Maximally predictive and non-redundant molecular signatures are precisely the Markov boundaries and vice-versa

In the present paper capital letters in italics denote variables (e.g., A, B, C) and bold letters denote variable sets (e.g., \mathbf{X} , \mathbf{Y} , \mathbf{Z}). We also adopt the following standard notation of statistical independence relations: $T \perp \mathbf{A}$ means that T is independent of the variable set \mathbf{A} . Similarly, if T is independent of the variable set \mathbf{A} conditioned the variable set \mathbf{B} , we denote this as $T \perp \mathbf{A} \mid \mathbf{B}$. If we use the sign " \perp " instead of " \perp ", this means dependence instead of independence.

Now we introduce several key definitions:

- <u>Molecular signature</u>: A molecular signature is a mathematical/computational model (e.g., classifier or regression model) that predicts a phenotypic response variable of interest *T* (e.g., diagnosis or response to treatment in human patients) given values of molecular variables (e.g., gene expression values).
- <u>Maximally predictive molecular signature</u>: A maximally predictive molecular signature is a molecular signature that maximizes predictivity of the phenotypic response variable *T* relative to all other signatures that can be constructed from the given dataset.
- <u>Maximally predictive and non-redundant molecular signature</u>: A maximally predictive and non-redundant molecular signature based on variables **X** is a maximally predictive signature such that any signature based on a proper subset of variables in **X** is not maximally predictive.
- <u>Markov blanket</u>: A Markov blanket **M** of the response variable $T \in \mathbf{V}$ in the joint probability distribution \mathbb{P} over variables **V** is a set of variables conditioned on which all other variables are independent of *T*, i.e. for every $X \in (\mathbf{V} \setminus \mathbf{M} \setminus \{T\})$, $T \perp X \mid \mathbf{M}$.
- <u>Market boundary</u>: If **M** is a Markov blanket of *T* and no proper subset of **M** satisfies the definition of Markov blanket of *T*, then **M** is called a Markov boundary of *T*.

<u>Theorem:</u> If W is a performance metric that is maximized only when $P(T | V \setminus \{T\})$ is estimated accurately and L is a learning algorithm that can approximate any probability distribution, then **M** is a Markov blanket of *T* if and only if the learner's model induced using variables **M** is a maximally predictive signature of *T*.

Proof: First we prove that the learner's model induced using any Markov blanket of *T* is a maximally predictive signature of *T*. If **M** is Markov blanket of *T*, then by definition it leads to a maximally predictive signature of *T* because $P(T | \mathbf{M}) = P(T | \mathbf{V} \setminus \{T\})$ and this distribution can be perfectly approximated by L, which implies that W will be maximized. Now we prove that any maximally predictive signature of *T* is the learner's model induced using a Markov blanket of *T*. Assume that $\mathbf{X} \subseteq \mathbf{V} \setminus \{T\}$ is a set of variables used in the maximally predictive signature of *T* but it is not a Markov blanket of *T*. This implies that, $P(T | \mathbf{X}) \neq P(T | \mathbf{V} \setminus \{T\})$. By definition of the Markov blanket, $\mathbf{V} \setminus \{T\}$ is always a Markov blanket of *T*. By first part of the theorem, $\mathbf{V} \setminus \{T\}$ leads to a maximally predictive signature of *T* similarly to **X**. Therefore, the following should hold: $P(T | \mathbf{X}) = P(T | \mathbf{V} \setminus \{T\})$. This contradicts the assumption that **X** is not a Markov blanket of *T*. This implies that assumption that **X** is not a Markov blanket of *T*. This contradicts the assumption that **X** is not a Markov blanket of *T*. Therefore, **X** is a Markov blanket of *T*. (Q.E.D.)

Since the notion of non-redundancy is defined in the same way for maximally predictive signatures and for Markov blankets, under the assumptions of the above theorem it follows that \mathbf{M} is a Markov boundary of T if and only if the learner's model induced using variables \mathbf{M} is a maximally predictive and non-redundant signature of T.