
Data generation details 

 

Generation of artificial simulated data  

 

Using the principles from Figure 1 in the main manuscript, a discrete artificial network with 30 

variables (29 genes and a phenotypic response variable T) was constructed such that all Markov 

boundaries were known. Figure below shows the network structure and specifies which genes 

contain the same information about T by the color of highlighting. For example, genes X12, X13, 

and X14 provide exactly the same information about T and thus are interchangeable for prediction 

of T. The parameterization of the network is provided in the table below. The network contains 

72 Markov boundaries of T. Each of these Markov boundaries contains 5 genes: (i) X10, (ii) X5 or 

X9, (iii) X12 or X13 or X14, (iv) X19 or X20 or X21, and (v) X1 or X2 or X3 or X11.  

 

A discrete artificial network with 1,000 variables (999 genes and a phenotypic response variable 

T) was constructed by augmenting the network in the figure below with a total of 970 genes such 

that the resulting network has exactly the same 72 Markov boundaries. Out of 970 genes that 

were added to the prior network, 110 genes had a path to T and 860 genes did not. 

 

Using the logic sampling method [1], we generated 3,750 observations from both networks. We 

used 750 observations for discovery of multiple signatures and the remaining 3,000 for 

validation of predictivity of T. 

 



 

 
 

Figure: Graphical visualization of an artificial network with 30 variables (29 genes and 

phenotypic variable T). Genes that contain exactly the same information about T are 

highlighted with the same color, e.g. genes X12, X13, and X14 provide exactly the same 

information about T and thus are interchangeable for prediction of T. 
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X1: P(X1=0) = 0.25 

      P(X1=1) = 0.25 

      P(X1=2) = 0.25 

      P(X1=3) = 0.25 

X6: P(X6=0|X5=0) = 0.6 

      P(X6=1|X5=0) = 0.2 

      P(X6=2|X5=0) = 0.2 

      P(X6=0|X5=1) = 0.5 

      P(X6=1|X5=1) = 0.25 

      P(X6=2|X5=1) = 0.25 

      P(X6=0|X5=2) = 0.8 

      P(X6=1|X5=2) = 0.1 

      P(X6=2|X5=2) = 0.1 

X11: P(X11=0|X3=0) = 1.0 

       P(X11=0|X3=1) = 1.0 

       P(X11=1|X3=2) = 0.3 

       P(X11=2|X3=2) = 0.7 

       P(X11=3|X3=3) = 1.0 

X2: P(X2=0|X1=0) = 0.8 

      P(X2=1|X1=0) = 0.2 

      P(X2=0|X1=1) = 0.1 

      P(X2=1|X1=1) = 0.9 

      P(X2=2|X1=2) = 1.0 

      P(X2=3|X1=3) = 1.0 

X7: P(X7=1|X5=0) = 0.5 

      P(X7=2|X5=0) = 0.5 

      P(X7=0|X5=1) = 0.8 

      P(X7=1|X5=1) = 0.2 

      P(X7=0|X5=2) = 0.2 

      P(X7=1|X5=2) = 0.3 

      P(X7=2|X5=2) = 0.5 

X12: P(X12=0|T=0) = 1.0 

       P(X12=0|T=1) = 1.0 

       P(X12=0|T=2) = 1.0 

       P(X12=1|T=3) = 0.5 

       P(X12=2|T=3) = 0.5 

 

X3: P(X3=0|X2=0) = 0.3 

      P(X3=1|X2=0) = 0.7 

      P(X3=0|X2=1) = 0.8 

      P(X3=1|X2=1) = 0.2 

      P(X3=2|X2=2) = 1.0 

      P(X3=3|X2=3) = 1.0 

X8: P(X8=0|X5=0) = 0.9 

      P(X8=1|X5=0) = 0.1 

      P(X8=0|X5=1) = 0.7 

      P(X8=1|X5=1) = 0.2 

      P(X8=2|X5=1) = 0.1 

      P(X8=0|X5=2) = 0.6 

      P(X8=1|X5=2) = 0.3 

      P(X8=2|X5=2) = 0.1 

X13: P(X13=0|X12=0) = 1.0 

       P(X13=1|X12=1) = 0.5 

       P(X13=2|X12=1) = 0.5 

       P(X13=1|X12=2) = 0.5 

       P(X13=2|X12=2) = 0.5 

T: P(T=0|X11=0) = 1.0 

     P(T=0|X11=1) = 1.0 

     P(T=0|X11=2) = 1.0 

     P(T=1|X11=3) = 0.3 

     P(T=2|X11=3) = 0.3 

     P(T=3|X11=3) = 0.4 

X9: P(X9=1|X5=0) = 1.0 

      P(X9=2|X5=1) = 1.0 

      P(X9=0|X5=2) = 1.0 

X14: P(X14=0|X13=0) = 1.0 

       P(X14=1|X13=1) = 0.5 

       P(X14=2|X13=1) = 0.5 

       P(X14=1|X13=2) = 0.5 

       P(X14=2|X13=2) = 0.5 

X5: P(X5=1|T=0) = 0.9 

      P(X5=2|T=0) = 0.1 

      P(X5=0|T=1) = 0.8 

      P(X5=1|T=1) = 0.1 

      P(X5=2|T=1) = 0.1 

      P(X5=0|T=2) = 0.1 

      P(X5=1|T=2) = 0.8 

      P(X5=2|T=2) = 0.1 

      P(X5=0|T=3) = 0.1 

      P(X5=1|T=3) = 0.1 

      P(X5=2|T=3) = 0.8 

X10: P(X10=0|T=0) = 0.1 

       P(X10=1|T=0) = 0.8 

       P(X10=2|T=0) = 0.1 

       P(X10=1|T=1) = 0.1 

       P(X10=2|T=1) = 0.9 

       P(X10=0|T=2) = 0.1 

       P(X10=1|T=2) = 0.8 

       P(X10=2|T=2) = 0.1 

       P(X10=0|T=3) = 0.2 

       P(X10=1|T=3) = 0.7 

       P(X10=2|T=3) = 0.1 

X15: P(X15=0|X1=0) = 0.8 

       P(X15=1|X1=0) = 0.1 

       P(X15=2|X1=0) = 0.1 

       P(X15=0|X1=1) = 0.1 

       P(X15=1|X1=1) = 0.8 

       P(X15=2|X1=1) = 0.1 

       P(X15=0|X1=2) = 0.8 

       P(X15=1|X1=2) = 0.1 

       P(X15=2|X1=2) = 0.1 

       P(X15=0|X1=3) = 0.1 

       P(X15=1|X1=3) = 0.1 

       P(X15=2|X1=3) = 0.8 

 

Table (continued on the next page): Parameterization of the network from the above 

figure. Only nonzero probabilities are shown in the table. 



 
 

 
 

 

X16: P(X16=0|X15=0) = 1.0 

       P(X16=0|X15=1) = 1.0 

       P(X16=1|X15=2) = 0.5 

       P(X16=2|X15=2) = 0.5 

X21: P(X21=0|X20=0) = 1.0 

       P(X21=1|X20=1) = 1.0 

       P(X21=2|X20=2) = 1.0 

X26: P(X26=0) = 0.5 

       P(X26=1) = 0.5 

 

X17: P(X17=0|X1=0) = 0.2 

       P(X17=1|X1=0) = 0.6 

       P(X17=2|X1=0) = 0.2 

       P(X17=0|X1=1) = 0.1 

       P(X17=1|X1=1) = 0.3 

       P(X17=2|X1=1) = 0.6 

       P(X17=0|X1=2) = 0.5 

       P(X17=1|X1=2) = 0.1 

       P(X17=2|X1=2) = 0.4 

       P(X17=0|X1=3) = 0.3 

       P(X17=1|X1=3) = 0.5 

       P(X17=2|X1=3) = 0.2 

X22: P(X22=0|X6=0) = 0.2 

       P(X22=1|X6=0) = 0.6 

       P(X22=2|X6=0) = 0.2 

       P(X22=0|X6=1) = 0.1 

       P(X22=1|X6=1) = 0.3 

       P(X22=2|X6=1) = 0.6 

       P(X22=0|X6=2) = 0.5 

       P(X22=1|X6=2) = 0.1 

       P(X22=2|X6=2) = 0.4 

X27: P(X27=0|X26=0) = 0.1 

       P(X27=1|X26=0) = 0.9 

       P(X27=0|X26=1) = 0.3 

       P(X27=1|X26=1) = 0.7 

X18: P(X18=0) = 0.25 

       P(X18=1) = 0.25 

       P(X18=2) = 0.25 

       P(X18=3) = 0.25 

 X23: P(X23=0|X7=0) = 0.3 

        P(X23=1|X7=0) = 0.2 

        P(X23=2|X7=0) = 0.5 

        P(X23=0|X7=1) = 0.8 

        P(X23=1|X7=1) = 0.1 

        P(X23=2|X7=1) = 0.1 

        P(X23=0|X7=2) = 0.6 

        P(X23=1|X7=2) = 0.2 

        P(X23=2|X7=2) = 0.2 

X28: P(X28=0|X26=0) = 0.4 

       P(X28=1|X26=0) = 0.6 

       P(X28=0|X26=1) = 0.8 

       P(X28=1|X26=1) = 0.2 

X19: P(X19=1|T=0) = 0.1 

       P(X19=2|T=0) = 0.9 

       P(X19=0|T=1) = 0.1 

       P(X19=2|T=1) = 0.9 

       P(X19=0|T=2) = 0.8 

       P(X19=1|T=2) = 0.1 

       P(X19=2|T=2) = 0.1 

       P(X19=0|T=3) = 0.1 

       P(X19=1|T=3) = 0.8 

       P(X19=2|T=3) = 0.1 

X24: P(X24=0|X8=0) = 0.5 

       P(X24=1|X8=0) = 0.1 

       P(X24=2|X8=0) = 0.4 

       P(X24=0|X8=1) = 0.6 

       P(X24=1|X8=1) = 0.3 

       P(X24=2|X8=1) = 0.1 

       P(X24=0|X8=2) = 0.7 

       P(X24=1|X8=2) = 0.1 

       P(X24=2|X8=2) = 0.2 

X29: P(X29=0) = 0.33 

       P(X29=1) = 0.33 

       P(X29=2) = 0.33 

 

X20: P(X20=1|X19=0) = 1.0 

       P(X20=2|X19=1) = 1.0 

       P(X20=0|X19=2) = 1.0 

X25: P(X25=0|X9=0) = 0.8 

       P(X25=1|X9=0) = 0.1 

       P(X25=2|X9=0) = 0.1 

       P(X25=0|X9=1) = 0.6 

       P(X25=1|X9=1) = 0.2 

       P(X25=2|X9=1) = 0.2 

       P(X25=0|X9=2) = 0.5 

       P(X25=1|X9=2) = 0.3 

       P(X25=2|X9=2) = 0.2 

X30: P(X30=0|X16=0) = 1.0 

       P(X30=1|X16=1) = 0.5 

       P(X30=2|X16=1) = 0.5 

       P(X30=1|X16=2) = 0.5 

       P(X30=2|X16=2) = 0.5 

 

Table (continued from the previous page) 
 



 Generation of resimulated microarray gene expression data 

 

The ability to produce realistic simulated data is a critical component of evaluating multiple 

signature identification algorithms in a systematic manner. In order to obtain large, realistic 

networks and data capturing the characteristics of human gene expression data, we applied a 

High-Fidelity Data Resimulation technique that generates synthetic data from a causal process 

that is induced from the real data and guarantees that the synthetic data is indistinguishable from 

the real data. Below we briefly outline the method and its application, more details can be found 

in [2]. 
 

The High-Fidelity Data Resimulation technique involves 6 steps
1
. First, a gene network is 

reverse-engineered from a real gene expression dataset. This step is performed by (a) obtaining 

an undirected graph by running HITON-PC algorithm for each gene and phenotype, (b) orienting 

the graph using greedy search-and-score learning with Bach’s metric [3], and (c) learning 

densities of each gene and phenotype using SVM regression [4] and classification [5], 
respectively. Second, synthetic data is generated from the above network using logic sampling 

[1]. Third, a power-law relationship between genes and their connectivity is examined in the 

simulated network [6,7]. Fourth, a powerful classifier is applied to distinguish real from 

simulated data. The harder it is to perform this classification task, the better is the quality of 

resimulation. Fifth, Fisher’s Z-test is used to ensure that statistical dependencies and 

independencies true in the real data are preserved in simulated data and vice-versa. Sixth, the 

existence of multiple maximally predictive and non-reducible signatures in simulated data is 

empirically demonstrated. 

 

The above process was applied to 1,000 randomly selected variables (999 oligonucleotide gene 

probes and a phenotype variable) from the 12,600 gene probes in the Affymetrix U95A array 

lung cancer gene expression data of [8]. The phenotype variable denotes whether a subject has 

adenocarcinoma or squamous cell carcinoma. Once the network was reverse-engineered (step 1), 

a set of 30,000 samples was generated from this network (step 2). The synthetic network and 

data passed validation steps 3-6. More details are given in [2]. 
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