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Analytic calculations

A. Maximum likelihood equations

We can analytically predict how the population sizeN and the neutrality parameterS influence stability and fitness by exploit-
ing the formal analogy between population dynamics and statistical mechanics proposed by Sella and Hirsh [1]. They noticed
that, for monomorphic populations for which fixation eventsonly involve the wild-type genotype and a single mutant, several
evolutionary processes studied in population genetics tend to a stationary fitness distribution of the form exp(Nϕ) that is for-
mally equivalent to a Boltzmann distribution, with population sizeN playing the role of inverse temperature and the logarithm
of fitnessϕ = log( f ) playing the role of minus energy. This selective process hasto be combined with the mutation process.
We definePmut(α,F,GC) as the probability to find stability valuesα andF under an evolutionary process with no selection (f
is constant for all genotypes) and a mutation process with given GC usage (i.e., the stationary GC content of the evolutionary
process is GC). Combining mutation and selection, we can compute the probability to observe misfolding and unfolding stability
α andF in the stationary state of a population ofN evolving individuals as

Psel(α,F) ∝ Pmut(α,F)exp[N log f (α,F)] = exp[σ(α,F,GC)+Nϕ(α/αthr,F/Fthr,S)] , (1)

where we introduced the notationϕ = log( f ) andσ(α,F,GC) = log(Pmut(α,F,GC)). This latter quantity can be interpreted as
the entropy in sequence space compatible with stabilitiesα andF in the absence of selection, which depends on the mutation
process, hence on the GC usage. We also define the normalized stabilitiesxα = α/αthr andxF = F/Fthr.

Sinceσ is proportional to sequence lengthL, and bothL andN are large in biologically relevant situations, the distribution
described by Eq. (1) is narrowly peaked around the valuesxα(S,N,GC) andxF(S,N,GC) that have maximum probability, i.e.
the stabilities that maximize the “evolutionary free energy” G = log(Psel) ≡ σ + Nϕ . In the following, we take a mean-field
perspective and we identify the mean stabilities with the maximum likelihood stabilitiesxα(S,N,GC) andxF(S,N,GC), and
the mean fitness with the fitness corresponding to these values, 〈ϕ(xα ,xF ,S)〉 ≈ ϕ(xα ,xF ,S). We consider the additive fitness
function (see main text)

ϕ(xα ,xF) ≡ log( f ) = − log
(

1+x−S
α +x−S

F

)

(2)

for positivexα andxF , andϕ = −∞ if either stability is not positive. The fitness takes the value f = exp(ϕ) if both stabilities
are positive andf = 0 if eitherxα or xF are negative, which are strictly forbidden. Fitness grows with stability. The maximum
value of stability is of course finite, since the number of sequences is finite. Fitness becomes a binary valuef ∈ {0,1} whenS
tends to infinite, withf = 1 when stabilities are above the neutral thresholdsxi = 1 and f = 0 when either stability is below the
threshold. We call this the neutral limit.

With now consider the logarithm of the probability in Eq. (1),

G(xα ,xF ,N,S,GC) ≡ σ(xα ,xF ,GC)+Nϕ(xα ,xF ,S) ≡ σ(xα ,xF ,GC)−N log
(

1+x−S
α +x−S

F

)

. (3)

The quantity−G can be the interpreted as an evolutionary free energy. The most likely stability valuesxα andxF maximize
G or, equivalently, they minimize the evolutionary free energy. They can be computed solving the maximum likelihood (ML)
equations

[

∂σ
∂xi

]

xi=xi

= −N

[

∂ϕ
∂xi

]

xi=xi

= −NS
x−S−1

i

1+x−S
α +x−S

F

, (4)

with i = α,F . These equations express the balance between the relative decrease in the number of sequences with enhanced
stability due to mutation entropy and their relative increae due to selective pressure. Validity of the ML equations requires that
G has a maximum, so that the Hessian matrixH of the second derivatives ofG must be negative definite. This matrix is defined
by

Hi j ≡
∂ 2G

∂xi∂x j
=

∂ 2σ
∂xi∂x j

+N
∂ 2ϕ

∂xi∂x j
. (5)

This is the sum of the Hessian ofϕ(xα ,xF) =− log( f ), which is negative by construction, as it is easy to verify, and the Hessian
of σ(xα ,xF), which is the logarithm of the probability to find stability valuesxα andxF under mutation alone. We assume
that σ(xα ,xF) has a single maximum atxα = xmut

α , xF = xmut
F . Therefore,∂σ/∂xi are negative forxi > xmut

i , as it is required
for the existence of solutions of the ML equations, and the Hessian ofσ is negative, as required. We can go beyond the ML
approximation writing the exponentG at second order asG(xα ,xF)≈ G(xα ,xF)+ 1

2 ∑i j Hi j (xi −xi)(x j −xj), which is equivalent
to approximating the distributionPsel as a Gaussian with covariance matrix−H−1. Therefore, negativity of the Hessian matrix
is equivalent to requiring that the covariance matrix is positive.
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The definition of the normalized energy gapα implies thatxmut
α is always negative. In contrast, our numerical results show

thatxmut
F is positive for small GC usage corresponding to very hydrophobic sequences.

¿From the ML equations, we can obtain the following implicitequations that expresses the stabilityxF as a afunction ofxα .

xS+1
F

∂σ
∂xF

= xS+1
α

∂σ
∂xα

. (6)

We see from this equation that the smaller stabilityxi is the one for which the absolute value of the derivative∂σ/∂xi is larger.

Influence of parameters on stability

We now calculate howxα andxF depend on the parametersλ ∈ {N,S,GC}. We perform this calculation by taking the total
derivative of the ML equations∂G/∂xi = 0 with respect to the parameterλ and equating it to zero, since the ML equations
must be satisfied for all values ofλ . The total derivative is the sum of the partial derivative with respect toλ plus the partial
derivatives with respect tox j multiplied times∂x j/∂λ . We therefore get

(

∂ 2G/∂λ ∂xi
)

+ ∑ j

(

∂ 2G/∂xi∂x j
)

(∂x j/∂λ ), from
which we finally obtain

∂xi

∂λ
= −∑

j

H−1
i j

∂ 2G
∂λ ∂x j

, (7)

whereHi j =
(

∂ 2G/∂xi∂x j
)

. As mentioned above, the inverse of the Hessian matrix can beinterpreted as minus a covariance
matrix and it is negative definite. Forλ = N we find

∂xi

∂N
= −∑

j
H−1

i j
∂ϕ
∂x j

, (8)

which is always positive, since−H−1
i j is a positive matrix and both∂ϕ/∂x j are positive. Therefore, both stabilities always

increase with population size, consistent with the statistical mechanical analogy described above. For very smallN, and provided
thatS is not too large so thatSN is small, stabilities satisfy the equationsxS+1

i (∂σ/∂xi) ≈ 0, whose solution is eitherxi ≈ 0 (for
the case ofxα this is the only possible solution) or∂σ/∂xi ≈ 0, xi ≈ xmut

i , which is only possible ifxmut
i is positive as it is the

case forxmut
F when the GC usage is small. For very largeN stabilities approach the maximum possible values. However, they

can not be maximized simultaneously since there is a trade-off between the two kinds of stability (see main text).
For λ = GC, we find

∂xi

∂GC
= −∑

j
H−1

i j
∂ 2σ

∂GC∂x j
. (9)

Numerical results show thatxα is an increasing function andxF is a decreasing function of GC usage, so that these two variables
are anticorrelated when GC is varied.

Finally, for λ = Swe find

∂xi

∂S
= −N∑

j

H−1
i j

x−S−1
j

[

1+x−S
j −Slog(x j)+x−S

k (1+Slog(xk/x j))
]

(

1+x−S
α +x−S

F

)2 , (10)

wherek is the stability different fromj (if j = α thank = F and the other way round). The term in round brackets in the
numerator can vanish at some value ofS, meaning that stabilities need not to be monotonic functionof S. For S= 0 stabilities
only have to fulfill the conditionsxi > 0, and their values are given byxi = min(xmut

i ,0). Our numerical results indicate that
stabilitiies increase withSfor smallS. An N-dependent maximum is reached at intermediateSwhen both terms in round brackets
with j = α and j = F in Eq. (10) vanish. It is possible to see that the maximum can only be reached when bothxi are larger than
one. For largeS the fitness landscape is almost neutral, so that finite differences in stability determine very small differences
in the additive fitnessϕ such thatN∆ϕ ≪ 1. Such differences can not be fixed in the population. In the limit S→ ∞ and for
finite N, fitness only depends on the smaller of the two stabilities,x = min(xα ,xF), which tends to the valuex = 1, i.e. to the
neutral threshold at which fitness approaches the valuef = 1. Therefore, stability is predicted to decrease withSat largeS. This
prediction is confirmed by numerical results. To simplify the analytic calculations, we also confirmed the prediction that stability
has a maximum at intermediateSby using the simplified fitness functionϕ = − log(1+x−S), with x= min(xα ,xF) (see below).
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Influence of parameters on fitness

Since fitness is an increasing function of stability and stability increases with population size, fitness always increases with
population size, as expected. However, fitness is not a monotonic function ofSbut it starts from the valuef = 1/3 atS= 0, it
decreaes to a minimum at smallSand then grows towards the neutral limitf = 1 at largeS.

Optimal mutation bias

We now consider the dependence of the mutation bias on fitness. The two stabilitiesxα andxF depend on the mutation process
through the sequence entropyσ(xα ,xF ,GC). High GC usage favors hydrophilic proteins, enhancingxα at the expenses ofxF .
Since fitness depends on both stabilities, there is an optimal mutation bias at which the fitness is maximal for givenS andN,
satisfying the ML equations (4) plus the implicit equation dϕ/dGC= 0. Using the ML equations, we can write

dϕ
dGC

=
∂ϕ
∂xα

∂xα
∂GC

+
∂ϕ
∂xF

∂xF

∂GC
= 0. (11)

The fitness is a decreasing function ofδ = x−S
min

[

1+(xmin/xmax)
S
]

. In the neutral limitS→ ∞, xmin tends to 1 inde-
pendent of GC usage and the fitness is maximal forxα = xF = 1. From the saddle-point equations, this condition implies
∂σ/∂xF(1,1,GC) ≈ ∂σ/∂xα(1,1,GC). Therefore, the optimal GC does not depend onN in the neutral limit.

Single stability fitness function

To simplify the calculations and get more analytic insight into the model, we consider here a simplified fitness function that
depends only on the smaller between the two stabilities,ϕ = − log(1+ x−S) with x = min(xα ,xF). This fitness function is the
neutral limit of Eq. (2) forS≫ 1. In fact,ϕ = − log

[

1+x−S
(

1+(xmax/x)S
)]

≈ − log(1+x−S). For this simplified model, the
ML equation reads

[

∂σ
∂x

]

x=x
= − NS

x(1+xS)
, (12)

and the Hessian becomes a scalar functionH = (∂ 2σ/∂x2) + N(∂ 2ϕ/∂x2) < 0. We now compute how stability and fitness
depend onS. For stability, we find

∂x
∂S

= −N
1+exp(−Slog(x))−Slog(x)

Hx
(

1+xS
)2 . (13)

SinceH < 0, the derivative is positive forz< z∗ and negative forz> z∗, wherez= Slog(x) andz∗ ≈ 1.278 is the non-trivial root
of the equation 1−z+e−z = 0 at which stability reaches a maximum. Therefore, stability increases with the neutral exponentS
for smallSand it decreases for largeS, consistent with the biological intuition. For fitness, we find

dϕ
dS

=
∂ϕ
∂S

+
∂ϕ
∂x

∂x
∂S

=
Slogx+ S

x
∂x
∂S

(

1+xS
) . (14)

The denominator can be written as

dϕ
dS

∝ Slogx− SN
(

1+x−S−Slogx
)

Hx2
(

1+xS
) = Slogx+

SN
(

1+x−S−Slogx
)(

1+xS
)

NS
(

1+xS+SxS
)

+
∣

∣

∣

∂ 2σ
∂x2

∣

∣

∣

(

1+xS
)2

. (15)

For smallS, it holdsx≈ 0 so thatSlogx < 0. The second term in the above equation is positive, but it issmaller than the first
term since it is multiplied timesS, hence the fitness decreases withSat very smallS. At largeS, logx is positive and the fitness
increases withS.

The previous analysis shows that, for fixedN and GC usage, there are two values ofSat which two “evolutionary potentials”
are extremal: The value ofS= Smut(N) at which the fitness is minimal, and the larger valueS= Sopt(N) at which stability is
maximal. This analysis defines in a natural way three regimesfor the model, which are graphically represented in Fig. 1.
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1. At small S, stability is close to the lethal thresholdx = 0 where fitness drops to zero, purifying selection is weak and
mutation entropy is large. We call this the mutation regime,and we define the mutation cross-over as the point where
stability reaches the neutral thresholdx = 1 at which the mean fitness takes the valuef = 1/2 that it has forS= 0. We see
from Eq. (12) that the boundary of the mutation regime is defined by the inequality

SN≤−2

[

∂σ
∂x

]

x=1
. (16)

Thus the larger isS, the smaller the populations size required to leave the mutation regime.

2. In the largeS limit, the fitness becomes a binary variable withf ≈ 1 for x > 1 and f ≈ 0 for x < 0. In the neutral regime
finite differences in stability imply very little differences in fitness and they cannot be fixed by natural selection, so that
stability decreases withS towards the neutral thresholdx = 1 for which mutation entropy is largest. We write the ML
equation Eq. (12) in the form

1+xS =
NS

x∂σ/∂x
≈ NS

|∂σ/∂x|x=1
, (17)

where we approximatex≈ 1 in the r.h.s. At dominant order inSwe obtain

x≈ 1+
1
S

log

(

NS
|∂σ/∂x|x=1

−1

)

. (18)

We now define the neutral cross-over as the point wherex≤ 1+ ε, with smallε. From the above equations it follows that
the neutral regime is defined through the inequality

N ≤ 1
S

(

eSε +1
)

∣

∣

∣

∣

∂σ
∂x

∣

∣

∣

∣

x=1
. (19)

Thus, the larger isS, the larger the population sizesN required to leave the neutral regime.

3. ForN larger than the mutation cross-over (smallS) or N larger than the neutral cross-over (largeS) the population enters
the non-neutral regime where stability is above the neutralthreshold. For fixedN, stability has a maximumx∗(N) at
S= Sopt(N) given by

Sopt(N) ≈ 1.278
log(x∗(N))

. (20)

The above formulas suggest that the typical scale of population size for entering the non-neutral regime from the mutation
or the neutral regime is proportional to 2|∂σ/∂x|x=1. We estimated this quantity from our simulations using the approximate
relationship Eq. (18) to yield

− ∂σ
∂x

∣

∣

∣

∣

x=1
≈ NS

1+xS . (21)

This estimate is predicted to be independent ofN for very largeS. We used data forS= 20, finding that there is still some weak
dependence onN that can be attributed to corrections to the above approximations. Averaging overN between 10 and 4000, we
found that 2|∂σ/∂x|x=1 varies from a minimum of 28 at GC≈ 0.5 to a maximum of 100 at GC≈ 0, see Fig. 6. The minimum
of |∂σ/∂x|x=1 at GC≈ 0.5 is another way to see that this mutation bias is optimal for neutral evolution.

Notice that there is a critical value ofS that separates the mutation regime (smallS) from the neutral regime (largeS). This
can be obtained by equating the boundaries of the two regimes, Eq. (16) and (19), which yields

2S∗+1 = eS∗ε . (22)

Forε = 0.5 we findS∗ = 1.63. Similarly, there is a value ofN below which the system passes directly from the mutation regime
to the neutral regime without entering non-neutrality. This is given byN = 2/S∗ |∂σ/∂x|x=0.

[1] Sella, G., Hirsh, A.E. (2005) The application of statistical physics to evolutionary biology.Proc. Natl. Acad. Sci. USA102:9541-9546.
[2] dos Reis, M., Savva R., Wernisch L. (2004). Solving the riddle of codon usage preferences: A test for translational selection,Nucl. Ac.

Res.32:5036-5044.
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FIG. 1: Phase diagram showing the different regimes in the(N,S)-plane, with the borderSmut = 2/N between mutational and adaptive regime
and with the borderSneut = log(N) between the adaptive and neutral regime. The lineSopt = s∗/(2− 3/

√
N) with s∗ ≈ 1.278 being the

non-trivial root of the equation 1−s+e−s = 0 inside the adaptive regime displays the value ofSfor which for givenN the fitness is maximum.
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FIG. 2: Fitness versus number of accepted amino acid substitutions for different population sizes from 10 to 2000 and GC=0.5. One can
see that the stationary distribution of fitness is reached inall cases after a number of substitutions of order of few times 100 for the protein
lysozyme having 129 amino acids.

1000
Population Size

0.01

0.1

1

|∆
G

C
op

t/∆
S

| S
=

0.
5

S=0.2
S=0.7

FIG. 3: Absolute value of the incremental ratio of the optimal GC bias as a function ofS,
∣

∣

(

GCopt(S)−GCopt(S= 0.5)
)

/(S−0.5)
∣

∣ versus
population sizeN. The result is consistent with the expectation that GCopt becomes independent ofS in the infinite population limit.

6



10 100 1000 10000
Population Size

0.001

0.01

0.1

ϕ(
G

C
op

t,N
) 

- 
ϕ(

G
C

op
t+

0.
15

,N
)

N ∆ϕ ∗100

FIG. 4: Difference of selective coefficients∆ϕ comparing the optimal GC usage and GCopt− 0.15. One can see that∆ϕ decreases with
population sizeN, howeverN∆ϕ increases withN so that the optimal GC usage would be eventually selected even for large populations.
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FIG. 5: Minimal stabilityx = min{α/αthr,F/Fthr} and difference between actual sequence entropy and entropyexpected under mutation
alone, versus neutralityS for various population sizes and GC= 0.5. Entropy was computed through the independent sites approximation
as Entropy= −∑i ∑a Pi(a) log(Pi(a)), where Pi(a) is the asymptotic distribution of amino acida at sitei. Entropy under mutation alone
is computed using the distribution Pmut(a) in which each of the codons codifying the amino acida have the frequency expected under the
mutation model (with zero frequency for stop codons). The difference between the two entropies estimates the reductionin entropy due
to negative selection for conserving protein stability. Notice that the maximum of stability corresponds to maximum reduction of sequence
entropy.
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FIG. 6: Mutation bias dependence of|∂σ/∂a|x=1 at the neutral threshold, obtained through Eq. (21) from simulations withS= 20, averaging
overN ∈ [10,4000]. The dashed line is a cubic interpolation that evidentiatesthe minimum at GC≈ 0.5. This quantity sets the population size
scale for passing to the non-neutral regime from the mutation regime or the neutral regime atS≈ 1.
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FIG. 7: Scatter plot of the selected optimal codon usage parameter computed by dos Reiset al. [2], which we use to estimate the effective
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FIG. 8: Histogram of the GC content from the previous plot.
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