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Details about the TIE* algorithm 

 

 Trace of the algorithm 

 

Consider running TIE* algorithm in the example pathway structure depicted in the figure below. 

The phenotypic response variable T is caused by 4 genes: C, D, E, and F. The distribution is such 

that genes A and C contain exactly the same information about T; likewise two genes {D, E} 

jointly and a single gene B contain exactly the same information about T. In step 1 of TIE* 

(Figure 2 in the main manuscript), the algorithm identifies a Markov boundary M = {A, B, F} 

and outputs it. In step 3, the algorithm generates a subset G = {F} of the previously identified 

Markov boundaries. Then in step 4 the base algorithm is run on all genes but F. This yields a 

candidate Markov boundary Mnew = {A, B} that has suboptimal predictivity of the phenotype as 

determined in step 5, and thus it is not a Markov boundary. Then in step 3 the algorithm 

generates another subset G = {A}. The base algorithm in step 4 yields a new candidate Markov 

boundary Mnew = {C, B, F} that as determined in step 5 has the same predictivity of the 

phenotype T as M. Therefore Mnew is indeed a Markov boundary and it is output in step 5. 

Similarly, when the base algorithm is run on data for all genes but G = {B} and G = {A, B}, two 

more Markov boundaries {A, D, E, F} and {C, D, E, F}, are found and output. The algorithm 

terminates shortly. In total, four Markov boundaries are output by the algorithm: {A, B, F}, {C, 

B, F}, {A, D, E, F} and {C, D, E, F}. These are exactly all the Markov boundaries that exist in 

this distribution. 

 

Proof of correctness 

 

Theorem: TIE* outputs all and only the Markov boundaries of the response variable T if the 

following five conditions hold: 

(1) The base algorithm correctly identifies a Markov boundary of T both in the original 

data and in every modified version of the data that results after removing a subset of 

variables in step 3 of the algorithm (so-called “embedded” distribution). 

(2) The learning algorithm to fit a predictive model of the response variable T given a set 

of predictor variables can accurately model the conditional probability distribution of T 

given the set of predictor variables. 

(3) The performance metric to assess predictivity of the signatures is maximized only when 

the conditional probability of T given all other variables is accurately estimated. 

(4) The procedure to estimate predictive error of the signatures is unbiased. 

(5) The procedure to compare estimates of predictive error of the signatures has negligible 

error. 

 

Proof: First we prove that condition (ii) in step 3 of TIE* (Figure 2 in the main manuscript) does 

not affect output of the algorithm. This result is important because it simplifies further proof of 

correctness and also provides a justification for the computational savings in TIE* incurred by 

using this condition. We prove this result by contradiction. Consider that the algorithm has 

previously discovered a Markov boundary Mi and a subset G'  Mi is generated in step 3 such 

that the resulting candidate Markov boundary Mnew in step 4 is not a Markov boundary in the 

original distribution. Since removal of G' leads to a non-Markov boundary in the original 

distribution, the algorithm does not generate supersets of G' in step 3 according to condition (ii). 
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Assume that there is a Markov boundary Mj that is not output by the TIE* algorithm because a 

subset of variables G'' = Mi  G' was not generated in step 3. This implies that predictivity of Mj 

of the phenotype is larger than one of Mnew. Therefore, Mnew is not a Markov boundary in the 

embedded distribution after removing a subset of variables G'. This contradicts assumption (1) of 

the theorem. Therefore, condition (ii) in step 3 of TIE* does not affect output of the algorithm 

and we can proceed with further theoretical analysis as if this condition does not exist. 
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… 

(C=1, D=1, 
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T = 0 0.9 0.1 0.9 0.1 

T = 1 0.1 0.9 0.1 0.9 

 

Figure: Example pathway structure with 6 gene variables (A, B, C, D, E, F) and 

phenotypic response variable T. The structure is represented by a Bayesian network. The 

network parameterization is defined below the graph. All variables take values {0,1} 

except for B that takes values {0,1,2,3}. Genes A and C contain exactly the same 

information about T and are highlighted with the same color. Likewise two genes {D, E} 

jointly and a single gene B contain exactly the same information about T and thus are also 

highlighted with the same color.  
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 Assume that TIE* returns X that is not a Markov boundary of T. Then X is not a Markov 

blanket of T because of condition (1) and the fact that non-redundancy property of X 

holds in every embedded distribution. X cannot coincide with the variable set M 

identified in step 1 because it is a Markov boundary of T in the original distribution 

according to (1). Thus, it has to be a set of variables Mnew identified in step 4. However, 

for Mnew to be output it should have the same predictivity of the phenotype as the Markov 

boundary M. Given assumptions (2) - (5), this can happen if and only if Mnew is a Markov 

blanket. Thus, we have reached a contradiction and we conclude that TIE* would never 

output variable sets that are not Markov boundaries. 

 Assume that there exists a Markov boundary X that is not output by TIE*. Because of 

assumptions (2) - (5), Mnew = X was never identified in step 4 of the algorithm. This can 

happen if and only if  where Mi is a Markov boundary that was previously 

discovered by TIE* (either in step 1 or 4). However, in some iteration of the TIE* 

algorithm, the set G = Mi (and similarly other sets that render X independent of T) will be 

generated in step 3 and Mnew = X will be identified in step 4 after removing G from the 

data. Therefore, we have reached a contradiction and we conclude that TIE* would never 

miss Markov boundaries. (Q.E.D.) 

 

The following lemma provides an instantiation of the TIE* algorithm that does not require 

learning of the predictive model of the phenotypic response variable T. 

 

Lemma: Assume that a set of variables M  (V \ {T}) is a Markov boundary of T (V denotes all 

variables in the network). If there exists a set of variables Mnew  (V \ {T}) such that 

newT MM |  and Mnew is a Markov boundary of T in the embedded distribution, then Mnew is 

also a Markov boundary of T in the original distribution. 

 

Proof: The proof below makes references to several properties of probability distributions that 

are given in [1]. Consider that there exists a set of variables Mnew  V \ {T} such that 

newT MM | . Since M is a Markov boundary of T in the original distribution, it is also a 

Markov blanket of T in the original distribution. By definition of the Markov blanket, 

MMV |}){\\( TT . By self-conditioning property, it follows that MV |}){\( TT . Since (V 

\ {T}) = (V \ {T})  Mnew and according to the weak union property, 

)(|)\}{\( newnewTT MMMV . By self-conditioning property, it follows that 

)(|}){\( newTT MMV . Since newT MM |  and )(|}){\( newTT MMV , the 

contraction property implies that newTT MMV |)}){\(( . Since (V \ {T}) = (V \ {T})  M, it 

follows that newTT MV |}){\( . By decomposition property this implies that Mnew is a Markov 

blanket of T in the original distribution. Since Mnew is a Markov boundary of T in the embedded 

distribution and it is a Markov blanket of T in the original distribution, it is also a Markov 

boundary of T in the original distribution. (Q.E.D.) 

 

The above lemma suggests a new step 5 in the TIE* algorithm (see Figure 2 in the main 

manuscript): If , then Mnew is indeed a Markov boundary, and it is output. 
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A more detailed theoretical analysis of the generative TIE* algorithm and the set of concrete 

sound instantiations is provided in [2]. 
 

Algorithm implementation details 

 

In experiments with real and/or resimulated gene expression data, we used the following 

implementation of TIE*:  

 To identify Markov boundaries, we used the base algorithm HITON-PC (Figure S2) with 

Fisher’s Z-test [3,4]. The parameters α and max-k of the algorithm were optimized by 

holdout validation
1
 to achieve maximum predictivity of the phenotypic response variable. 

 To fit classification models of the phenotypic response variable using identified gene 

sets, we used SVM classifiers [5].  

 To estimate predictivity of signatures, we used holdout validation method whereby 2/3 of 

the data was used to identify genes in the signatures and fit the classifier and 1/3 of the 

data was used to estimate classification performance using AUC metric [6,7].  

 To compare predictivity of signatures, we used the nonparametric method of Delong et 

al. [8]. 

 Finally, to run TIE* efficiently we constrained the cardinality of the subset G in step 3 of 

the algorithm, thus trading off completeness for execution speed. 

 

In experiments with simulated data where both the generative model and all the true Markov 

boundaries are known, we used a similar implementation of TIE* with the following two 

differences. First, instead of Fisher’s Z-test, we used G
2
 test that is suitable for the distribution at 

hand. Second, we did not estimate predictivity to verify that a new candidate Markov boundary 

Mnew is a Markov boundary in the original distribution. To establish this, we directly applied the 

lemma described above. This allowed avoiding potential errors in predictivity estimation and 

increase effective sample size (since we did not have to split the data into training and testing 

sets), thus improving overall performance of the algorithm. However, we did not adopt this 

strategy for other experiments where the sample size was typically much smaller and the high-

dimensional conditioning tests used in the above lemma were unreliable. 

 

Classification methods 

 

To build classification models of the phenotype from identified gene sets, we used the support 

vector machine (SVM) algorithm [5] that is known to be the “best of class” method for 

classification of gene expression microarray data [9–11]. The underlying idea of SVM classifiers 

is to calculate a maximal margin hyperplane separating two categories of subjects, e.g., cases and 

controls. Subjects are classified according to the side of the hyperplane they belong to. We used 

the SVM implementation in the libSVM software library [12]. For experiments with artificial data 

where the response variable is multicategorical, we used one-versus-rest SVM classifiers [13]. 
 

  

                                                 
1
 The parameters are optimized over the following values: (α = 0.05, max-k = 1), (α = 0.05, max-k = 2), (α = 0.05, 

max-k = 3), (α = 0.01, max-k = 1), and (α = 0.01, max-k = 2). 
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 Metrics for assessing predictivity 

 

For experiments with real and resimulated gene expression data where the phenotypic response 

variable had two categories, we used area under ROC curve (AUC) metric [6]. For experiments 

with artificial simulated data where the response variable was multicategorical, we used 

weighted accuracy [14]. 
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