

A = 0 0.5 $A = 1$ 0.3 $T = 1$ 0 0 0.3 $T = 2$ 0.2 0.2	P(A)		_	P(T A)	A = 0	A = 1	<i>A</i> = 2
	A = 0	0.5		T = 0	1	1	0
	A = 1	0.3		T = 1	0	0	0.3
A = 2 0.2 $I = 2$ 0 0 0.7	<i>A</i> = 2	0.2		T = 2	0	0	0.7

$P(B \mid A)$	A = 0	A = 1	<i>A</i> = 2	
B = 0	0.2	0.9	0	
B = 1	0.8	0.1	0	
B = 2	0	0	1	

$P(C \mid T)$	T = 0	T = 1	T = 2	
C = 0	0.2	0.9	0.3	
<i>C</i> = 1	0.8	0.1	0.7	

Figure S1: Example pathway structure with 3 gene variables (*A*, *B*, *C*) and phenotypic response variable *T*. The structure is represented by a Bayesian network (defined as a set of variables **V**, a directed acyclic graph G with one-to-one correspondence of nodes to the variables in **V**, and a probability distribution P over **V** such that every variable *W* in **V** is independent of all non-descendants of *W* given the parents of *W*). The network parameterization is defined below the graph. All variables take values $\{0,1,2\}$ except for *C* that takes values $\{0,1\}$. Genes *A* and *B* contain exactly the same information about *T* and are highlighted with the same color.