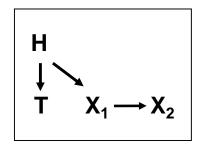
An example of signature multiplicity due to hidden variables

Consider a simplified pathway structure and parameterization shown in the figure below. It involves 3 genes (H, X_1 , X_2) and a phenotypic response variable T. In the distribution with all variables observed, there is only one Markov boundary of T, which is {H}. Now consider that gene H is not observed in the data (i.e., it is hidden). Because H is not observed and genes X_1 and X_2 contain exactly the same information about T, two Markov boundaries { X_1 } and { X_2 } can be identified in this distribution. Notice that all these Markov boundaries have reproducible but suboptimal (relative to the original distribution with H observed) predictivity of the response variable T.



$P(T \mid H)$	H = 0	H = 1
T = 0	0.9	0.2
T = 1	0.1	0.8

$P(X_1 \mid H)$	H = 0	H = 1
$X_1 = 0$	0.9	0.1
$X_{I} = 1$	0.1	0.9

$\mathbf{P}(X_2 \mid X_l)$	$X_1 = 0$	$X_{1} = 1$
$X_2 = 0$	1.0	0.0
$X_2 = 1$	0.0	1.0

Figure: Example pathway structure with 3 gene variables (H, X_1, X_2) and phenotypic response variable *T*. The structure is represented by a Bayesian network. The network parameterization is defined below the graph. All variables take values $\{0,1\}$.