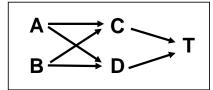
An example of signature multiplicity due to small samples

Consider a simplified pathway structure and parameterization shown in the figure below. It involves 4 genes (A, B, C, D) and a phenotypic response variable *T*. This network encodes a faithful distribution¹ and thus only one Markov boundary exists in large samples [1–4], which is $\{C, D\}$. Now consider that we have access to three small samples from this distribution such that: in sample #1 one cannot reliably establish that $T \perp A | \{C, D\}$, in sample #2 one cannot reliably establish that $T \perp B | \{C, D\}$, and in sample #3 one cannot reliably establish either $T \perp A | \{C, D\}$ or $T \perp B | \{C, D\}$. Three Markov boundaries can be identified in the above samples, $\{C, D, A\}$, $\{C, D, B\}$, and $\{C, D, A, B\}$, respectively, assuming that neither *A* nor *B* significantly decreases the predictivity of *T* in given samples.



$P(T \mid C, D)$	(C = 0, D = 0)	(C = 0, D = 1)	(C = 1, D = 0)	(C = 1, D = 1)
T = 0	0.2	0.5	0.7	0.4
T = 1	0.8	0.5	0.3	0.6

$P(C \mid A, B)$	(A = 0, B = 0)	(A = 0, B = 1)	(A = 1, B = 0)	(A = 1, B = 1)
C = 0	0.3	0.7	0.9	0.4
<i>C</i> = 1	0.7	0.3	0.1	0.6

$P(D \mid A, B)$	(A = 0, B = 0)	(A = 0, B = 1)	(A = 1, B = 0)	(A = 1, B = 1)
D = 0	0.6	0.7	0.8	0.4
<i>D</i> = 1	0.4	0.3	0.2	0.6

P(A)	
A = 0	0.6
A = 1	0.4

0.4
0.6

Figure: Example pathway structure with 4 gene variables (A, B, C, D) and phenotypic response variable *T*. The structure is represented by a Bayesian network. The network parameterization is defined below the graph. All variables take values $\{0,1\}$.

¹ Let G be a graph and P a probability distribution. We will call a distribution P faithful to G if and only if every conditional independence relation true in P is entailed by the Markov Condition applied to G. In other words, the graph G using the Markov Condition provides an accurate map of all conditional and marginal dependencies and independencies in P. Recall that a probability distribution P satisfies the Markov Condition with respect to a graph G over variables **V** if for every variable *W* in **V**, *W* is independent of all non-descendants of *W* given the parents of *W* [1].

References

- 1. Spirtes, P., Glymour, C. N., and Scheines, R. (2000) Causation, prediction, and search. Cambridge, Mass: MIT Press.
- 2. Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo, California: Morgan Kaufmann Publishers.
- 3. Pearl, J. (2000) Causality: models, reasoning, and inference. Cambridge, U.K: Cambridge University Press.
- 4. Tsamardinos I, Aliferis CF (2003) Towards principled feature selection: relevancy, filters and wrappers. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (AI & Stats).