±10%), the threshold between potentiation
and depression varies. (B) For the same variations in input (as before, the input is assumed to be
Gaussian, with mean varying such that x1 = f · x0) IP changes the neuronal transfer function to
preserve the same neuronal output distribution (u1

α = f · u0
α and u1

0 = f · u0
0 − (f − 1) · ur, see Methods).

(C) Corresponding to the shift of the transfer function, the weight changes for the same input vary. All
estimates were averaged over 100 trials, each lasting 1 second.

potentiation an depression shifts depending on the history of the neuron. However, the output of the
neuron to the current sample remains the same. This threshold can be computed analytically for a linear
neuron, assuming a change in the total input distribution by a factor f , as Θ′ = f2

· Θ.
For the same alteration of the input distribution, IP causes a change in the transfer function (Fig. 1B),

which also results in a shift of the synaptic learning curve along the horizontal axis (Fig. 1C), while the
actual STDP threshold remains the same (the change in parameters by IP was computed analytically as
u′

α = f ·uα and u′

0 = f · u0, with the same triplet STDP rule as before). The amplitude of this shift may
depend on the IP parameters, but essentially it achieves the same type of alteration as sliding threshold
BCM.

Figure 2. Learning an IC with sliding threshold BCM. (A) Evolution of input weights for the
bars problem. (B) Final receptive field learned. (C) Distribution of firing rates of the neuron; inset with
the same measure in logarithmic scale.
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Given the similarity between our rule and BCM, and previous work showing the triplets STDP exhibit
input selectivity [1,3], we hypothesized that a BCM rule with slowly-adapting threshold could also solve
the bars problem. Indeed, as seen in Fig. 2, spiking neurons by BCM-like spike-based synaptic learning
can extract an IC. Moreover, as expected, after learning neuron responses become sparse and the output
distributions highly kurtotic (see Fig. 2C).

Several constraints are necessary for the development of a stable receptive field with the sliding-
threshold BCM rule. Firstly, as in the case of IP, synaptic scaling is required for stabilizing the receptive
field. This is somewhat surprising, as BCM theory would predict that no constraint on the weight vector
should be needed. Secondly, the parameter Θgoal must be adjusted to the input characteristics for a bar
to be a stable solution. The obvious advantage of IP is that it is robust to parameters changes and does
not require tight tuning of any parameter. Moreover, directly optimizing the neuron excitability allows
for various synaptic learning implementations, which may make a combined approach more suitable given
different biological constraints.
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