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Supporting Material

Bilinear Model for Muscle Force

In the Materials and Methods section, we assumed that for the oscillatory motions considered, muscle me-
chanical impedance can be approximated by a bilinear model. The bilinear model described by Equation
(3), is repeated here:

Fi = Ai +Bixi + Ci�i +Dixi�i i ∈ {1, 2}

How did we arrive at this approximation, and what is the accuracy of this model? Here we provide a
brief summary based on [1].

To arrive at a muscle impedance model, we conducted measurements to characterize the mechanical
impedance of the Plantarus longus muscles, similar to the ones used in our investigation (but not the
particular muscles used to test the hypothesis because of the limited fatigue life of the muscles). We
used the same materials and methods described in the main text. This includes muscle type, harvesting
procedure, and the use of the servo-mechanical muscle testing apparatus. There were two differences,
however, due to the fact that measurements focused on uncovering the dependence of muscle force on
mechanical state, rather than estimating workloop energetics. First, sinusoidal motions were imposed
on the muscles, and electrical stimulation was delivered at predetermined points in time. Thus, the
experimental setup was akin to Figure 1A in the main text. The electrical stimulus points were not
synchronized with the oscillations, but rather were chosen to span various displacement-velocity combi-
nations along the sinusoidal trajectory of the muscle. Thus, the timing of electrical stimulation trigger
points was uncorrelated with the imposed motion. Sample oscillatory motions are illustrated in Figure
S1A. The second difference is that the electrical stimulus parameters were fixed, and were not dependent
on prior optimal control computations. The electrical stimulus parameters were set to at duration of 50
msec, consisting of 10 spikes at 200 Hz, with a spike duration of 100 micro-seconds.

To explore the relative importance of various impedance factors, we used the acquired data to fit a
general impedance function in the form of:

F = A+Bx+ C�+Dx�+ Ev +Gv�+Hxv + Ixv� (S1)

While additional higher-order model terms could have been added, this general model can capture many
facets of the impedance characteristics of the muscle, including passive stiffness (Bx), activation depen-
dent stiffness (Dx�), passive damping (Ev), activation dependent damping (Gv�), visco-elasticity (Hxv)
and activation dependent visco-elasticity (Ixv�).

This generalized model was fit to data from 7 different muscles, with amplitudes of motion ranging
between 0.5 and 2.0 mm, and frequencies of oscillation ranging between 1 and 7 Hz. We found that this
generalized model (Equation (S1)) captured 74.2%±5.5% of the temporal variance in the force generated.

To further simplify this model, and to assess the importance of each of those relative terms, we
performed linear regression to fit the relationship between the observed force and the individual regressors
(x, ẋ and �), and found that the dominant terms characterizing muscle response were the bilinear terms,
namely Bx, C� and Dx�. Figure S1C shows the contributions of each of the individual regressors to the
variance of the output force. The results show that the bilinear approximation F ≈ A+Bx+C�+Dx�
captured 73.6% ± 5.7% of the total variance in muscle force, which is a minor degradation in accuracy
compared to the model including the damping and visco-elastic terms. The parameters were normalized
by the value of the C coefficient to account for the differences in muscle size. The normalized parameters
used in the optimization were: A = 0, B = 0.016, C = 1, and D = 0.727.

Fitting the parameters required knowledge of the activation �. While estimates of � from Equations
(1) and (2) are possible, errors in the activation dynamics model may contribute to errors in the ex-
perimental identification of the impedance model. In order to minimize this effect, for each muscle we
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used a normalized profile of its isometric contraction as a representation of the activation dynamics. In
doing so, we made the assumption that the activation dynamics did not vary with the length or velocity
of the muscle. However, the normalized isometric force profile was used to determine the parameters of
Equations (1) and (2). The parameters of the activation model used were p�i

= −62, p�i
= −62 and

pui
= 3947, which results in a step input gain of unity, and a twitch rise and fall time of 125 msec.
We do not necessarily advocate that this model be used as a general muscle model since it has

been tested only in the context of oscillatory motions with bursting contractions. However, in those
particular conditions, it provided a reasonably descriptive approximation to the muscle force that is also
mathematically tractable enough to be used for the optimal control formulation. What is evident from
the model, however, is that the dependence of muscle force on velocity was found to be minimal. Whether
this is a particular feature of that muscle, or whether it is a resultant effect of this particular experimental
paradigm can be a topic of further research.

Computation of Optimal Control

The solution of the 2-point boundary value problem (Equation (7)) is non-trivial, primarily due to the
discontinuous nature of the control. Even with the addition of the quadratic term, the hard bounds on
the control lead to the failure of many of the standard solution algorithms. We solve this issue via the
use of penalty methods. Penalty methods simplify the solution of a constrained optimization problem
by converting it to a sequence of unconstrained optimization problems [2]. This sequence of problems is
solved, with an increasing penalty function added for violating the constraints. In the limit, as the value
of the penalty weight increases, the solutions will converge to the optimal solution of the constrained
problem.

We applied penalty methods to the optimal control problem in the following manner. We would like
to make sure that the control is limited to the admissible bounds, i.e. ui ≤ umax and ui ≥ umin for all
t. Therefore the penalties are imposed if the control ui violates those bounds. We also use quadratic
penalties in the form of

p(ui) =

⎧⎨⎩ (ui − umax)2 if ui > umax
0 if ui is feasible
(umin − ui)2 if ui < umin

Therefore, the optimal control problem takes the following form:

J∗ = min
u

∫ T

0

−Fnetẋ+ ckp(u− umax) + ckp(umin − u)dt

s.t. ẋ = f(x,u)

x(0) = x(T )

where � ≥ 0

ck ≥ 0

p(y) =

{
0 for y < 0
y2 for y ≥ 0

Recall that the optimal control was a bang-bang control strategy, implying that depending on the
sign of the switching function, it is optimal to push the control signal as far out as possible. With the
penalty methods, a softened bound becomes optimal to push the control signal as far out until the penalty
dominates.
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Consider the case if the resulting optimal control is between umin and umax. Then p(ui) = 0.
Therefore,

u∗1 = arg min
u1

{
�2pu1

+ �uTu
}

⇒ u∗1 =
−�2pu1

2�

u∗2 = arg min
u2

{
�4pu2

+ �uTu
}

⇒ u∗2 =
−�4pu2

2�

If
−�2pu1

2� > umax or
−�4pu2

2� > umax, then p(ui) = (ui − umax)2. Therefore,

u∗1 = arg min
u1

{
�2pu1

+ �uTu + ck(u1 − umax)
}

⇒ u∗1 =
2ckumax − �2pu1

2(� + ck)

u∗2 = arg min
u2

{
�4pu2

+ �uTu + ck(u2 − umax)
}

⇒ u∗2 =
2ckumax − �4pu2

2(� + ck)

If
−�2pu1

2� < umin or
−�4pu2

2� < umin, then p(ui) = (umin − ui)2. Therefore,

u∗1 = arg min
u1

{
�2pu1 + uTu�+ ck(umin − u1)2

}
⇒ u∗1 =

2ckumin − �2pu1

2(� + ck)

u∗2 = arg min
u2

{
�4pu2

+ uTu�+ ck(umin − u2)2
}

⇒ u∗2 =
2ckumin − �4pu2

2(� + ck)

In summary:

u∗1 =

⎧⎨⎩

−�2pu1

2�
if umin <

−�2pu1

2�
< umax

2ckumax − �2pu1

2(� + ck)
if
−�2pu1

2�
> umax

2ckumin − �2pu1

2(� + ck)
if
−�2pu1

2�
< umin
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u∗2 =

⎧⎨⎩

−�4pu2

2�
if umin <

−�4pu2

2�
< umax

2ckumax − �4pu2

2(� + ck)
if
−�4pu2

2�
> umax

2ckumin − �4pu2

2(� + ck)
if
−�4pu2

2�
< umin

We solve this softened version of the problem numerically. We start with low values for ck, and
increase it until ui(t) violates the bounds constraints to within acceptable errors.

Solving the 2-point boundary value problem The 2-point boundary value problem is solved using
the Matlab solver bvp4c for increasing values of ck. This solver descretizes the solution space to via an
adaptive mesh, and fits piecewise cubic functions to each segment. The residuals in the interface points
have to match the differential equation, and the boundary conditions. A description of the algorithm is
found in [3].
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