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Analytic calculations
A. Maximum likelihood equations

We can analytically predict how the population sitk@nd the neutrality paramet8influence stability and fitness by exploit-
ing the formal analogy between population dynamics andstatl mechanics proposed by Sella and Hirsh [1]. Theyceati
that, for monomorphic populations for which fixation eveotdy involve the wild-type genotype and a single mutantesal
evolutionary processes studied in population genetios tera stationary fitness distribution of the form éXg) that is for-
mally equivalent to a Boltzmann distribution, with popidatsizeN playing the role of inverse temperature and the logarithm
of fitness¢ = log(f) playing the role of minus energy. This selective processthd® combined with the mutation process.
We definePnui(a, F, GC) as the probability to find stability valuesandF under an evolutionary process with no selectién (
is constant for all genotypes) and a mutation process wittrgGC usage (i.e., the stationary GC content of the evalatip
process is GC). Combining mutation and selection, we carpotgrthe probability to observe misfolding and unfoldiregostity
a andF in the stationary state of a populationMfevolving individuals as

Psel(a,F) O Pnut(a, F) exp[Nlog f (a,F)] = exp[o(a,F,GC) + N¢ (a/ainr, F /Finr, )] , @)

where we introduced the notatign=log(f) ando(a,F,GC) = log(Pnut(a,F,GC)). This latter quantity can be interpreted as
the entropy in sequence space compatible with stabilitiendF in the absence of selection, which depends on the mutation
process, hence on the GC usage. We also define the normahbbditiesx, = a /oy andxe = F /Fypy.

Sinceo is proportional to sequence lendthand bothL andN are large in biologically relevant situations, the disitibn
described by Eq. (1) is narrowly peaked around the va¥géS N, GC) andXe (S N, GC) that have maximum probability, i.e.
the stabilities that maximize the “evolutionary free engr@ = log(Pse) = 0 + N¢. In the following, we take a mean-field
perspective and we identify the mean stabilities with thexiimam likelihood stabilitiesk, (S,N,GC) andx=(S,N,GC), and
the mean fitness with the fitness corresponding to thesesydlpieq, xe,S)) =~ ¢ (X, Xr,S). We consider the additive fitness
function (see main text)

¢ (Xa,Xe) =log(f) = —log (1+ x5 5+ x5 2)

for positivex, andxg, and¢ = —oo if either stability is not positive. The fitness takes theueal = exp(¢) if both stabilities
are positive and = 0 if eitherxy or Xg are negative, which are strictly forbidden. Fitness grovth wtability. The maximum
value of stability is of course finite, since the number ofisatces is finite. Fithess becomes a binary vdlae{0,1} whenS
tends to infinite, withf = 1 when stabilities are above the neutral threshglds1 andf = 0 when either stability is below the
threshold. We call this the neutral limit.

With now consider the logarithm of the probability in Eq.,(1)

G(Xa,Xe,N,S,GC) = 0(Xa,X¢, GC) + N¢ (Xa. X, S) = 0(Xa, X¢, GC) — Nlog (1+ X5+ %) . (3)

The quantity—G can be the interpreted as an evolutionary free energy. Trst likely stability valuest, andXs maximize
G or, equivalently, they minimize the evolutionary free enerThey can be computed solving the maximum likelihood (ML)
equations

—s-1
AR R s @)
0% |y _x 0% |y —x 1+ Xg>+Xe

with i = a,F. These equations express the balance between the relativeade in the number of sequences with enhanced
stability due to mutation entropy and their relative ineeae to selective pressure. Validity of the ML equationsinexg that
G has a maximum, so that the Hessian maittinf the second derivatives & must be negative definite. This matrix is defined

by
9°G 920 929

i = Fxax — axox; T axax; ®)

This is the sum of the Hessian ¢fxy,xr) = —log(f), which is negative by construction, as it is easy to verifyy the Hessian

of o(xq,Xe), which is the logarithm of the probability to find stabilityalesx, andxe under mutation alone. We assume
that o (Xq, X ) has a single maximum at, = XTU% xg = er””t. Therefore do/dx are negative fox; > xim”t, as it is required
for the existence of solutions of the ML equations, and thedi#a ofo is negative, as required. We can go beyond the ML
approximation writing the expone@at second order &(Xq, Xr ) ~ G(Xy, X ) + % ¥ij Hij (% —X%i)(Xj —X;), which is equivalent

to approximating the distributioRse as a Gaussian with covariance matridd 1. Therefore, negativity of the Hessian matrix
is equivalent to requiring that the covariance matrix isifpes



The definition of the normalized energy gapmplies thatx?'! is always negative. In contrast, our numerical results show
thatx™ is positive for small GC usage corresponding to very hydaiphsequences.
¢ From the ML equations, we can obtain the following impkgjtiations that expresses the stabiiityas a afunction o%g.

Jdo Jdo
«S+1 90 51100
XF aXF a axa : (6)

We see from this equation that the smaller stab#jtis the one for which the absolute value of the derivafleg/ 9x; is larger.

Influence of parameters on stability

We now calculate how, andXs depend on the parameterss {N,S GC}. We perform this calculation by taking the total
derivative of the ML equationdG/dx = 0 with respect to the parametérand equating it to zero, since the ML equations
must be satisfied for all values af. The total derivative is the sum of the partial derivativéhaiespect tod plus the partial
derivatives with respect t& multiplied timesdx;/dA. We therefore getd?G/dAdx) + ¥ ; (9°G/dxdx;) (0%;/dA), from
which we finally obtain

%, ., 0°G

07:_2 I arax;’ %

whereHjj = (dZG/dx; 0xj). As mentioned above, the inverse of the Hessian matrix cantbgpreted as minus a covariance
matrix and it is negative definite. Far= N we find

% _10¢
m:—zHij (9_)(1" ®)

which is always positive, sinceHij’1 is a positive matrix and botl¢ /dx; are positive. Therefore, both stabilities always
increase with population size, consistent with the staéibsimechanical analogy described above. For very siahd provided
thatSis not too large so th&Nis small, stabilities satisfy the equatioiq%*1 (0o /0%) ~ 0, whose solution is eitheg ~ O (for
the case ok, this is the only possible solution) @ /dx ~ 0, X ~ XM, which is only possible ikt is positive as it is the
case fork?" when the GC usage is small. For very lalgetabilities approach the maximum possible values. Howghey
can not be maximized simultaneously since there is a tréideetween the two kinds of stability (see main text).

ForA = GC, we find

acc~ 2 Gecax ®)
Numerical results show thaj is an increasing function arngt is a decreasing function of GC usage, so that these two Vesiab

are anticorrelated when GC is varied.
Finally, for A = Swe find

% H71)_(J'7&l [1+>—<j*5—Slog(>—<j)+>‘<k*3(1+SIog(>—<k/>—<j))}
a5~ N2

: (10)
(14 Ry S+%9)

wherek is the stability different fromj (if j = a thank = F and the other way round). The term in round brackets in the
numerator can vanish at some valuespfneaning that stabilities need not to be monotonic funabio® For S= 0 stabilities
only have to fulfill the conditiong; > 0, and their values are given &= min(x"“ 0). Our numerical results indicate that
stabilitiies increase witfor smallS. An N-dependent maximum is reached at intermedsatdken both terms in round brackets
with j = a andj =F in Eq. (10) vanish. It is possible to see that the maximum cdyloe reached when bo#are larger than
one. For larges the fitness landscape is almost neutral, so that finite @iffegs in stability determine very small differences
in the additive fitnesg such thaiNA¢ < 1. Such differences can not be fixed in the population. Inithé IS — « and for
finite N, fitness only depends on the smaller of the two stabilities,min(xq, s ), which tends to the value=1, i.e. to the
neutral threshold at which fitness approaches the valud.. Therefore, stability is predicted to decrease @t largeS. This
prediction is confirmed by numerical results. To simplifg #malytic calculations, we also confirmed the predictian stability
has a maximum at intermedig®dy using the simplified fitness functign= — log(1+ x—5), with x = min(x4, xr ) (see below).



Influence of parameters on fitness

Since fitness is an increasing function of stability and itglincreases with population size, fitness always insssawith
population size, as expected. However, fitness is not a ramofunction ofSbut it starts from the valué = 1/3 atS=0, it
decreaes to a minimum at sma&land then grows towards the neutral linit= 1 at largeS.

Optimal mutation bias

We now consider the dependence of the mutation bias on fitlsswo stabilitiexg andxr depend on the mutation process
through the sequence entropyx,,Xs,GC). High GC usage favors hydrophilic proteins, enhancipgt the expenses of.
Since fitness depends on both stabilities, there is an optimatation bias at which the fitness is maximal for givéandN,
satisfying the ML equations (4) plus the implicit equatiagh/dGC= 0. Using the ML equations, we can write

dp _ 09 0% 99 0%

dGC~ dxy GC ' dxs GC (11)

The fitness is a decreasing function &f= x,;ﬁ‘] [1+(Xmin/Xmax)S}. In the neutral limitS — o, Xmin tends to 1 inde-
pendent of GC usage and the fitness is maximaxfoe= X = 1. From the saddle-point equations, this condition implies
00/0xr(1,1,GC) ~ da/dxq(1,1,GC). Therefore, the optimal GC does not depend\oin the neutral limit.

Single stability fitness function

To simplify the calculations and get more analytic insigiibithe model, we consider here a simplified fitness functian t
depends only on the smaller between the two stabilitles, —log(1 + x~S) with x = min(xg,X¢ ). This fitness function is the
neutral limit of Eq. (2) forS>> 1. In fact,¢ = —log [1+ x5 (14 (Xmax/X)®) | & —log(1+x®). For this simplified model, the
ML equation reads

[00 NS (12)

W]X_X - _x(1+x5) ’

and the Hessian becomes a scalar funckios: (920/9x?) +N(9%¢ /dx?) < 0. We now compute how stability and fitness
depend or&. For stability, we find

ox 1+ exp(—Slog(x)) — Slog(X)
S Hx (1+X%5)

(13)

SinceH < 0, the derivative is positive far< z* and negative for > z*, wherez = Slog(X) andz" ~ 1.278 is the non-trivial root
of the equation 1 z+ e % = 0 at which stability reaches a maximum. Therefore, stgtiflitreases with the neutral exponént
for smallSand it decreases for lar@: consistent with the biological intuition. For fithess, wadfi

x  Slogx+ $%
4o _ 09 990X _ SI00X+ 355 (14)
dS  9S ' 9xdS  (1+%)

The denominator can be written as

+S o vS o o
do 0 Slogx— SN(14_-2x _Sslogx) _ Slogxs+ SN(1+%x Slogi) (1+%%) N (15)
ds H3 (1+%°) NS(1+%5+S) + (29| (1+%5)

For smallS, it holdsx = 0 so thatSlogx < 0. The second term in the above equation is positive, butsinialler than the first
term since it is multiplied timeS, hence the fitness decreases v@tht very smallS. At large S, logx is positive and the fitness
increases witts.

The previous analysis shows that, for fidddnd GC usage, there are two valueSatt which two “evolutionary potentials”
are extremal: The value &= Sn(N) at which the fitness is minimal, and the larger vafite Spi(N) at which stability is
maximal. This analysis defines in a natural way three regforethe model, which are graphically represented in Fig. 1.



1. At small S, stability is close to the lethal threshakd= 0 where fithess drops to zero, purifying selection is weak and
mutation entropy is large. We call this the mutation regianed we define the mutation cross-over as the point where
stability reaches the neutral threshaglg 1 at which the mean fitness takes the value 1/2 that it has foiS= 0. We see
from Eq. (12) that the boundary of the mutation regime is @efiny the inequality

Jdo
SN< -2 [a]x—ll (16)

Thus the larger i, the smaller the populations size required to leave the tioateegime.

2. In the largeSlimit, the fitness becomes a binary variable withz 1 for x > 1 andf ~ 0 for x < 0. In the neutral regime
finite differences in stability imply very little differems in fitness and they cannot be fixed by natural selectiorhago t
stability decreases witB towards the neutral threshoid= 1 for which mutation entropy is largest. We write the ML
equation Eq. (12) in the form

NS NS

145 = ~ 17
* X00/dx  |00/0X|y_;’ 7
where we approximate~ 1 in the r.h.s. At dominant order fBwe obtain
1 NS
X~ 14 =1 —_— 1. 18
) +Sog<|50/5x|x—1 ) 4o

We now define the neutral cross-over as the point wiketd + ¢, with smalle. From the above equations it follows that
the neutral regime is defined through the inequality

Ngl(esul) 90

S X (19)

x=1
Thus, the larger i§, the larger the population sizésrequired to leave the neutral regime.

3. ForN larger than the mutation cross-over (sn@&lbr N larger than the neutral cross-over (laehe population enters
the non-neutral regime where stability is above the netlr@shold. For fixedN, stability has a maximurm*(N) at

S= Sp(N) given by

1.278
Sopt(N) ~ Tog(x(N)) (20)

The above formulas suggest that the typical scale of pdpulatze for entering the non-neutral regime from the matati
or the neutral regime is proportional tgdr/9x|,_,. We estimated this quantity from our simulations using theraximate
relationship Eq. (18) to yield

0o NS

_oop L Ns 21
X |y 1+%° (1)

This estimate is predicted to be independeritidbr very largeS. We used data fd8 = 20, finding that there is still some weak
dependence oN that can be attributed to corrections to the above apprdioma Averaging oveN between 10 and 4000, we
found that 200/0x|,_, varies from a minimum of 28 at GE 0.5 to a maximum of 100 at G& 0, see Fig. 6. The minimum
of |0o/dx|,_, at GC~ 0.5 is another way to see that this mutation bias is optimal éurtral evolution.

Notice that there is a critical value &that separates the mutation regime (sr&afirom the neutral regime (larg®. This
can be obtained by equating the boundaries of the two regiBtie$16) and (19), which yields

2S5 +1=¢%¢. (22)

Fore = 0.5 we findS* = 1.63. Similarly, there is a value & below which the system passes directly from the mutatiomreg
to the neutral regime without entering non-neutrality.sTisigiven byN = 2/S" |00 /9X],_,.

[1] Sella, G., Hirsh, A.E. (2005) The application of stdtiat physics to evolutionary biologf2roc. Natl. Acad. Sci. USA029541-9546.
[2] dos Reis, M., Savva R., Wernisch L. (2004). Solving thdgleé of codon usage preferences: A test for translatiodatsen, Nucl. Ac.
Res.32:5036-5044.
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FIG. 1: Phase diagram showing the different regimes ir{h&)-plane, with the borde®&n,t = 2/N between mutational and adaptive regime
and with the bordeS,eyt = log(N) between the adaptive and neutral regime. The Sge=s"/(2— 3/v/N) with s* ~ 1.278 being the
non-trivial root of the equation 4 s+e° = 0 inside the adaptive regime displays the valu&fafr which for givenN the fitness is maximum.
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FIG. 2: Fitness versus number of accepted amino acid sutistis for different population sizes from 10 to 2000 and ®G= One can

see that the stationary distribution of fitness is reacheallinases after a number of substitutions of order of few $irh@0 for the protein
lysozyme having 129 amino acids.
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FIG. 3: Absolute value of the incremental ratio of the opfiiB& bias as a function o, | (GCopt(S) — GCopt(S= 0.5)) /(S—0.5)| versus
population sizeN. The result is consistent with the expectation thatgB8ecomes independent 8fn the infinite population limit.
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FIG. 4: Difference of selective coefficienfsp comparing the optimal GC usage and §G- 0.15. One can see thaip decreases with
population sizeN, howeverNA¢ increases withN so that the optimal GC usage would be eventually selecteufevéarge populations.
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FIG. 5: Minimal stabilityx = min{a /oy, F /Fnr} and difference between actual sequence entropy and engsgmcted under mutation
alone, versus neutralit$ for various population sizes and GE0.5. Entropy was computed through the independent sites xippaiion

as Entropy= —5; S, Pi(a)log(Pi(a)), where R(a) is the asymptotic distribution of amino acédat sitei. Entropy under mutation alone
is computed using the distributionyi(a) in which each of the codons codifying the amino aaitlave the frequency expected under the
mutation model (with zero frequency for stop codons). THeedince between the two entropies estimates the reduitiemtropy due

to negative selection for conserving protein stability.tiske that the maximum of stability corresponds to maximuiurtion of sequence

entropy.
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FIG. 6: Mutation bias dependence|dio/dal,_, at the neutral threshold, obtained through Eq. (21) fronukations withS= 20, averaging
overN € [10,4000. The dashed line is a cubic interpolation that evidentititesninimum at GGz 0.5. This quantity sets the population size
scale for passing to the non-neutral regime from the mutatgime or the neutral regime &t 1.
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FIG. 7: Scatter plot of the selected optimal codon usagenpeter computed by dos Reis al. [2], which we use to estimate the effective
population size, versus the GC content at third codon posifThe line is a parabolic fit to the data.
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