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Supplementary Methods

Implementation of non-Bayesian models

Standard expression QTL model

To ensure a common ground when comparing different methods, we used a well established linear re-
gression approach [1] to detect associations. For each tested SNP n with genotype sn,j and gene g with
expression level yg,j , we evaluated the log-odds (LOD) score

Ln,g = log

∏
j

P (yg,j | sn,j , un,g)
P (yg,j |θbck)

 , (1)

which assess how well a particular gene expression level is modelled when the genetic state is taken into
account, compared to how well it is model-led by a background model ignoring the genetic effect. The
terms un,g, θbck are parameters for probe g and SNP n of the genetic and background models respectively.
The probe expression levels yg,j can either be the raw measurements, residuals after subtracting the
estimated effect of hidden and known factors, or ranks for a non-parametric statistic.

Significance of an association was evaluated in three different ways:

1. 2-tailed t test on expression values uses the Student’s t distribution with N − 2 degrees of
freedom to assess the significance of the statistic t = (N−2)0.5ρ(1−ρ2)−0.5 based on the correlation
coefficient ρ2 = 1− exp(−2Ln,gN

−1) between the genotype and the expression levels. We called an

association significant if |t| was greater than the 10−3

2S tail of the tN−2 distribution, which corresponds
to a 10−3 Bonferroni-corrected per-gene false positive rate when performing tests for S SNPs.

2. Rank correlation uses the same test, but on the ranks of expression values.

3. Permutation testing [2] repeats the analysis in Equation (1) with permuted expression levels
with respect to the genetic state, calculating the distribution of null log-odds scores. An eQTL was
called significant if Ln,g was greater than L̂n,g, the δ tail of the null distribution for a given false
positive rate (FPR) δ. The same set of permutations was used for all methods. To account for
multiple testing, we estimated a single significance threshold L̂g per gene for all tested SNPs. This
was done by taking the maximum LOD score over SNPs for a given permutation and using this
score distribution when estimating the δ tail [3].

The posterior of the switch variable for the probabilistic genetic model is not used for the final tests
to put all methods on equal footing.

PCA

PCA can be interpreted as decomposition of the gene expression matrix Y = (y1...yG) into a product
UDV T , where U is the matrix of left singular vectors, D is a diagonal matrix of singular values λ1 ≥
λ2 ≥ ... ≥ λN ≥ 0, and V is the matrix of right singular vectors. To apply PCA, we used U as the
weight matrix W , and DV T as the latent factors X. For the benchmark figures, illustrating the effect
for different numbers of factors, we limited the number of learned factors to a given number K by setting
Di,i = 0 for i > K.

PCAsig

PCAsig model is an extension of PCA, where complexity is controlled by retaining only components that
explain more variance than expected by chance. Significance testing of PCA components in the PCAsig
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model was performed analogously to SVA [4], but without enforcing uniformity of the p-values. We found

the variance explained by each component i by calculating the statistic di =
λ2
i∑N

j=1 λ
2
j

. We then permuted

the columns of Y L times, calculating null statistics di1, di2, ..., diL analogously. Given a cutoff value α,
component i was deemed to be significant if the fraction of null statistics greater than di was less than α.

SVA

SVA package was downloaded from http://www.genomine.org/sva, and applied to datasets with default
parameters, using 100 permutations and varying only the significance cutoff. The model implementation
uses a Python to R bridge provided by RPy (http://rpy.sourceforge.net), allowing to call the original
code provided by the authors.

PEER framework

VBQTL and the alternative compared methods are implemented within the PEER (Probabilistic Estima-
tion of Expression Residuals) framework. Here, we give a full self-contained treatment of the framework
and the implemented inference algorithms.

Likelihood models

The likelihood model of PEER for observed expression levels Y is

P (Y |Y(1), . . . ,Y(M), τ ) = N (Y |Y(1) + · · ·+ Y(M),Σ), (2)

where Σ = diag{ 1
τg
} is the diagonal matrix constructed from noise precisions {τg} and {Y(m)} are the

contributions of expression variability for each of M models. The noise model is per gene, similar to
a factor analysis model, where gamma priors are put on the noise precisions, P (τg) = Γ(τg | aτ , bτ ). In
experiments we used vague gamma prior parameters, aτ = 1, bτ = 100. Each of the M models itself
depends on parameters θ(m) and possibly other data D(m)

P (Y(m) |θ(m),D(m)). (3)

Genotype effect model. The expression level y
(1)
g,j of the gth gene probe in the jth individual is

explained by linear effects of genotypes of N SNPs sj = (s1,j , . . . , sN,j):

P (y
(1)
g,j | sj ,bg,ug, τg) = N (y

(1)
g,j |

N∑
n=1

bn,g · (un,gsn,j) ,
1

τg
) (4)

P (bn,g) = Bernoulli(bn,g | pass) (5)

P (un,g) = N (un,g | 0, 1). (6)

The weight ug = (u1,g, . . . , uN,g) indicates the magnitude of the effect, and the binary variables bg =
(b1,g, . . . , bN,g) determine whether it is significant (true) or not (false), taking the Bernoulli prior on
the switch variable P (bn,g) = Bernoulli(bn,g | pass) into account. When the switch variable is on, the
expression level is linearly influenced by the SNP, and unaffected otherwise. The LOD score of the
association model (Section Standard expression QTL model) is closely related to the switch variable bn,g.
For a particular parameter setting, the posterior probability over the switch state bn,g is a monotonically
increasing function of the LOD score. The exact relation is P (bn,g | yg,j , sj,n) = σ(LOD score) where σ()
is the sigmoid function σ(x) = 1/(1 + e−x).
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2) Known factor model. The effect of the measured C covariates in the jth individual, fj =
(f1,j , . . . , fC,j), where the weights of their effect on a gene g is vg = (vg,1, . . . , vg,C) is modelled as:

P (y
(2)
g,j | fj ,vg, τg) = N (y

(2)
g,j |

C∑
c=1

vg,c fc,j ,
1

τg
) (7)

P (vg,c |αc) = N (vg,c | 0,
1

αc
) (8)

P (αc) = Γ(αc | aα, bα). (9)

The gamma prior on the inverse covariances for each factor introduces automatic relevance detection
(ARD) [5,6], driving the weights of unused factors to 0 and thereby switching them off. This is explained
in more detail below.

3) Hidden factor model. Analogously to known factors, expression variability is modelled by linear
effects from K hidden factors X = {x1, . . . ,xK}:

P (y
(3)
g,j |xj ,wg, τg) = N (y

(3)
g,j |

K∑
k=1

wg,k xk,j ,
1

τg
) (10)

P (wk, βk) =

G∏
g=1

N (wg,k | 0,
1

βk
) (11)

P (xk,j) = N (xk,j | 0, 1) (12)

P (βk) = Γ(βk | aβ , bβ). (13)

The factor activations X are random variables that are not observed, but instead inferred from the
expression levels. Again, the ARD prior allows unused factors to be switched off. This forces the model
to learn factors which have a broad effect on many expression levels. In experiments we used values
aα = 10−7G and bα = 10−1G, where G is the total number of gene probes. Similar prior settings were
used for the weights of the known factors vc. We put a standard normal prior on the hidden factors,
xk,j ∼ N (xk,j | 0, 1).

Variational inference

As outlined in Methods we use variational Bayesian inference [7] for parameter learning in the framework.
The basic principle of variational methods is to approximate the exact joint posterior distribution over
all parameters by a factorised Q-distribution. Individual factors of the Q-distribution are refined by
minimisation of the KL-divergence between the exact and the approximate distributions with respect to
the parameters of a single factor. This leads to an iterative algorithm, updating individual factors of the
approximate distribution given the state of all others. Here, we give the factorisations and update rules
for the general framework and the individual models.

PEER framework. We approximate the exact joint posterior distribution over all parameters

P ({Y(m)}Mm=1, {θ
(m)}Mm=1, | D) (14)

by a factorised approximation over parameters for individual models

Q(Θ) =

M∏
m=1

Q(θ(m))Q(Y(m)). (15)
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Here we defined the abbreviation D = {Y, {D(m)}Mm=1}, summarising all observed data; expression
levels Y as well as model-specific data {D(m)}Mm=1. Note that as the expression contributions Y(m) are not
observed they also resemble parameters that need to be inferred. Strictly speaking these are not treated
as random variables of the model, but Gaussian messages that comprise the first and second moments of
the expression variability contribution of a respective model. The distributions of parameters θ(m) for
individual models are in turn factorised. The set Θ = {θ(1), . . . ,θ(M)} denotes the set of all parameters
from all models.

The approximate Q-distributions are updated iteratively, taking the current state of all others into
account. Update equations for a particular Qi can be derived by functional minimisation of the KL-
divergence between P and Q with respect to Qi which leads to

Q̃(Θi) ∝ exp {〈logP (D,Θ)〉Q(Θj),i6=j}. (16)

The term in the exponent is the expectation of the model log-likelihood under all other Q-distributions.
Together with the expression data likelihood

P (Y |Θ) = N (Y |Y(1) + · · ·+ Y(M),Σ)

M∏
m=1

P (Y(m) |θ(m),D(m)) (17)

this allows generic update rules for all model parameters to be derived. Substituting in Equation (15)
for each Q(·), we obtain the following approximate distributions:

(Approximate distributions)

Q(τ ) =

G∏
g=1

Γ(τg | ãτg , b̃τg ) (18)

Q(Y(m)) =

G∏
g=1

J∏
j=1

N (y
(m)
g,j | m̃Y

(m)
g,j

,
1

τ̃
Y

(m)
g,j

), (19)

and similar factorisations for each of the models (given below). The parameter update equations for the
framework parameters follow as:

(Update rules)

ãτg = aτ +
1

2

J∑
j=1

〈(
yg,j −

M∑
m=1

y
(m)
g,j

)2〉
(20)

b̃τg = bτ +
J

2
. (21)

Genotype effect model The update equations for the models introduced in the main text (Inference)
follow similarly. For the models, we give the approximate factorisations employed, and the resulting
update equations that are derived in identical manner to the treatment above.
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(Approximate distributions)

Q(B) =

N∏
n=1

G∏
g=1

Bernoulli(bn,g | p̃bn,g ) (22)

Q(U) =

N∏
n=1

G∏
g=1

N (un,g | m̃un,g
, Σ̃un,g

) (23)

(Update rules)

Σ̃un,g
= I + 〈τg〉

〈
b2n,g

〉 J∑
j=1

sT
n,jsn,j (24)

m̃un,g = Σ̃−1
un,g

〈τg〉 〈bn,g〉 J∑
j=1

sn,j

〈
z

(1)
g,j

\n
〉 (25)

m̃
y
(1)
g,j

=

N∑
n=1

〈bn,g〉 〈un,g〉 sn,j (26)

τ̃
y
(1)
g,j

=

[
N∑
n=1

〈
b2n,g

〉 〈
u2
n,g

〉
s2
n,j

]
, (27)

where we define 〈
z

(1)
g,j

\n
〉

= z
(1)
g,j −

∑
m6=n

〈bm,g〉 〈um,g〉 sm,j (28)

and the residual expression dataset for the mth model

z
(m)
g,j = yg,j −

M∑
l 6=m

y
(l)
g,j . (29)

(30)

The approximate posterior over the indicator variables can be obtained from

p̃bn,g
∝ pb · exp

−1

2

J∑
j=1

〈(
z

(1)
g,j

\n
− bn,gθn,gsn,j

)2
〉

(1− p̃bn,g
) ∝ (1− pb) · exp

−1

2

J∑
j=1

〈(
z

(1)
g,j

\n
)2
〉 , (31)

which after normalisation gives rise to p̃bn,g
.

(32)
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Known factor model is identical in treatment to the hidden factor model, without the need for
updates of the factor activations. Thus, we only present the hidden factor model here.

(33)

(Approximate distributions)

Q(X) =

J∏
j=1

N (xj | m̃xj
, Σ̃xj

) (34)

Q(W) =

G∏
g=1

N (wg | m̃wg
, Σ̃wg

) (35)

Q(β) =

K∏
k=1

Γ(βk | ãβk
, b̃βk

) (36)

(Update rules)

Σ̃xj
= Σxj

+
〈
WTdiag (τ ) W

〉
(37)

m̃xj
= Σ̃−1

xj

〈
WT

〉
diag 〈τ 〉

(〈
z

(3)
j

〉)
(38)

Σ̃wg
= diag 〈β〉+ 〈τg〉

J∑
j=1

〈
xjx

T
j

〉
(39)

m̃wg = Σ̃−1
wg

〈τg〉 J∑
j=1

〈xj〉
(〈

z
(3)
j

〉) (40)

m̃
y
(3)
g,j

=

K∑
k=1

〈wg,k〉 〈xj,k〉 (41)

τ̃
y
(3)
g,j

=

[
N∑
n=1

〈
b2n,g

〉 〈
u2
n,g

〉
s2
n,j

]
(42)

(43)

Initialisation. The initial states of hidden factor model weights Q(wg) and levels Q(xj) are deter-
mined from a PCA solution, and the weights for known factors Q(vg) are initialised to the maximum
likelihood estimate. The parameters for remaining Q distributions for all models are deterministically
initialised to corresponding prior means. A random initialisation is possible as well, however, additional
computation time is required for multiple restarts, and the inference becomes non-deterministic. We have
not explored the implications of this alternative here as the maximum likelihood initialisation performs
robustly well in practise.

Bottleneck approximation. The genetic association model accounts for additive association sig-
nals from all considered SNPs. The corresponding variational updates of the indicator variables in
Equation (31) can be unstable in practise. In particular, if multiple correlated SNPs are in association
to a single gene, variational learning is prone to being trapped in local optima, attributing the effect to
only one of them. Hence, the inferred state of the indicator variables B depends on the order in which
these updates are carried out. To obtain meaningful results, the update sequence needs to be randomised
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and typically large numbers of restarts are required. This procedure implies prohibitive computational
cost, particularly for large datasets. To avoid this additional computation, these updates are instead
implemented greedily. For each gene g only a single non-zero entry in the indicator matrix is permitted,
corresponding to the SNP with the greatest evidence for an association. This leads to a sparse association
matrix B.

VBQTL

Both the iterative (iVBQTL) and the fast variant (fVBQTL) of the studied algorithms use these update
equations presented above. iVBQTL uses the full variational approximation with a specific update order
of the Q(θi) distributions (Algorithm 1b). In experiments, we used 3 iterations of the full model. Within
each full iteration, the genetic model was iterated 3, known factor model 30 and hidden factor model 30
times.

To compare the eQTL detection performance of VBQTL with standard methods and previous studies,
we do not directly evaluate the linkage probabilities P (bn,g) which are obtained during learning. Instead,
we apply the standard association model (Section Standard expression QTL model) on the residuals of
the known and unknown factor models after convergence similarly to the traditional methods.

fVBQTL is a faster approximate variant of iVBQTL (Algorithm 1a). Rather than performing full
inference in the model, the genetic part of the model is ignored when inferring the parameters for the
factor models, which can be cast as a specific update schedule.

Algorithm 1a fVBQTL Algorithm 1b iVBQTL

initialise Q distributions

for i iterations do
(known factors)
update Q(vg), Q(αc)
(noise precision)
update Q(τg)
(hidden factors)
update Q(wg), Q(βk), Q(xj)
(noise precision)
update Q(τg)

end for
(genetic model)
update: Q(ug,n), Q(bn,g)
(Out: Approximate posterior distribution of model
parameters)

initialise Q distributions

for i iterations do
(genetic model)
update: Q(ug,n), Q(bn,g)
(noise precision)
update: Q(τg)
(known factors)
update: Q(vg), Q(αc)
(noise precision)
update: Q(τg)
(hidden factors)
update: Q(wg), Q(βk), Q(xj)
(noise precision)
update: Q(τg)

end for
(Out: Approximate posterior distribution of model
parameters)

Simulation dataset

We simulated 80 diploid individuals with 100 SNPs and 400 probe expression measurements. The simu-
lated minor allele frequency was 0.4 for each SNP, and the allele configuration sn,j of SNP n was encoded
as (1, 0), (1, 1), or (1, 2), including a column for the mean. We independently simulated effects of known
and hidden factors, as well as genetic associations, noise, and downstream effects. Noise level ψg of
probe g was drawn from a normal distribution with mean 0 and inverse variance τg drawn from Γ(3, 1),
ψg ∼ N (0, τ−1

g ). We simulated associations between SNP genotypes and gene expression levels for 1% of
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the SNP-gene pairs. The genetic weight θg,n for an association between probe g and SNP n was drawn
from N (0, 4). A total of 10 global factors affecting all gene expression levels were simulated. Individual
factor levels xj,k for factor k were drawn from N (0, 0.6). Weights wk,g of factor k for probe g were
drawn from N(0, σ2

k), where σ2
k ∼ 0.8(Γ(2.5, 0.6))2 for a heavy-tailed weight distribution. Three of the

10 simulated global factors were designated as known covariates fc,j . Further three probes that had a
simulated SNP association were designated to have downstream effects on 30 other probes. The effect of
probe g on probe h in individual j was simulated as additive factor of w′g,hyg,j , where w′g,h ∼ N (8, 0.8)
for strong downstream effects, and yg,j is the expression level of probe g in individual j.
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