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1.        Overview  

 
This document describes in detail the main XML elements which are needed at the various 
Levels for describing specific neuronal entities in the NeuroML neuronal model description 
language. The elements are defined in XSD (XML Stylesheet Definition) Schema files. The W3C 
standard for XSD files is here: http://www.w3.org/XML/Schema, and a very good introduction to 
XML Schemas can be found here: http://www.w3schools.com/schema.  
 

Note: This document refers to v1.8.1 of the NeuroML specifications. It is intended that the 
document will also be updated as the specifications evolve (while the main NeuroML 
paper remains the primary description of the scope, goals and overall direction of the 
project). Check at http://www.NeuroML.org/specifications for the latest version of this 
detailed description. 

 
The following links will always reference the latest release of the specifications: 
 
MorphML:  http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=MorphML 
ChannelML:  http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=ChannelML 
NetworkML:  http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=NetworkML 
 
Note also that for the very latest information on a particular element, the most recent version of 
the XSD Schema documents from the Subversion repository should be consulted. See 
https://sourceforge.net/svn/?group_id=136437. 
 
The language is divided into 3 Levels. We will discuss these individually in detail. The 
corresponding XSD files for the Levels are as follows (the X is replaced by the version of the file, 
e.g. Metadata_v1.8.1.xsd): 
 
 
 
 
 
 

http://www.w3.org/XML/Schema
http://www.w3schools.com/schema
http://www.neuroml.org/specifications
http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=MorphML
http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=ChannelML
http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=NetworkML
https://sourceforge.net/svn/?group_id=136437
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Level Filename Purpose Root XML element for valid files and 
default namespace 

Level 1 Metadata_vX.xsd Defines Metadata for use 
at all Levels 

- No standalone metadata files - 

http://morphml.org/metadata/schema 

MorphML_vX.xsd Defines MorphML 
standalone morphology 
files, and histological 
features 

<morphml> 

http://morphml.org/morphml/schema 

NeuroML_Level1_vX.xsd Links MorphML and 
Metadata for NeuroML 
Level 1  

<neuroml> 

http://morphml.org/neuroml/schema 

Level 2 ChannelML_vX.xsd Defines channel and 
synaptic mechanisms 

<channelml> 
http://morphml.org/channelml/schema 

Biophysics_vX.xsd Defines biophysical 
properties of cells 

- No standalone biophysics files - 

http://morphml.org/biophysics/schema 

NeuroML_Level2_vX.xsd Defines Level 2 cells and 
channels 

<neuroml>  

http://morphml.org/neuroml/schema 

Level 3 NetworkML_vX.xsd Defines positions, 
connections and electrical 
inputs for networks of cells 

<networkml>  

http://morphml.org/networkml/schema 

NeuroML_Level3_vX.xsd Defines Level 3 cells and 
networks of those cells 

<neuroml>  

http://morphml.org/neuroml/schema 

 
Table 1: NeuroML Schema files, root elements and namespaces 

 

2.        Namespaces and root elements 

 
Namespaces are used in XML documents to allow the safe combination of elements from 
different sources in a single document. A general overview of namespaces in XML can be found 
here: http://www.w3schools.com/xml/xml_namespaces.asp.  
 
The root element of an XML file will normally define the default namespace for the whole file, 
e.g. <channelml xmlns="http://morphml.org/channelml/schema" … > indicates that the 
elements in the file are from the ChannelML namespace by default. Elements from other 
namespaces can be included if the namespace qualifier is defined (at the root or any other 
element): xmlns:meta="http://morphml.org/metadata/schema" allows addition of elements in 
the metadata namespace:  <meta:notes>…</ meta:notes>. 
 
See http://www.neuroml.org/NeuroMLValidator/Samples.jsp for examples of NeuroML files at 
each Level. There are also a number of examples of complete NeuroML files presented in 
Section 10.  
 
Note that morphml.org is used in the namespaces for historical reasons (since changing the 
namespace would make older files invalid), and will be replaced by neuroml.org in future 
versions of NeuroML. 
 

3.        Note on formatting 

 
In this document words in bold will normally reference elements as they appear in NeuroML 
files, e.g. segment, channel_type. When the names start with a capital letter, e.g. 
ChannelType, this refers to the name used in the XSD Schema files for defining the type (e.g. 
simple type, complex type, etc.). 
 
 
 
 

http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=Metadata&viewFormat=XML
http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=MorphML&viewFormat=XML
http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=Level1&viewFormat=XML
http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=ChannelML&viewFormat=XML
http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=ChannelML&viewFormat=XML
http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=Level2&viewFormat=XML
http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=NetworkML&viewFormat=XML
http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=Level3&viewFormat=XML
http://www.w3schools.com/xml/xml_namespaces.asp
http://www.neuroml.org/NeuroMLValidator/Samples.jsp
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 XSD Schema file: 
 

 
<xs:element name="channelml" type="ChannelML"> 

       ... 

</xs:element> 

 

<xs:complexType name="ChannelML"> 

       ... 

    <xs:element name="channel_type" type="ChannelType" minOccurs="0" maxOccurs="unbounded"> 

       ... 

</xs:complexType> 

 

<xs:complexType name="ChannelType"> 

       ...  

</xs:complexType> 

 

 
 NeuroML file: 
 

 
<channelml ... > 

       ...  

       <channel_type ... > 

       ...  

       </channel_type> 

 

</channelml> 

 

 
 
Attributes which are required are in red bold text, attributes which are optional are in orange 
bold text and values of attributes (most of which are defined as an enumeration of the only 
values permitted for the attribute) are in italic text. These conventions are used also in Figures 4, 
5 and 6 in the main NeuroML paper. 
 

4.        Level 1: Metadata 

 
This part of the specification defines a number of common elements which can be used in files 
at any of the Levels of NeuroML. These include defining useful simple types such as 
NonNegativeDouble and Point3D (see below for definitions) but also specifies the structured 
data associated with a NeuroML file which can be used to trace the source of the model data, 
authors, references, etc.  
 

Group: metadata 
 
This represents not a single XML element, but a group of associated elements (notes, 
properties, annotation, group) which can together be specified as subelements of other 
NeuroML element. Each of these elements is optional, and so cell and channel_type (and any 
of the other elements which have metadata as a subgroup) can use one or more of these as 
appropriate. 
 

Element: <notes>  
 
This element allows a simple string of text to be entered as a comment on a cell, channel or 
network description file, or at many of the subelements of such files. It is the minimum comment 
which should be added, but more structured data, such as publication references should be 
placed in the appropriate element. 
 

Element: <properties>  
 
This consists of a list of <property> elements, each of which has required tag and value 
attributes. This can be used for adding data with some structure, which isn’t yet part of the 
specification, e.g. adding a URL referencing an entry in a lab’s own database of morphological 
reconstructions or electrophysiological recordings. 

http://www.neuroml.org/NeuroMLValidator/ViewNeuroMLFile.jsp?localFile=NeuroMLFiles/Schemata/v1.8.0/Level2/ChannelML_v1.8.0.xsd#ChannelML
http://www.neuroml.org/NeuroMLValidator/ViewNeuroMLFile.jsp?localFile=NeuroMLFiles/Schemata/v1.8.0/Level2/ChannelML_v1.8.0.xsd#ChannelType
http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=ChannelML#channel_type
http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=ChannelML#channel_type
http://www.neuroml.org/NeuroMLValidator/Latest.jsp?spec=ChannelML#channel_type
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Element: <annotation>  
 
The type of this element is any, and it can be used to add any set of XML elements to a 
NeuroML file and for the file still to remain valid. One possible use of this is if an application 
wants to store metadata relevant only for that application within a NeuroML file, e.g. a graphical 
tool for constructing channel mechanisms might store information on the shape and screen 
layout of its depiction of the channel elements within a ChannelML file. This approach has been 
taken in a number of graphical SBML (Hucka et al., 2003) editors (e.g. CellDesigner) to separate 
out the “pure” SBML content from the tool’s proprietary graphical information. 
 

Element: <group>  
 
This element is intended to allow grouping of elements within a file, e.g. groups of cables, and 
just contains a string naming the group. 
 

Group: referenceData 
 
This is another grouped set of elements (authorList, publication, neuronDBref, modelDBref, 
neuroMorphoRef), all of which are optional, but which can be used to provide valuable 
information on the authors of NeuroML files, associated publications and databases in which the 
original and/or latest version of the model elements can be found.  
 

Element: <authorList> 
 

This contains two subelements, modelAuthor and modelTranslator, and as the names 
suggest, it allows reference to the creators of the original model (normally in a simulator’s native 
scripting language) and the persons who translated the model to NeuroML. Each of these 
elements is of type Person, an element which includes the subelements name (required), 
institution, email, comment (all optional).  
 

 Element: <publication> 
 
An element to include information on publications related to the model. The fullTitle element 
should be used for a readable reference to the publication including at least authors, title, year 
and journal name (which can be used in the HTML view of the file), while the pubmedRef 
element should contain a URL to the document on PubMed. There is also an optional comment 
element to give an explanation on how the publication relates to the model, should it not be 
made clear elsewhere. 
 

 Element: <neuronDBref>, <modelDBref>, <neuroMorphoRef> 
 
These elements allow a NeuroML file to contain references to entries on cellular information in 
NeuronDB (http://senselab.med.yale.edu/neurondb), models archived in ModelDB 
(http://senselab.med.yale.edu/modeldb) or a neuronal reconstruction in the NeuroMorpho.org 
database, respectively. All have subelements allowing a name/reference for the element in the 
respective repositories (modelName), a reference to the relevant web resource (uri), and an 
optional comment element to give an explanation on how the entry relates to this model. 
 

 Element: <status> 
 
This is an important element which can be used to record the current status of the model 
element. It has a required attribute value, which can have values: stable, in_progress or 
known_issues. It can also have optional subelements: comment, for a general comment on the 
current status; issue, to highlight a known issue with the current model which may mean care 
should be taken before reusing it and contributor, which is a Person element, giving details on 
who created the status report. This element is intended to replace the often cryptic comments 
left in files by those who have used them over the years, and help future users with more time or 
experience to solve any problems with the file. 
 

http://senselab.med.yale.edu/neurondb
http://senselab.med.yale.edu/modeldb
http://neuromorpho.org/
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An example of a NeuroML file containing a number of items of metadata is available here: 
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml.  

This information can more easily be read in the HTML view of the file: 
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml&map=HTML. 

 
 

 Simple Types 
 
A number of Simple types are defined for use at all Levels. Those not discussed already are: 
 

LengthUnits    The units of the x, y, z coordinates, etc. appearing in the file, usually. 
Allowed values: micrometer, millimeter, meter. Note, micron is still 
permitted, but micrometer is preferred.  

NonNegativeDouble    A double precision floating point value, greater than or equal to zero. 

Percentage    A double precision floating point value between 0 and 100 inclusive. 

PositiveDouble    A double precision floating point value, greater than zero. 

SegmentIdInCell    Id of an individual segment in a cell (integer valued, 0 or greater). 

Units    Unit system to use for all values for the element (and all children) for 
which it is an attribute. Allowed values: SI Units, Physiological Units 
(milliseconds, millivolts, centimeters, etc). See below for a table of 
physical quantities in these unit systems. 

VolumeUnits    Units of volume. Allowed values: cubic_millimeter, millilitre, litre. 

YesNo    Allowed string values: yes or no. 

ZeroToOne       A double precision floating point value between 0 and 1 inclusive. 

 
Table 2: Simple types in Metadata 

 
The table below lists a number of physical quantities in the two unit systems supported by 
NeuroML: SI Units, and Physiological Units. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 3: Units of various quantities in SI and physiological units 
 

 
 
 

 SI Units Physiological Units 

Time                s       ms          

Voltage V        mV      

Length                  m    cm     

Current  A         μA   

Specific capacitance F/m
2
   μF/cm

2
     

Resistance (e.g. 
membrane resistance)                 

ohm          Kohm            

Conductance  S  mS  

Conductance density  S/m
2
  mS/cm

2
  

Specific Axial Resistance  ohm m        Kohm cm         

Concentration         mol/m
3
       mol/cm

3
          

http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml&map=HTML
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 Complex Types  
 
The following are some complex types which have not been discussed above: 
 

GroupDetail   Can be used to give a string description and a list of properties of 
groups which are used in multiple locations in a file. 

Manifold    A surface defined by a set of points. Extension of Points. 

NonSpatialGrid    Specifies a grid of up to 3 dimensions, without any explicit 3D 
location information. 

Point    A 3D point with optional diameter. 

Point3D    A 3D point with no diameter. 

Points    A list of Point elements. 

Polygon    A closed structure represented by a list of Point elements where 
the first point connects with the last point. 

Polyhedron    A 3D surface which can be used to represent a cell body or other 
histological structure. Consists of a list of Polygon elements. 

PropertyDetail   Can be used to give a description of a property which is used in 
multiple locations in a file. 

RectangularBox    A Rectangular Box specified by a corner point and a width, height 
and depth. Can be used for positioning cell populations in 3D. 

Sphere A spherical structure such as a cell body or other histological 
feature. 

 

Table 4: Complex types in Metadata 
 

5.        Level 1: Cell descriptions (MorphML) 

 
A discussion on the structure of MorphML and the mapping of its elements to morphology 
formats used in Neurolucida, NEURON (Carnevale and Hines, 2006), GENESIS (Bower and 
Beeman, 1997), etc. is contained in (Crook et al., 2007).  
 
Descriptions of cellular structures are at the heart of NeuroML. Level 1 focuses on the 
anatomical details of individual cells, as opposed to the electrophysiological properties or 
synaptic connectivity. Cells in MorphML are not only intended for use in multicompartmental 
neuronal modeling, and the format can be used by a range of applications which handle 
neuronal morphology data including those for visualization, reconstruction of cells from images, 
or generation of realistic cellular structures.  
 
As mentioned, a Level 1 cell description could have as root element morphml or neuroml. Both 
morphml and neuroml elements have the required attribute length_units, which is normally set 
to micrometer, and this sets the units for the x, y, z positions and radii of the segments.  
 
See main NeuroML paper Figure 4 for an overview of the elements needed for Levels 1-3 cells. 
 

 Element: <cells> 
 
This element contains a set of cell elements. As is the case for channels and synapses, it is 
good practice to separate out individual cells into one file each, as is generally the case for well 
written and modularized models implemented in NEURON or GENESIS for example.  
 

 Element: <cell> 
 
The required name attribute is used to specify a unique string identifier for this cell. An optional 
status element can be added giving details of the model's current condition. The cell element 
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can have any of the elements in the metadata and referencedata groups as subelements, and 
the notes element for giving a brief description of the cell should be considered as a minimum. 
The permitted subelements are: segments, cables, cellBody, spines, freePoints, of which 
only segments is required. 
 

An example of a cell in MorphML containing the segments and cables elements is 
available online here: http://neuroml.org/view.php?file=MorphML/CablesIncluded.xml. A 
mapping of this cell to a NEURON cell template is here: 
http://neuroml.org/view.php?file=MorphML/CablesIncluded.xml&map=NEURON  and a 
GENESIS readcell file for creating the equivalent set of compartments is here: 
http://neuroml.org/view.php?file=MorphML/CablesIncluded.xml&map=GENESIS.  

A example of a single segment/cable cell is shown in Section 10.1. 

 

 Element: <segments> 
 
The segments element contains the set of one or more segment elements.  
 

 Element: <segment> 
 
The segment element represents the fundamental building block of complex neuronal 
morphologies (e.g. the piece between two points in a digital reconstruction, or a compartment in 
a compartmental simulator like GENESIS). Each segment in a cell will have a unique 
nonnegative integer id, a parent attribute for the segment it is electrically connected to (optional 
attribute, but only left out in the case of the root segment), an optional string attribute name, and 
an optional reference to the id of the cable of which it is part.  
The segment elements can have subelements proximal and distal, representing the closest 
and furthest points respectively from the soma or the segment which represents the root of the 
tree (i.e. has no parent). Each has attributes x, y, z, diameter to specify the 3D location and the 
diameter of the endpoints (the segment does not have to be cylindrical). The proximal element 
is optional and its absence indicates that the proximal point of the segment should be taken from 
the parent segment. If the 3D locations of the proximal and distal points are equal, the 
segment can be assumed to be spherical. The surface area of cylindrical segments (e.g. for use 
at Level 2 when calculating total conductance from a conductance density) is calculated from the 
curved surface only (a spherical segment where proximal = distal would be calculated as the 
surface of the sphere). A morphology file specifying only segments can be valid, however the 
cables element would normally be present too if the neurites are to be grouped into soma, 
basal/apical dendrites, etc.  
 

 Element: <cables> 
 
The cables element contains the set of one or more cable elements.  
 

 Element: <cable> 
 
A cable represents an unbranched section of a cell morphology, e.g. a dendritic section or the 
soma. While cables can be used at subsequent Levels to define the electrical properties of cells, 
at Level 1 they can best be thought of as a convenient way to create sets of connected 
segments for the purposes of defining interesting groups, e.g. dendrites, axons. One or more 
segment elements will go to create a cable, so defining the 3D path of the cable. The cable 
concept is roughly equivalent to the section object in NEURON (Crook et al., 2007). As the cable 
is unbranched, the segments which form this cable should only have distal points specified 
(apart possibly from the first segment), and should have the expected parent child relationships 
for such a linked set. The unique nonnegative integer attribute id is required, and a string 
attribute name is optional. A parent attribute for the parent cable is optional, but this is 
superfluous, as the parent cable can be worked out from the segments (this may be removed in 
future versions). An optional attribute fract_along_parent can be specified when the cable is 
electrically connected to a point which is not at the distal point of the parent cable. More details 

http://neuroml.org/view.php?file=MorphML/CablesIncluded.xml
http://neuroml.org/view.php?file=MorphML/CablesIncluded.xml&map=NEURON
http://neuroml.org/view.php?file=MorphML/CablesIncluded.xml&map=GENESIS


8 

 

on this element and the mapping of segments/cables to other formats can be found in (Crook et 
al., 2007).  
 
Sets of cable elements can be related and this can be specified by including a group 
subelement in the cable. Apart from allowing cables to be grouped anatomically (apical or basal 
dendrites, etc.) this facilitates applying conductances and biophysical properties etc. at higher 
Levels. neuroConstruct (http://www.neuroConstruct.org, (Gleeson et al., 2007)) uses the group 
names: soma_group, dendrite_group and axon_group to distinguish the main types of neuronal 
cables, a cable belonging to only one of these groups, but this is not part of the formal 
specification at present. Note: an alternative way to define groups of cables is to use the 
cablegroup element. 
 

 Element: <cablegroup> 
 
While groups of cables can be defined by listing within a cable element the groups relevant for 
that cable, another option is to first list all the cable elements in cables (defining the id and any 
properties of the cable) and afterwards define a number of cablegroup elements, each with a 
required attribute name, and each containing a list of cable subelements with an attribute id 
referring back to the original cable. This second option for defining cables is the more natural 
way to define such groupings in some applications (such as NEURON). A parsing application 
should support both options and would normally map the grouping to its own preferred format on 
import of a MorphML file. This freedom of different ways to define groups of segments may be 
limited in future versions.  
 

An example showing the cablegroup element in a cell exported from NEURON is 
available here: http://neuroml.org/view.php?file=ChannelML/PyramidalCell.xml.  

 
There is an optional subelement inhomogeneous_param which can be included here to define 
a parameterization over the cable group. 
 

 Element: <inhomogeneous_param> 
 
This element can be used to define a parameter which varies over a specific cable group (e.g. 
the path length from the soma over the dendrites). This can be used by other elements for a 
quantity which varies as a function of this parameter (e.g. channel density which varies as a 
function of this path length, see variable_parameter in Section 6). The name attribute gives a 
unique reference to this parameterization, and the variable attribute names the variable (e.g. p) 
to be used in subsequent expressions involving this parameter. A required subelement is 
metric, which can contain string with values: Path Length from root, 3D radial position or 3D 
path length from line. Two optional elements are proximal (if present the value of the parameter 
is translated to its attribute translationStart), and distal (if present, the parameter is normalised 
so that it has the value normalizationEnd at the distal point). 
 

An example showing the usage of the inhomogeneous_value and variable_parameter 
elements in a cell with non uniform electrical properties is available here: 
http://neuroml.org/view.php?file=ChannelML/InhomogeneousBiophys.xml.  

 

 Element: <cellBody> 
 
This is used for a detailed anatomical representation of the soma. It consists of a Polygon, 
Polyhedron or Sphere. This element is not normally used in cells which will be part of a 
simulation of cable properties. A representation of the soma in segment elements should be 
used to allow use of the cell in neuronal simulations.  
 

 Element: <spines> 
 
Spines on dendritic segments can be specified with this element. It is based on the segment 
element with proximal and distal points, but also has optional length, volume and shape 

http://neuroml.org/view.php?file=ChannelML/PyramidalCell.xml
http://neuroml.org/view.php?file=ChannelML/InhomogeneousBiophys.xml
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elements. Note normally spines are not present in morphological reconstructions, and instead a 
spine correction factor is applied to the membrane properties. If spines are to be explicitly 
included in a compartmental simulation, it may be better to use a normal segment element and 
include the spines in their own group, for maximum compatibility with current simulators.  
 

 Element: <freePoints> 
 
This element (which may be associated with a particular cell element or be a subelement of 
features under morphml) contains a list of elements of type Point which identifies interesting 
features. It can be present in a file which has been created from a morphological reconstruction, 
but the data would not normally be used directly in neuronal simulations involving cells. These 
points could form the basis of the end points in segment elements in a subsequent cleaned up 
version of the reconstruction. 
 

 Element: <features> 
 
This can be a subelement of a morphml element and can contain a number of items which have 
been recorded in a neuronal reconstruction, but not be associated with a specific cell. The 
subelements here can include path and freePoints, both of which can be used for sets of 
connected points (path elements can be linked), manifold, polygon, polyhedron and sphere 
for interesting geometrical features. These elements would not normally be used directly in 
neuronal simulations, but could form the basis, e.g. of the end points in segment elements in a 
subsequently cleaned up version of the reconstruction. 
 
 

6.        Level 2: Cell descriptions (MorphML & Biophysics) 

 
A key extension of the Level 1 description of cells is the specification of the passive and active 
electrophysiological properties of the cell, which can be used in simulations of the cell's electrical 
behavior. Addition of the element biophysics makes the cell Level 2 compliant (see Figure 4 in 
the main NeuroML paper). Note: an application which is only interested in the anatomical 
aspects of a cell (e.g. a visualization package) could potentially load Level 2 files also, and just 
ignore the biophysics element. 
 
The addition of details of the passive electrical properties of the cell and locations of voltage 
dependent conductances enable various strategies for creating simulations of the electrical 
activity of the cell. The cable modeling approach of NEURON and the compartmental modeling 
of GENESIS/MOOSE are just two ways the data in a NeuroML Level 2 cell could be used in a 
simulation. While the current version of NeuroML is heavily influenced by these simulators, other 
simulators can use the data contained in these elements in a manner particular to them, e.g. 
PSICS calculates the locations of individual ion channels on the cell membrane, divides the cell 
up into a number of compartments (based on a maximum structural discretization, not 
constrained by cables/branch points) and simulates these.  
 

A good introduction to the cable theory of dendrites is contained in chapter 2 of (Koch and 
Segev, 1998), and chapter 3 gives a background on how such structures might be 
represented by compartmental models. Chapter 5 of the GENESIS book (Bower and 
Beeman, 1997) also gives an introduction to cable modeling and how these can be 
represented as compartments in that simulator (the chapters of that book are available at 
http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf). 

NEURON's use of the section object for cable modeling is explained in chapter 5 of the 
NEURON Book (Carnevale and Hines, 2006). 

The PSICS simulator's handling of detailed neuronal morphologies is explained here: 
http://www.psics.org/formats/morphology.html and its handling of cellular electrical 
properties is outlined here: http://www.psics.org/formats/properties.html. 

 

http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf
http://www.psics.org/formats/morphology.html
http://www.psics.org/formats/properties.html
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 Element: <biophysics> 
 
This element contains subelements describing the passive and active electrical properties of the 
cell. It has required attribute units (with value SI Units or Physiological Units), which will set the 
unit system for all physiological parameters of the subelements, e.g. maximum conductance 
density of channels. The element contains at least one mechanism subelement, one each of 
spec_capacitance, spec_axial_resistance, and zero or one each of init_memb_potential 
and ion_props.  
 

 Element: <mechanism> 
 
The term mechanism refers to a dynamical property of the cell membrane whose behavior 
depends on the state of the membrane (e.g. voltage) and in turn can influence properties of the 
membrane (e.g. through an ionic current flow). Types of mechanism currently supported are 
voltage (and/or ligand) gated conductances on the cell membranes or (intercellular) ionic 
concentrations (e.g. a pool of calcium just below the membrane surface which decays to a 
steady concentration over time). The attribute name is required, and should refer to the name of 
a channel (specified in a channel_type element) or ionic concentration (ion_concentration 
element) in a ChannelML file (or potentially in the same NeuroML Level 2+ file) where the 
behavior of the mechanism is described (e.g. the voltage dependent changes to the 
conductance of the channel). The type attribute has a value Channel Mechanism or Ion 
Concentration. Note that there is no separate element for specifying a specific membrane 
resistance/leak conductance (as there is for specific capacitance and specific axial resistance); a 
mechanism element would be used for this conductance also. The optional 
passive_conductance attribute takes a Boolean value and if true indicates that this represents 
a passive (leak, non selective) conductance and is completely described by its conductance 
density and reversal potential (i.e. doesn't require a separate ChannelML description). Note that 
the surface area of cylindrical segments on which these mechanisms are placed is calculated 
from the curved surface only (a spherical segment where proximal = distal would be calculated 
as the surface of the sphere).  
 
The mechanism element can have one or more subelements of each of parameter or 
variable_parameter. 
 

Section 10.1 shows an example of a cell with multiple mechanism elements (along with 
spec_capacitance and spec_axial_resistance elements) and gives an outline of how 
the information in these elements can be used to calculate the time varying membrane 
potential of a cell model.  A further example of a cell using these elements is available 
http://neuroml.org/view.php?file=ChannelML/MossyCellBiophys.xml.  

 
 Element: <parameter> 
 
This describes the value of a parameter related to a mechanism which is of fixed value across a 
group of cables. This element has name and value attributes. A number of names of 
parameters are considered particularly relevant: gmax for the maximal conductance density of a 
channel mechanism; and erev (or just e), the reversal potential of a channel, although a channel 
can have any named parameter associated with it. A parameter will have one or more group 
subelements, and the string contents of these refer to cable groups already defined in the cell. 
In this way, a file can specify that a mechanism (e.g. with name FastSodiumConductance and 
type Channel Mechanism) can have a parameter with name gmax and a certain value and 
specify that it is present on group soma_group.   
 

 Element: <variable_parameter> 
 
This describes the value of a parameter related to a mechanism which varies over the part of 
the cell it is present on. It references one of the parameterizations defined in an 
inhomogeneous_param subelement of cablegroup. There is a required name attribute, which 
corresponds to the name attribute in parameter (could be gmax or erev). There will be a single 
group subelement, together with a inhomogeneous_value subelement, which contains two 

http://neuroml.org/view.php?file=ChannelML/MossyCellBiophys.xml
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required attributes: param_name (references the name used in the inhomogeneous_param 
element in the cablegroup element) and value (contains an equation showing how parameter 
changes as function of variable attribute in inhomogeneous_param element).  
 

An example showing the usage of the inhomogeneous_value and variable_parameter 
elements in a cell with nonuniform electrical properties is available 
http://neuroml.org/view.php?file=ChannelML/InhomogeneousBiophys.xml.  

 

 Element: <spec_capacitance> 
 
This describes the value of the specific capacitance (capacitance per unit area) over the cell 
membrane. As the specific capacitance may not be uniform over the cell (or may be set non-
uniform for the purposes of simulating spine density), different regions of the cell can have 
different values for this. The values are set with either a parameter subelement (of type 
UnamedParameter, similar to the parameter for a mechanism, but without the name attribute), 
or a variable_parameter subelement. See Table 3 for details of units. 
 

 Element: <spec_axial_resistance> 
 
This describes the value of the specific axial resistance (or cytoplasmic resistivity) along the 
segments of the cell. As this may not be uniform over the cell, different regions of the cell can 
have different values. The values are set with either a parameter subelement (of type 
UnamedParameter, similar to the parameter for a mechanism, but without the name attribute), 
or a variable_parameter subelement. See Table 3 for details of units. 
 

 Element: <init_memb_potential> 
 
This optional element is used to associate a default initial membrane potential with the cell. 
While this is not an inherent electrophysiological property of the cell (the cell, unless 
spontaneously firing, will have its own resting potential due to the conductances present and will 
most likely differ from this value), this value can be useful when storing cell models and porting 
them between simulators. The values are set with either a parameter subelement (similar to the 
parameter for a mechanism, but without the name attribute), or a variable_parameter 
subelement. 
 

 Element: <ion_props> 
 
This optional element is used to give information on the ions which will influence the behavior of 
the cell. It can be used to give (initial) internal (parameter name conc_i) and extracellular 
concentrations (conc_e)  of the ions, or to provide information on fixed ionic reversal potentials 
(e). The values are set with either a parameter or a variable_parameter subelement. 
 

7.        Level 2: Channel & synaptic mechanisms (ChannelML) 

 
Descriptions of channel and synaptic mechanisms can be present together with cells in a Level 
2 NeuroML file (with neuroml as root element). However, for greater modularity, and ease of 
use with tools for analyzing and simulating the channels, one mechanism (e.g. channel or 
synaptic mechanism) per file (with root element channelml) is recommended.  
 
Note that ChannelML descriptions of synaptic mechanisms would normally be used as part of a 
Level 3 network description (as opposed to being used in Level 2 single cell models).  
 
The channelml element (and the channels element under a neuroml root) has required 
attribute units (with value SI Units or Physiological Units), which will set the unit system for all 
physiological parameters of the mechanism. The permitted subelements for the (channelml or 
channels) element are: channel_type, synapse_type and ion_concentration.  
 

http://neuroml.org/view.php?file=ChannelML/InhomogeneousBiophys.xml
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See Figure 5 in the main NeuroML paper for an overview of the elements used in ChannelML. 
 

 Element: <channel_type> 
 
This represents a membrane conductance distributed across a region of a cell which is voltage 
and/or an ligand gated (as opposed to channels concentrated at a synapse and triggered by a 
presynaptic neurotransmitter release). This element has a required attribute name, which will be 
used when placing the channel mechanism on cells. The status element, metadata and 
referencedata groups of elements and the parameters element are permitted subelements. 
The required current_voltage_relation element will contain the details of the behavior of the 
channel with varying membrane potential. 
 

An example of the Na
+
 channel from the Hodgkin Huxley model (Hodgkin and Huxley, 

1952) expressed in using the channel_type, current_voltage_relation, gate & 
transition elements is available in Section 10.2 and also online here: 
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml.  

The equivalent code for the channel in the NMODL language 
(http://www.neuron.yale.edu/neuron/static/papers/nc2000/nmodl.htm) of NEURON is 
here: http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=NEURON, 
for the GENESIS script using the tabchannel object (http://www.genesis-
sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.62) is here:  
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=GENESIS. The 
expression of this channel in PSICS format (http://www.psics.org/formats/channels.html) 
is here: http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=PSICS. 

 
 

 Element: <parameters> 
 
This contains a list of parameter subelements, each of which has name and value attributes. 
These named parameters can be used in generic expressions (e.g. for gating variables), and 
implementations of the channel ideally should allow these parameters to be subsequently 
changed (i.e. be publicly accessible fields). Note however that pre-calculated tables of rate 
information may have to be updated if these parameters are changed.  
 

A ChannelML example containing parameter elements is available here: 
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml. The equivalent code in the 
NMODL language of the NEURON simulator is here:  
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml&map=NEURON and the 
channel in GENESIS script is here:  
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml&map=GENESIS.  

 
 

 Element: <current_voltage_relation> 
 
This element holds the information on how the current through the channel changes depending 
on the membrane potential (and possibly on the concentration of some ion). The attribute 
cond_law describes the relationship between the voltage and the current. The currently 
permitted values for this are ohmic and integrate_and_fire (note more complex ionic current 
descriptions based on the Goldman-Hodgkin-Katz equation (Hille, 2001) are not currently 
supported). The reason cond_law is an optional element is for backwards compatibility with an 
earlier version of ChannelML (when the ohmic and conductance elements were used), but it is 
most likely that cond_law will be a required attribute in future versions. If its value is 
integrate_and_fire, the integrate_and_fire element below, and no other attributes should be 
used. If its value is ohmic, the ion, default_gmax and default_erev attributes at least should be 
used (see Table 3 for details on units). These represent, respectively, the ion which flows 
through the channel (which for a leak current should be set to non_specific), the default value for 
the maximum conductance density of the channels, and the default value for the reversal 

http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml
http://www.neuron.yale.edu/neuron/static/papers/nc2000/nmodl.htm
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=NEURON
http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.62
http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.62
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=GENESIS
http://www.psics.org/formats/channels.html
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=PSICS
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/NaF2_Chan.xml&map=GENESIS
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potential of the ion. Note that these last two attributes are not actually properties of the channel 
mechanism, but are completely dependent on the density of the channels on the cell and the 
intracellular and extracellular concentrations of the ion in question. However, almost all 
implementations of the channel will use these concepts, and so the option to specify default 
values is given. These values will normally be overwritten when the channel is placed on a cell.  
 
The charge attribute is used if the ion has a valence greater than one. The fixed_erev attribute 
is used in the case where the ion in question flows through the channel (and so influences the 
internal concentration of the ion) but experiences a fixed reversal potential (e.g. Ca

2+
 channels in 

(Traub et al., 2005) and the granule cell model of (Maex and De Schutter, 1998). For ohmic 
channels, the main subelement is the gate element for describing the main gating complex (note 
if this is absent it implies that it is a passive conductance), but preceding that, the optional 
conc_dependence, conc_factor, q10_settings and offset elements are allowed. 
 

 Element: <integrate_and_fire> 
 
This element describes a membrane mechanism which will cause the cell to behave like an 
Integrate and Fire neuron. There are many ways to describe Integrate and Fire mechanisms; 
this one is based on the implementation in NEURON of the COBA IandF cell as described in 
(Brette et al., 2007). The mechanism is specified by the attributes threshold, t_refrac, v_reset 
and g_refrac. This mechanism will normally be placed on a cell which also has a passive/leak 
conductance specified by a separate ChannelML mechanism file, whose reversal potential will 
set the cell's resting potential. The cell will depolarize on current injection or excitatory synaptic 
input, with current leaking out through a passive conductance. If the cell passes the threshold, 
the mechanism will reset the cell's potential to v_reset (a spiking event will be sent to any 
postsynaptic synapse at this point). For a period given by t_refrac, the mechanism will provide a 
current via a conductance of g_refrac, with reversal potential v_reset. Note that if g_refrac is 
high, this will effectively clamp the cell at v_reset for a time t_refrac. After this time the cell will 
integrate all inputs as normal with a time constant given by the passive properties of the cell. 
 

An example of a ChannelML file using the integrate_and_fire element is here: 
http://neuroml.org/view.php?file=ChannelML/IntFireMechanism.xml and the equivalent 
representation in a NEURON mod file is here:  
http://neuroml.org/view.php?file=ChannelML/IntFireMechanism.xml&map=NEURON.  

A neuroConstruct project which includes a cell using the integrate_and_fire mechanism 
which can be mapped to simulators supporting PyNN (Davison et al., 2008) can be found 
here: http://www.neuroconstruct.org/samples/index.html#Ex8_PyNNDemo. 

 
 

 Element: <conc_dependence> 
 
This element is used to describe a parameter for intracellular concentration which can be used 
in the gating expressions for channels whose rates depend on a particular ion's concentration. 
An example would be the dependence of some potassium channels on calcium concentration as 
well as membrane potential, e.g. the forward rate for the activation variable is given by 2500/(1 + 
( (0.0015 *(exp (-85*v))) / ca_conc)). The name attribute in this element gives a unique 
reference for this concentration parameter, the ion attribute names the ion whose concentration 
is varying, and an optional charge attribute is used if the ion has a valence greater than one. 
The variable_name attribute (e.g. ca_conc) specifies the name of the variable which will be 
used in expressions. The min_conc and max_conc attributes are very useful for the 
implementation of the channel mechanism, as 2D tables are often generated before simulation 
for the rates at various voltages and concentrations.  
 
 
 
 
 
 

http://neuroml.org/view.php?file=ChannelML/IntFireMechanism.xml
http://neuroml.org/view.php?file=ChannelML/IntFireMechanism.xml&map=NEURON
http://www.neuroconstruct.org/samples/index.html#Ex8_PyNNDemo
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An example of a file using the conc_dependence element is here: 
http://neuroml.org/view.php?file=ChannelML/KCa_Channel.xml and the equivalent 
representation in a NEURON mod file is here: 
http://neuroml.org/view.php?file=ChannelML/KCa_Channel.xml&map=NEURON, and as 
a GENESIS script using the tab2Dchannel object is here:  
http://neuroml.org/view.php?file=ChannelML/KCa_Channel.xml&map=GENESIS.  

 

 Element: <conc_factor> 
 
This element is used to describe a concentration dependent multiplicative factor for a channel's 
conductance which is independent of the membrane potential. The ion attribute names the ion 
whose concentration is varying, and an optional charge attribute is used if the ion has a valence 
greater than one. The variable_name attribute (e.g. ca_conc) specifies the name of the variable 
which will be used in the expression contained in expr. This expression should be evaluated at 
each time step and used to scale the conductance of the channels. The min_conc and 
max_conc attributes are very useful for the implementation of the channel mechanism, as 2D 
tables are often generated before simulation for the rates at various voltages and 
concentrations. 
 

An example of a file using the conc_factor element is here: 
http://neuroml.org/view.php?file=ChannelML/Kc_fast_Chan.xml and the equivalent 
representation in a NEURON mod file is here:  
http://neuroml.org/view.php?file=ChannelML/Kc_fast_Chan.xml&map=NEURON, and as 
a GENESIS script using the tabchannel object is here:  
http://neuroml.org/view.php?file=ChannelML/Kc_fast_Chan.xml&map=GENESIS.  

  
 Element: <q10_settings> 
 
Q10 scaling affects the rates of the activation and inactivation variables. It allows rate equations 
determined at one temperature to be used at a different temperature. If tauExp is the 
experimentally measured tau, the rate at temperature T is given by tau(T) = tauExp / q10_factor 
^ ((T - experimental_temp)/10). NOTE: if fixed_q10 is specified the expression will be tau(T) = 
tauExp / fixed_q10, and the experimental_temp can be used to check that a simulation is 
being run at the desired temperature. The optional gate attribute can be used to specify which of 
the gates this rate adjustment refers to. If it is absent, the scaling applies to all gates present. 
 

 Element: <offset> 
 
Experimental data for the activation and inactivation rates for channels are often not available in 
the cell type/species being modeled, and modelers reuse channels of a similar type from a 
different system. One adjustment which is often made in such reused channels is to introduce a 
fixed change in the voltage dependence of the rate expressions (e.g. the Golgi cell channels in 
(Maex and De Schutter, 1998) reuse the granule cell channels with a voltage shift of -10 which 
causes the Golgi cells to fire spontaneously). Such a voltage offset can be added in a 
ChannelML file with the offset element, the value attribute containing the offset amount. 
 

An example of a file using the q10_setting and offset elements is here: 
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml and the equivalent 
representation in a NEURON mod file is here: 
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml&map=NEURON, and as a 
GENESIS representation of the channel is here:  
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml&map=GENESIS.  

 
 
 
 

http://neuroml.org/view.php?file=ChannelML/KCa_Channel.xml
http://neuroml.org/view.php?file=ChannelML/KCa_Channel.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/KCa_Channel.xml&map=GENESIS
http://neuroml.org/view.php?file=ChannelML/Kc_fast_Chan.xml
http://neuroml.org/view.php?file=ChannelML/Kc_fast_Chan.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/Kc_fast_Chan.xml&map=GENESIS
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/NaF_Chan.xml&map=GENESIS
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Element: <gate> 
 
This element describes a gating complex for the channel. It specifies a number of states in 
which the gating complex can be found, along with expressions for the rates of transitions 
between these. There is a required name attribute which gives a unique reference for the gate, 
e.g. m, h or n. There can be a single gating complex (with potentially many open and closed 
states) for a channel, or a set of gating complexes (e.g. activating or inactivating). If there are 
multiple copies of the same gating complex present, this can be expressed by setting the 
optional instances attribute to greater than one (e.g. 3 instances of the activating component of 
a Na

+
 channel). For individual channels, all gating complexes must be in an open state for the 

channel to conduct ions. However, most implementations of these types of channels represent 
the mean behavior of many channels as a conductance per unit area of the cell membrane. In 
this case, the expressions for the rates of transitions between open and closed states are used 
to determine the values of a number of gating variables, and the overall conductance density is 
given by the product of these quantities (e.g. GNa = Gmax  * m

3
 * h).  

 
This element will have at least one open_state and one closed_state subelements. For each 
transition between these, up to two transition elements and one time_course and 
steady_state element will be present.  
 

 Element: <closed_state> 
 
This element describes a state in which the gating complex does not contribute to the channel 
conductance, i.e. a non-permissive state. The attribute id is used to reference this state in the 
transition, time_course and steady_state elements. 
 

 Element: <open_state> 
 
This element describes a state in which the gating complex does contribute to the channel 
conductance, i.e. is in a permissive state. The attribute id is used to reference this state in the 
transition elements, etc. There is an optional fraction attribute which can be used to give a 
fractional contribution of the gate in this state to the overall conductance of the channel. 
 

 Element: <transition> 
 
This element describes a single transition between two defined states. In a channel defined 
according to the Hodgkin Huxley formalism, there will normally only be one open and one closed 
state in a gating complex (with possibly instances >1 for the gate describing the activating 
component), and forward (closed -> open) and backward (open -> closed) transition rates 
described. This element has a required name attribute (e.g. alpha/beta for forward/ backward 
transition rates), from and to attributes specifying the pre and post states related to the 
transition, and an expr_form attribute giving details on the form of the expression for the rates. 
There are 3 "built in" options

1
 for the expression form: exponential, sigmoid and exp_linear, and 

if one of these is used the following attributes should be included: rate, scale and midpoint. 
The full expression for each of these forms as a function of the attribute values and the 
membrane potential v is given in Table 5. 
 
The other option for the expr_form attribute is generic, indicating that a freeform expression for 
the rates will be provided in the expr attribute in terms of the membrane potential v, and possibly 
any concentration parameters defined in a conc_dependence element. This option to allow a 
freeform expression (e.g. 2500/(1 + ( (0.0015 *(exp (-85*v))) / ca_conc))) is a compromise which 
sacrifices the possibility to force an unambiguous declarative definition of the expression (e.g. in 
MathML) to allow an easily hand editable (and readable) expression to be used. The limiting 
condition on the expression is that supporting simulators should be able to parse the mapped 
expression in their native scripts. Note that the mapping to GENESIS replaces the round 
brackets with curly brackets which are required when evaluating some functions, and that 
spaces after some functions are necessary, so exp (v) (mapped to exp {v}) is preferred to 

                                                 
1
 Note these forms of rate expressions are supported for historical reasons; they are commonly 

used in published models but no inference should be made as to their biophysical plausibility. 
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exp(v). Expressions in this format have been successfully tested on NEURON, GENESIS and 
PSICS. See http://www.neuroml.org/NeuroMLValidator/Samples for examples of such files. 
 
 

exponential 
scale

intmidpov

erate  

sigmoid 

scale

intmidpov

e

rate

1

 

exp_linear 

scale

intmidpov

e

scale

intmidpov
rate

1

1

 

 

Table 5: In built expression types for transition element 
 
 

 Elements: <time_course>, <steady_state> 
 
An alternative method for describing the transitions between open and closed states is to 
describe the time course for coming to a steady state of transition at a given voltage. The 
time_course element coupled with the steady_state element provide a description of the gating 
variables which is attractive to experimentalists, as these quantities are more experimentally 
accessible. The normal relations between the forward (alpha) and backward (beta) rates and the 
time course (tau) and steady state (inf) descriptions are: 
 

betaalpha
tau

1
        

betaalpha

alpha
inf  

 
and these are the assumed expressions for the time course and steady states if time_course or 
steady_state are not present. Note that in some channels, forward and backward transitions 
can be present, but also one of time_course or steady_state, potentially expressing their 
values in terms of alpha and beta. Both of these elements have a similar formats to transition, 
with a required name attribute, from and to attributes specifying the direction of the transition, 
and an expr_form which can have value exponential, sigmoid, exp_linear, or generic.  
 

An example of a file using the time_course and steady_state elements (and expressing 
the rates using expr_form = generic) is here:  
http://neuroml.org/view.php?file=ChannelML/KA_Channel.xml and the equivalent 
representation in a NEURON mod file is here:  
http://neuroml.org/view.php?file=ChannelML/KA_Channel.xml&map=NEURON, and as a 
GENESIS representation of the channel is here: 
 http://neuroml.org/view.php?file=ChannelML/KA_Channel.xml&map=GENESIS.  

 

 Element: <synapse_type> 
 
This element is used for describing (mainly phenomenological as opposed to biophysical) 
models of synaptic conductance changes. As such they are point processes (as opposed to 
mechanisms distributed over the membrane) which specify the time varying conductance 
through a synapse when a presynaptic event happens (e.g. neurotransmitter release due to a 
presynaptic connection point reaching threshold). The one exception to the above is when the 
subelement is electrical_syn, for a conductance at an electrical synapses between two cells.  
 
This element has a required attribute name, giving a unique reference for this synapse type, and 
which is used in NetworkML files when describing synaptic connections between cell 
populations. The status element, metadata and referencedata groups of elements are optional 

http://www.neuroml.org/NeuroMLValidator/Samples
http://neuroml.org/view.php?file=ChannelML/KA_Channel.xml
http://neuroml.org/view.php?file=ChannelML/KA_Channel.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/KA_Channel.xml&map=GENESIS
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subelements to give more information on the background of the model. One of the following 
subelements is required, which specifies the type of synapse: doub_exp_syn, blocking_syn, 
multi_decay_syn, fac_dep_syn, stdp_syn, electrical_syn.  
 
Chemical synapses (i.e. all elements except electrical_syn) can be used in two ways: at a 
connection instance of a projection between pre and postsynaptic population instances, and 
at a site instance of an input into a cell which is of type random_stim (see Section 9 for more 
details). In the former case the postsynaptic conductance change event occurs when the 
presynaptic site passes the threshold (as specified in the synapse_type element, with a 
possible internal_delay, etc.). In the latter case a frequency is given for the triggering of the 
synaptic event. An electrical synapses can be specified in a projection, and this results in a two 
continuous current which have opposite signs at the pre & post synaptic sites.  
 

An introduction to the modelling of synaptic conductances can be found in chapter 6 of 
the GENESIS book (Bower and Beeman, 1997).  

Chapter 10 of the NEURON Book (Carnevale and Hines, 2006) also discusses modeling 
of synaptic transmission. 

Section 10.4 gives an example of a network in NeuroML which contains both external 
synaptic input and transmission of a synaptic event between two cells. 

 

 Element: <doub_exp_syn> 
 
A basic synaptic mechanism describing a conductance change with exponentially rising and 
decaying time courses. The max_conductance attribute gives the peak conductance which is 
reached, rise_time is used for the time course of the rising exponential, decay_time gives the 
time course for the decaying exponential, and the reversal_potential attribute is used to define 
the zero current potential, which is used to calculate the driving force for the synaptic 
conductance. A single exponential synapse can be modeled by setting rise_time to zero, and 
an alpha synapse can be created if rise_time = decay_time. 
 

An example showing the usage of the doub_exp_syn element in a synapse model is 
presented in Section 10.3 along with the equations for the current through and 
conductance of the synapse. 

This example is also available online here:  
http://neuroml.org/view.php?file=ChannelMLSyns/DoubExpSyn.xml. The implementation 
of the synapse in the NMODL language of the NEURON simulator (based on the 
Exp2Syn inbuilt example) is here: 
http://neuroml.org/view.php?file=ChannelMLSyns/DoubExpSyn.xml&map=NEURON, and 
an implementation in GENESIS script using the synchan object is here: 
http://neuroml.org/view.php?file=ChannelMLSyns/DoubExpSyn.xml&map=GENESIS.  

 

 Element: <blocking_syn> 
 
This synaptic mechanism scales the synaptic conductance in a voltage-dependent manner and 
inherits all of the attributes of doub_exp_syn, and is defined in a block subelement. 
 

 Element: <block> 
 
This allows specification of the block of NMDA receptors by Mg

2+
 and is based on the 

mechanism outlined in (Gabbiani et al., 1994) and (Maex and De Schutter, 1998). See also 
(Jahr and Stevens, 1990). This element requires attribute species for the substance blocking 
the synapse, conc for the (currently fixed) external concentration of the species, and eta and 
gamma for the voltage and concentration dependence expression. The conductance of the 
synapse which would be determined by the attributes from doub_exp_syn will be scaled by a 
factor of 1/(1 + eta * [conc] * exp(-1 * gamma * V)) at each time step. 
 

http://neuroml.org/view.php?file=ChannelMLSyns/DoubExpSyn.xml
http://neuroml.org/view.php?file=ChannelMLSyns/DoubExpSyn.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelMLSyns/DoubExpSyn.xml&map=GENESIS
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An example showing the usage of the blocking_syn and block elements in an NMDA 
synapse model is available here:  

http://neuroml.org/view.php?file=ChannelMLSyns/NMDA.xml. The implementation of this  
synaptic mechanism in the NMODL language of the NEURON simulator is here: 
http://neuroml.org/view.php?file=ChannelMLSyns/NMDA.xml&map=NEURON, and an 
implementation in the GENESIS script using the Mg_block object is here: 
http://neuroml.org/view.php?file=ChannelMLSyns/NMDA.xml&map=GENESIS. 

Note that due to GENESIS not currently supporting the more complex synapse types (e.g. 
multi_decay_syn or fac_dep_syn), blocking_syn was limited to being an extension of 
doub_exp_syn for wider simulator support of this element. 

 
 

 Element: <multi_decay_syn> 
 
This also extends the basic doub_exp_syn to allow specification of up to two extra decay 
components. This can be used for modeling synapses which have one or more slow decay 
components to their EPSCs. The additional attributes max_conductance_2, decay_time_2 and 
max_conductance_3, decay_time_3 are used to define these. It is assumed that only the two 
attributes for the second decay component, or all four of these attributes will be present. 
 

 Element: <fac_dep_syn> 
 
This element allows creation of a short term plasticity synaptic model based on the popular 
model from Tsodyks and Markram (Tsodyks et al., 2000; Tsodyks and Markram, 1997). In this 
model synapses can be depressing, facilitating or have both depressing and facilitating 
components. The model is defined by a recursion relation for the remaining synaptic resources 
after the arrival of n+1 spikes, given the previous arrival of n spikes. When the first spike arrives 
at the synapse a fraction of the synaptic resource (U1) is used, such that the fraction remaining 
after the 1st spike is R1=1-U1. Set U1 with attribute init_release_prob. After the (n+1)th spike 
the fraction of remaining resource is, 
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where R is the recovery time-constant set with attribute tau_rec. In between spikes (for the 

duration t) there is replenishment of synaptic resources with linear dynamics having time-

constant R. Facilitation is modeled by increasing the fraction of resources employed by the next 
spike U(n+1) such that upon the arrival of the (n+1)th spike, 
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where F is the facilitation time-constant set with attribute tau_fac. In between spikes there is a 
decay in the accumulated increase of synaptic resources utilised by each spike. Again, this 

decay is linear and has a single time-constant F. The magnitude of the change in synaptic 
conductance due to the nth spike will be scaled by a factor RnUn, i.e. a maximal change in the 

event that all resources are available Rn=1 and all resources are utilised Un=1. In the limit F 0 

the synapse is depressing only, since no facilitation can accumulate. In the limit R 0 the 
synapse is facilitating only, since all resources are instantly replenished. 
 

An example showing the usage of the fac_dep_syn element in a plastic synapse model 
is available here: http://neuroml.org/view.php?file=ChannelMLSyns/STPSynapse.xml. The 
implementation of the synapse in the NMODL language of NEURON is here: 
http://neuroml.org/view.php?file=ChannelMLSyns/STPSynapse.xml&map=NEURON. 

 

http://neuroml.org/view.php?file=ChannelMLSyns/NMDA.xml
http://neuroml.org/view.php?file=ChannelMLSyns/NMDA.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelMLSyns/NMDA.xml&map=GENESIS
http://neuroml.org/view.php?file=ChannelMLSyns/STPSynapse.xml
http://neuroml.org/view.php?file=ChannelMLSyns/STPSynapse.xml&map=NEURON
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 Element: <stdp_syn> 
 
This element allows implementation of the Spike Timing Dependent Plasticity (STDP) model of 
Song, Miller and Abbott (Song et al., 2000) with all to all spike pairing. In this model synaptic 

conductance is potentiated by a factor w+ or depressed by a factor w- based upon the relative 
timing between each pair of pre and post-synaptic spikes. The model is defined by the learning 
rule, 
 

t
expA)t(w  

 
for spikes with positive timing difference Δt=tpost - tpre, (i.e. pre before post) and 
 

t
expA)t(w  

 
for spikes with negative timing difference (i.e. post before pre). The resulting conductance 
scaling w(t) at time t is the sum of all of these changes for all previous spike pairs. The 
parameters A+/- control the maximum size of synaptic update as a fraction of the maximum 
synaptic conductance (gmax) for potentiation and depression respectively and are set with 

attributes del_weight_ltp and del_weight_ltd. The time constants +/- determine the time lag for 
which positive and negative timing differences respectively lead to modification of the synaptic 
conductance factor and can be set with attributes tau_ltp and tau_ltd.  
 
This STDP model truncates changes to the synaptic conductance factor that would lead to 
factors outside of the inclusive range between zero and an upper bound wmax (fraction of gmax) 

such that w(t)  [0,wmax] for all t. Set wmax with the attribute max_syn_weight. 
 

An example showing the usage of the stdp_syn element in a plastic synapse model is 
available here: http://neuroml.org/view.php?file=ChannelMLSyns/STDPSynapse.xml. The 
implementation of the synapse in the NMODL language of the NEURON simulator is 
http://neuroml.org/view.php?file=ChannelMLSyns/STDPSynapse.xml&map=NEURON. 

 

 Element: <electrical_syn> 
 
Describes electrical synaptic coupling as mediated by gap junctions, which is implemented with 
a simple model with just a single attribute conductance. The current flowing across this 
electrical synapse is the product of this conductance (g) and the difference in membrane 
potential between the segments where the connection is made, i.e. 
 

)VV(gI prepostGap  

 

An example showing the usage of the electrical_syn element in a gap junction model is 
available here: http://neuroml.org/view.php?file=ChannelMLSyns/ElectSyn.xml. The 
implementation of the synapse in the NMODL language of the NEURON simulator is 
here: http://neuroml.org/view.php?file=ChannelMLSyns/ElectSyn.xml&map=NEURON  
and in GENESIS script is here: 
http://neuroml.org/view.php?file=ChannelMLSyns/ElectSyn.xml&map=GENESIS. 

 

 Element: <ion_concentration> 
 
This is used to define the behavior of the concentration of an ion of a particular type, which 
varies over time. It has been used so far to model internal calcium, which has a resting 
concentration due to calcium pumps in the membrane. This internal concentration can be altered 
by active calcium conductances, and can in turn influence the behavior of other channels (e.g. 

http://neuroml.org/view.php?file=ChannelMLSyns/STDPSynapse.xml
http://neuroml.org/view.php?file=ChannelMLSyns/STDPSynapse.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelMLSyns/ElectSyn.xml
http://neuroml.org/view.php?file=ChannelMLSyns/ElectSyn.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelMLSyns/ElectSyn.xml&map=GENESIS
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[Ca
2+

] dependent K
+
 channels, BK, SK, etc.). This element has a required attribute name, which 

will be used when placing the mechanism on cells. The status element and metadata group of 
elements are permitted subelements. The ion_species and decaying_pool_model elements 
are the only other permitted subelements at present. 
 

An example showing the usage of the ion_concentration, decaying_pool_model & 
pool_volume_info elements is available here: 
http://neuroml.org/view.php?file=ChannelML/CaPool.xml. The implementation in the 
NMODL language of the NEURON simulator is here:  
http://neuroml.org/view.php?file=ChannelML/CaPool.xml&map=NEURON, and the 
GENESIS script using the Ca_concen object is here:  
http://neuroml.org/view.php?file=ChannelML/CaPool.xml&map=GENESIS. 

 
 Element: <ion_species> 
 
This has an attribute name, which identifies the ion whose concentration is being altered. 
 

 Element: <decaying_pool_model> 
 
This signifies that the concentration decays towards a fixed value of resting_conc (required 
attribute) with a time course given by decay_constant (or inv_decay_constant when the 
constant is expressed in units 1/time). An optional attribute ceiling can be given for the maximal 
concentration which the ion can have. The amount of the modeled segment/compartment to fill 
with the ion needs to be specified. This is specified in either the pool_volume_info or 
fixed_pool_info element. 
 

 Element: <pool_volume_info> 
 
This represents a thin shell just inside the membrane where the concentration of the ion builds 
up due to a current density on the segment surface. It has a required attribute shell_thickness 
which can be used to calculate the total volume in which the concentration is changing and 
hence the total amount of the substance and the change in concentration due to a given current 
density of ion flow. 
 

 Element: <fixed_pool_info> 
 
In this case the multiplicative factor which determines how quickly the internal pool 'fills' is given 
as a fixed value (contained in string value of element phi), i.e. change in concentration = phi * 
ion current density. Note this is a far from ideal way to express this value (as it does not take into 
account the surface area of the compartment), but needed to be included as this was the 
parameter which was used in a number of models including the NEURON implementation of the 
cells in (Traub et al., 2005). 
 

8.        Level 3: Cell descriptions (MorphML & Biophysics & Connectivity) 

 
Cells which have their morphologies (Level 1) and channel distribution properties (Level 2) 
defined can be extended with information on their potential synaptic connectivity to create Level 
3 cells. This information is contained in the connectivity subelement of cell (see Figure 4 in the 
main NeuroML paper). 
 

 Element: <connectivity> 
 
This currently can contain one or more of potential_syn_loc subelements which give the 
allowed locations of synapse types. 
 
 
 

http://neuroml.org/view.php?file=ChannelML/CaPool.xml
http://neuroml.org/view.php?file=ChannelML/CaPool.xml&map=NEURON
http://neuroml.org/view.php?file=ChannelML/CaPool.xml&map=GENESIS
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 Element: <potential_syn_loc> 
 
This element outlines the locations on a cell where synapses of a certain type are allowed (e.g. 
synapses of type Interneuron_to_Pyramidal are allowed post synaptically on the soma_group). 
As such it does not give explicit lists of synaptic locations (such information would be contained 
in a NetworkML file), but provides information about potential synaptic connectivity about the 
cell, e.g. to applications such as neuroConstruct (Gleeson et al., 2007) which may require this 
information to generate networks. 
 
The potential_syn_loc element has a required attribute synapse_type which should reference 
the name of a synapse in a ChannelML file, and the optional attribute synapse_direction which 
can have value pre (indicated cell regions allow the synapse presynaptically), post (synapse is 
allowed postsynaptically) or preAndOrPost (when there are connections within a cell population, 
gives the locations where pre or post connections can be made). One or more subelements 
group are required referencing cable groups of the cell where the synapses are allowed.  
 

9.        Level 3: Cell positions & connectivity (NetworkML) 

 
Level 3 is used for describing networks of cells (normally positioned in 3D space), connected 
with synapses, together with external electrical input to drive the network. Two different types of 
definition are supported: instance based and template based (see Figure 6 in the main NeuroML 
paper for an overview of the elements used in NetworkML).  
 
In the instance based representation, all cell positions are explicitly listed, all synaptic 
connections are defined down to the cell and segment id of pre and post connection site 
(together with synaptic conductance scaling weights, synaptic delays, etc.) and the exact 
locations of inputs are defined.  
 
In the template based representation, a “recipe” for creating the cell positions, connections and 
inputs is given. This latter representation is clearly much more compact, but the range of 
possible options for creating the connections etc. is vast, and the current specifications only 
cover a fraction of the possibilities. Also, different implementations will have different algorithms 
for creating the networks, e.g. a set of 100 cells randomly distributed in a rectangular region, and 
so it will not normally be possible to get an identical network on multiple simulators from this 
representation (without specifying the random seed and using the same algorithm for 
generation). Work is underway to extend the range of network descriptions supported in this part 
of the language through closer compatibility with the PyNN initiative (Davison et al., 2008), which 
is developing a Python based API for simulator independent procedural network descriptions 
(i.e. having common concepts of Populations, Projections, Connectors, etc.) 
 
The instance based description provides an unambiguous description of the network which can 
be exchanged between applications. Use of compression technologies and binary formats such 
as HDF5 means that quite large networks can be stored in this format in reasonably sized files. 
There is currently no formal way to validate NetworkML HDF5 files (there is no equivalent of 
XML Schema documents defining the structure) but neuroConstruct 
(http://www.neuroconstruct.org/docs/Glossary_gen.html#HDF5) can import & export instance 
based NetworkML files in both XML and HDF5 formats. 
 
The NetworkML elements described here can be present in a Level 3 NeuroML file (with root 
element neuroml) or in a standalone NetworkML file with root element networkml. Both of 
these have a required attribute length_units, which is normally set to micrometer, and sets the 
units for the positioning information of the cells in 3D.  
 
 
 
 
 
 

http://www.neuroconstruct.org/docs/Glossary_gen.html#HDF5
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A simple NetworkML example file using the instance based representation is available 
here: http://neuroml.org/view.php?file=NetworkML/SimpleNetworkInstance.xml. 

A simple NetworkML example file using the template based representation is available 
here: http://neuroml.org/view.php?file=NetworkML/SimpleNetworkTemplate.xml. 

An example of a  NeuroML file containing elements from all 3 Levels including network 
structure in NetworkML is available here: 
http://neuroml.org/view.php?file=NetworkML/CompleteNetwork.xml. 

An example of a NetworkML file containing population, projection and input elements 
can be found in Section 10.4, along with a discussion of the modeling of the network. 

 
 

 Element: <populations> 
 
This element contains a set of one or more population elements, each referring to a set of cells 
of a specific cell type. Note that a particular cell type can be used in more than one population. 
The cells can be defined in the same or separate NeuroML files. 
 

 Element: <population> 
 
A population of cells. Required attributes are: name: a string for referring to the population; 
cell_type for the type of cell present in the population. This can refer to the name attribute of a 
cell defined in the same file, or a cell in a (normally Level 3) morphology file which is also 
being/has been loaded into the parsing application. In the current version of the specification all 
cells in the population have identical morphological structure and electrical properties.  
 
The population element can have any of the metadata elements as subelements.  
 
In the instance based representation, an explicit list of cell positions are given in the instances 
element. In the template based version, the pop_location element is used to succinctly 
describe the arrangement of cells (e.g. random_arrangement, grid_arrangement). 
 

 Element: <instances> 
 
This element contains a list of instance elements for each cell in the population. There is a 
size attribute which is required, even though the size can be determined by the number of 
instance elements. This is necessary since for a large network it is very useful for a parsing 
application to know in advance how many instances to expect for memory allocation purposes.  
 

 Element: <instance> 
 
A specific instance in the population of a cell of a particular cell_type. Each cell will have a 
unique id attribute. There is also an optional node_id attribute, which refers to the 
computational node on which the cell is to be instantiated in a parallel computing environment. 
This attribute can clearly be ignored by parsing applications, but it can be convenient, e.g. for 
storing the network so that the exact parallel network configuration can be rerun, for visualizing 
the distribution of the cells on the nodes, or if the NetworkML file is to be used as a setup file 
when simulating the parallel network (each node can parse the file and not instantiate any cell 
with a node_id different from its own). How the distribution of cells on the nodes is actually 
generated is outside of the scope of NeuroML at present (and would in any case be highly 
dependent on the target simulator of the network). The location of the cell is given by the 
location element.  
 

 Element: <location> 
 
Contains the x, y, z coordinates of the cell as attributes. Note these are usually expressed in 
micrometers, but this can be changed by the length_units attribute in the root element.  
 

http://neuroml.org/view.php?file=NetworkML/SimpleNetworkInstance.xml
http://neuroml.org/view.php?file=NetworkML/SimpleNetworkTemplate.xml
http://neuroml.org/view.php?file=NetworkML/CompleteNetwork.xml
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 Element: <pop_location> 
 
In the template based network representation, this is used for describing how a population 
should be created. Currently, random_arrangement and grid_arrangement are the two 
options for creating populations of cells.  
 

 Element: <random_arrangement> 
 
A set of cells randomly placed in a 3D region. An attribute population_size defines the number 
of cell instances in the population. Currently there are two types of region defined in which the 
cells can be arranged. The spherical_location and rectangular_location elements are of type 
Sphere and RectangularBox (defined in Metadata) respectively. The parsing application must 
implement its own algorithm of filling these spaces, and as noted previously, it is not possible to 
ensure different applications will produce the same networks from these parameters. The 
generated networks can be stored in instance based format NetworkML though and compared 
directly.  
 

 Element: <grid_arrangement> 
 
This element contains a subelement non_spatial_grid which has positive integer value 
attributes x, y, z for the number of cells in a grid in each dimension.  
 

 Element: <projection> 
 
The projections element groups a number of individual projection elements. It has the attribute 
units, which will set the unit system for the synaptic delay and threshold attributes of the 
subelements. 
 

 Element: <projection> 
 
The projection element defines a set of synaptic connections between a source and a target 
population. It has attributes name (a unique string), and source and target, each of which must 
correspond to the name attribute of a population. The source and target populations can be 
identical.  
 
The projection element can have any of the metadata elements as subelements.  
 
The projection element can have one or more synapse_props subelements. For an instance 
based projection specification, there will be a connections subelement with an explicit list of 
the synaptic connections, or for the template based case, there will be a connectivity_pattern 
subelement.  
 

 Element: <synapse_props> 
 
This element is used to define the default properties for a synaptic connection of a particular 
type. A required attribute synapse_type should refer to the name attribute of a synapse_type 
synaptic mechanism description defined either in this Level 3 NeuroML file or in a ChannelML 
file. The weight optional attribute (1 by default) gives a multiplicative factor by which the 
maximal conductance of each synaptic connection should be increased. The threshold optional 
attribute (0 by default) gives the presynaptic membrane potential which when crossed causes 
the synaptic event. The optional attributes internal_delay, pre_delay, post_delay and 
prop_delay (all 0 by default) give the contribution to the delay in triggering the synaptic event 
due to the assumed intrinsic properties of the synapse, a delay component on the presynaptic 
side, a delay component on the postsynaptic side and a delay due to the propagation of an 
action potential along the axon when it is not explicitly simulated, respectively. All of these 
values can be overwritten for particular instances of the synaptic connections. Note: more than 
one synapse_props element is permitted per projection, as there may be channels of multiple 
types present at every physical synaptic connection (e.g. AMPA and NMDA receptors at 
glutamatergic synapses).  
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An example of a NetworkML file containing the synapse_props element can be found in 
Section 10.4, along with a discussion of the usage of these properties in a model of the 
network. 

 

 Element: <connections> 
 
This contains a list of synaptic connections in connection elements. There is an optional size 
attribute, even though the size can be determined by the number of connection elements. This 
should be specified for large network files though, as it would be very useful for a parsing 
application to know in advance how many connections to expect for memory allocation 
purposes. This attribute is likely to be required in future versions. 
 

 Element: <connection> 
 
The connection element refers to a single physical synaptic connection between a pre and post 
cell. The attribute id is a nonnegative integer unique for this projection. The required attribute 
pre_cell_id corresponds to the id attribute of an instance in the source population. The optional 
attributes pre_segment_id (default 0) and pre_fraction_along (default 0.5) refer to specific 
locations on the source cell. There are corresponding attributes for the postsynaptic location: 
post_cell_id, post_segment_id and post_fraction_along. For each connection element, 
there can be a number of properties elements, one for each of the synapse_props defined for 
this population. They have the same attributes as the synapse_props element and override the 
values set there, e.g. for a different weight, delay, etc. The synapse_type attribute is optional, 
but should be included if there are more than one synapse_props elements specified.  
 

 Element: <connectivity_pattern> 
 
This element is used to define the pattern to use to set up synaptic connections between the 
source and target populations in a template based network specification. Currently there are 
three types of pattern defined: all_to_all, fixed_probability and per_cell_connection. Many 
more connection scenarios could be envisioned, and this list will be expanded in future in line 
with the connectivity algorithms defined by the PyNN initiative. 
 

 Element: <all_to_all> 
 
This element has no attributes, and its presence signifies that every presynaptic cell should be 
connected to each postsynaptic cell. 
 

 Element: <fixed_probability> 
 
This element has required attribute probability with value from 0 to 1, giving the probability that 
any specific presynaptic and postsynaptic cells will be connected.  
 

 Element: <per_cell_connection> 
 
This element signals that the connections should be built iteratively from each pre (or post) cell 
based on a number of parameters. The direction attribute defines whether the connections 
should be built from PreToPost (default) or PostToPre. Required attribute num_per_source 
specifies the number of connections to create on each of the cells in the pre or post population 
from which the connections are being built. This is a positive double value, and if not an integer 
refers to the average number of connections in the source population. The max_per_target 
optional attribute is an integer value for the max number of connections permitted per target cell. 

 
 Element: <inputs> 
 
The inputs element is used for the electrical stimulation to the network and contains a number 
of input elements. It has attribute units, which sets the unit system for the subelements. 
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 Element: <input> 
 

The input element defines a set of electrical inputs of a particular type on a population of cells. It 
has attributes name (a unique string), and can have any of the metadata elements as 
subelements. One of two types of electrical stimulation can be defined: pulse_input or 
random_stim. The target element defines the population to stimulate. 
 

Element: <pulse_input> 
 
This refers to an injected current pulse which is used to drive the cells. It has the following 
required attributes: delay, duration, amplitude, and the current is given by: 
 

durationdelayt                    

durationdelaytdelay      amplitude

delayt                    
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Element: <random_stim> 
 
This refers to a random train of synaptic inputs to be applied to locations on the cells. The 
required attribute frequency refers to the spike triggering frequency, and synaptic_mechanism 
refers to the name attribute of a synaptic mechanism defined either in this (NeuroML Level 3) 
file or in a ChannelML file, which is used to provide the conductance change with time. The 
spike events should be independent of one another, leading to a Poisson distribution for the 
number of spiking events over time. There is currently no refractory period specified.  
 

 Element: <target> 
 
The target element has attribute population, linked to the name attribute of a defined 
population. The subelements here are either: sites in an instance based network description, 
or site_pattern for a template based network file.  
 

 Element: <sites> 
 
This contains a list of sites to which to apply the defined electrical stimulations in site elements. 
There is an optional size attribute, and while the size can be determined by the number of site 
elements, this should be specified, as it may be useful for a parsing application to know in 
advance how many stimulation sites to expect for memory allocation purposes.  
 

 Element: <site> 
 
This element has the required attribute cell_id for the id of the cell in the population to which to 
apply this instance of the stimulus. The optional attributes segment_id (default 0) and 
fraction_along (default 0.5) can be used for greater specificity in location of stimulation. 
 

 Element: <site_pattern> 
 
This element for the template based specification of the input stimuli can have one of the 
following possible subelement: all_cells and percentage_cells. 
 

 Element: <all_cells > 
 
The presence of this element signals that all of the cells in population should have the input 
applied to them. 
 

 Element: <percentage_cells > 
 
This element has attribute percentage indicating the percentage of cells in the population to 
which to apply the input. 
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10. Example NeuroML files 

 
10.1 Spiking single compartment cell model 

 
The following Level 2 file contains a single compartment/segment cell with Na

+
 and K

+
 and leak 

conductances based on the Hodgkin and Huxley squid axon model (Hodgkin and Huxley, 1952).  
 
 

<neuroml xmlns = "http://morphml.org/neuroml/schema"  

    xmlns:meta = "http://morphml.org/metadata/schema"  

    xmlns:mml = "http://morphml.org/morphml/schema"  

    xmlns:bio = "http://morphml.org/biophysics/schema"  

    xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"  

    xsi:schemaLocation = "http://morphml.org/neuroml/schema  NeuroML.xsd"  

    lengthUnits = "micrometer"> 

  

    <cells> 

        <cell name = "HH_Cell"> 

 

            <meta:notes>A Simple cell with HH channels</meta:notes> 

 

            <mml:segments> 

                <mml:segment id = "0" name = "Soma" cable = "0"> 

                    <mml:proximal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0"/> 

                    <mml:distal x = "0.0" y = "10.0" z = "0.0" diameter = "16.0"/> 

                </mml:segment> 

            </mml:segments> 

 

            <mml:cables> 

                <mml:cable id = "0" name = "Soma"> 

                    <meta:group>all</meta:group> 

                    <meta:group>soma_group</meta:group> 

                </mml:cable> 

            </mml:cables> 

    

            <!-- Adding the biophysical parameters --> 

    

            <biophysics units = "Physiological Units"> 

 

                <bio:mechanism name = "KConductance" type = "Channel Mechanism"> 

                    <bio:parameter name = "gmax" value = "36.0"> 

                        <bio:group>all</bio:group> 

                    </bio:parameter> 

                </bio:mechanism> 

 

                <bio:mechanism name = "NaConductance" type = "Channel Mechanism"> 

                    <bio:parameter name = "gmax" value = "120.0"> 

                        <bio:group>all</bio:group> 

                    </bio:parameter> 

                </bio:mechanism> 

 

                <bio:mechanism name="LeakCond" type="Channel Mechanism" passive_conductance="true"> 

                    <bio:parameter name = "e" value = "-54.3"> 

                        <bio:group>all</bio:group> 

                    </bio:parameter> 

                    <bio:parameter name = "gmax" value = "0.3"> 

                        <bio:group>all</bio:group> 

                    </bio:parameter> 

                </bio:mechanism> 

 

                <bio:spec_capacitance> 

                    <bio:parameter value = "1.0"> 

                    <bio:group>all</bio:group> 

                    </bio:parameter> 

                </bio:spec_capacitance> 

 

                <bio:spec_axial_resistance> 

                    <bio:parameter value = "0.1"> 

                        <bio:group>all</bio:group> 

                    </bio:parameter> 

                </bio:spec_axial_resistance> 

 

            </biophysics> 

 

        </cell> 

    </cells> 

 

</neuroml> 
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The cell consists of a single cylinder (segment with id = 0) of length 10 m and diameter 16 m 
giving a curved surface area of 502.65 μm² . One cable is present and this is used to indicate 
that the segment is part of the soma_group.  
 
The biophysics element contains details of the passive and active electrical properties of the 
cell. The units of all quantities inside this element are set to be Physiological Units. Three 
channel mechanisms are present: KConductance (with conductance density of 36 mS cm

-2
 (360 

S m
-2

)), NaConductance (120 mS cm
-2

 (1200 S m
-2

)) and LeakCond (0.3 mS cm
-2

 (3 S m
-2

)). 
While the description of KConductance and NaConductance will be contained in ChannelML 
files (see example 10.2), none is required for LeakCond, as this specifies 
passive_conductance = true and so the complete description of this conductance is 
determined by the parameters for reversal potential (e = -54.3 mV), and conductance density 
(gmax). Specific capacitance is set at 1 μF cm

-2
 (0.01 F m

-2
) and specific axial resistance is set 

to 0.1 kohm cm (1 ohm m).  
 
We will assume that given the small size of the cell, it is isopotential (and so specific axial 
resistance is not required in the subsequent discussion). The equation determining the 
behaviour of the membrane potential Vm of the cell is: 
  

)t(I)EV()t,V(G)EV()t,V(G)EV()t,V(G
dt

dV
C extKmmKNammNaleakmmleak

m  

 
where C is the total capacitance of the compartment (spec_capacitance * surface area), Eleak is 
the reversal potential of the leak conductance (parameter e in mechanism LeakCond), ENa and 
EK are the reversal potentials obtained from the ChannelML files describing the Na

+
 and K

+
 

conductances respectively (see example 10.2; note that these default reversal potential values 
in the ChannelML file can be overwritten by using an ion_props element in biophysics).  
 
Gleak(Vm,t), GNa(Vm,t) and GK(Vm,t) are the total conductances of the leak, Na

+
 and K

+
 

conductances respectively:  
 

)area surface membrane()t,V(g)t,V(G mAmA  

 
Note that gLeak(Vm,t) = gmaxLeak i.e. does not vary with time or membrane potential. gNa(Vm,t) and 
gK(Vm,t) can be determined from the respective ChannelML files as outlined in section 10.2. 
 
Iext(t) is added to the above equation to indicate how an external current (e.g. due to an current 
clamp electrode or synaptic input) would contribute to the behavior of the cell membrane 
potential (note that such a current would be added in an input element specifying a pulse_input 
in a Level 3 network file). 
 

A good introduction to the cable theory of dendrites is contained in chapter 2 of (Koch and 
Segev, 1998), and chapter 3 gives a background on how such structures might be 
represented by compartmental models.  

Chapters 5 and 6 of (Dayan and Abbott, 2001) also contain a thorough description of the 
modeling of single and multicompartment neurons and is well integrated with the rest of 
the book on theoretical approaches to computational neuroscience. 

A detailed discussion on the physiological processes underlying single cell electrical 
behavior and the models used to describe these is contained in (Koch, 1999).  

Simulator implementations: 

Chapter 5 of the GENESIS book (Bower and Beeman, 1997) also gives an introduction to 
cable modeling (available here: http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf), and 
later chapters, including chapter 15 discuss the specifics of how GENESIS uses 
compartments to simulate such structures. 

NEURON's use of the section object for cable modeling is explained in chapter 5 of the 
NEURON Book (Carnevale and Hines, 2006). 

http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf
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A different approach to modeling conductances spread across a membrane's surface is 
taken by PSICS. This simulator's use of detailed neuronal morphologies is explained 
here: http://www.psics.org/formats/morphology.html and its handling of cellular electrical 
properties is outlined here: http://www.psics.org/formats/properties.html. 

 
 

10.2 Na
+
 conductance in ChannelML 

 
The following ChannelML file shown below contains a description of a Na

+
 conductance based 

on (Hodgkin and Huxley, 1952). See Figure 3 in the main NeuroML paper for an example of the 
squid axon K

+
 conductance. 

 

 

 

<channelml  

    xmlns = "http://morphml.org/channelml/schema"  

    xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"  

    xmlns:meta = "http://morphml.org/metadata/schema"  

    xsi:schemaLocation = "http://morphml.org/channelml/schema  ChannelML_v1.8.1.xsd"  

    units = "Physiological Units"> 

 

    <meta:notes>ChannelML file containing a single Channel description</meta:notes> 

 

    <channel_type name = "NaConductance"> 

         

        <status value = "stable"/> 

 

        <meta:notes>Simple example of Na+ conductance in squid giant axon. Based on Hodgkin and 

         Huxley 1952</meta:notes> 

   

        <current_voltage_relation cond_law="ohmic" ion="na" default_erev="50" default_gmax="120">  

             

            <gate name = "m" instances = "3"> 

                <closed_state id = "m0"/> 

                <open_state id = "m"/> 

 

                <transition name = "alpha" from = "m0" to = "m" expr_form = "exp_linear"  

           rate = "1" scale = "10" midpoint = "-40"/>   

                <transition name = "beta" from = "m" to = "m0" expr_form = "exponential"  

        rate = "4" scale = "-18" midpoint = "-65"/>   

            </gate> 

             

            <gate name = "h" instances = "1"> 

                <closed_state id = "h0"/> 

                <open_state id = "h"/> 

 

                <transition name = "alpha" from = "h0" to = "h" expr_form = "exponential"  

        rate = "0.07" scale = "-20" midpoint = "-65"/>   

                <transition name = "beta" from = "h" to = "h0" expr_form = "sigmoid"  

        rate = "1" scale = "-10" midpoint = "-35"/>     

            </gate> 

             

        </current_voltage_relation> 

         

         

    </channel_type> 

</channelml> 

 

 
In the root channelml element, the units of all subsequent elements are set to be Physiological 
Units. In the current_voltage_relation element, the conductance law is set to ohmic, the ion 
flowing through the channel is specified as na, the default reversal potential is 50 mV and the 
default conductance density is 120 mS cm

-2
.  

 
Given that there are 2 gate elements, m and h with 3 and 1 instances respectively, the equation 
for the conductance density of the channel on a compartment with membrane potential Vm will 
be: 

t),Vh( t),Vm( gmax =t),V(g m
3

mNamNa  

 
and so the current per unit area will be: 
 

)E - (V t),V(g =t),V(I NammNamNa  

http://www.psics.org/formats/morphology.html
http://www.psics.org/formats/properties.html
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As mentioned in section 7, the default_gmax (for gmaxNa) and default_erev (ENa) are optional 
attributes. The conductance density of a channel will be overwritten in element mechanism in 
biophysics when the channel is placed on a cell, and ENa can be overwritten with the 
ion_props element.  
 
The state variables of the channel, m(Vm,t) and h(Vm,t), will be determined by the forward 
(closed_state to open_state, alpham & alphah) and reverse (open_state to closed_state, 
betam & betah) transition rates: 
 

m)V(beta)m()V(alpha
dt

)t,V(dm
mmmm

m 1        

 

h)V(beta)h()V(alpha
dt

)t,V(dh
mhmh

m 1  

 
The form of the equations for alpham, betam etc. will be set by the value of the expr_form 
attribute, and have the following forms (see definition of transition element in section 7):  
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The 3 references given at the start of the box in section 10.1 are very useful for 
explanations of the theory behind the Hodgkin Huxley model. They also discuss how the 
basic model can be extended to incorporate the wide range of active Na

+
, K

+
 and Ca

2+ 

conductances and interactions with subcellular [Ca
2+

].  

Simulator implementations: 

Chapter 4 of the GENESIS book (Bower and Beeman, 1997) also gives an introduction to 
the Hodgkin Huxley model, and chapter 7 discusses some of the other types of ion 
channel commonly used in conductance based models. Chapter 13 presents how these 
types of channels are modeled in GENESIS. The GENESIS script for the above example 
of a Na

+
 channel using the tabchannel object (http://www.genesis-

sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.62) is available here: 
 http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=GENESIS. 

Implementation of active membrane conductances using NEURON's NMODL language 
(http://www.neuron.yale.edu/neuron/static/papers/nc2000/nmodl.htm) is discussed in 
chapter 9 of the of the NEURON Book (Carnevale and Hines, 2006). The NMODL script 
for the Na

+
 channel described above is here:  

http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=NEURON.  

A discussion of the PSICS approach to channel modeling is available here: 
http://www.psics.org/formats/channels.html. The PSICS representation of the Na

+
 channel 

is here: http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=PSICS. 

 

http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.62
http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.62
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=GENESIS
http://www.neuron.yale.edu/neuron/static/papers/nc2000/nmodl.htm
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=NEURON
http://www.psics.org/formats/channels.html
http://neuroml.org/view.php?file=ChannelML/NaChannel_HH.xml&map=PSICS
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10.3 Double exponential conductance waveform synapse 

 
The following ChannelML file describes a synaptic mechanism with a double exponential 
waveform for the time varying conductance.  
 
 

<channelml  

    xmlns = "http://morphml.org/channelml/schema"  

    xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"  

    xmlns:meta = "http://morphml.org/metadata/schema"  

    xsi:schemaLocation = "http://morphml.org/channelml/schema  ChannelML_v1.8.1.xsd"  

    units = "Physiological Units"> 

 

    <meta:notes>ChannelML file containing a single synapse description</meta:notes> 

 

    <synapse_type name = "DoubleExpSynapse"> 

         

        <status value = "stable"/> 

 

        <meta:notes>Simple double exponential waveform synapse</meta:notes> 

   

        <doub_exp_syn max_conductance="1.0E-5" rise_time="1" decay_time="2" reversal_potential="0"/>  

         

    </synapse_type> 

</channelml> 

 

 
 
In the root channelml element, the units of all subsequent elements are set to be Physiological 
Units. The synapse is ohmic and the current into a compartment with membrane potential Vm 
due to the conductance of the synapse (Gsyn(t)) which has reversal potential Esyn 
(reversal_potential above, 0 mV) will be given by: 
 

)E - (V (t)G =t),(VI synmsynmsyn  

 
The time varying conductance following a synaptic firing event at t =0 is given by:  
 

 0 >= t for       ee  A  G  (t)G rise_time

t-

decay_time

t-

maxsyn  

where Gmax is the maximal conductance the synapse reaches on a single synaptic event 
(max_conductance above, 1e-5 mS) and where the normalization factor A is given by 
 

time_rise

time_peak

time_decay

time_peak

ee

A
1

 

 
and peak_time, the time to reach maximum conductance, is: 
 

rise_time

decay_time
ln

)merise_time(decay_ti

)merise_time(decay_ti
peak_time  

 
Note that if rise_time was zero this would simplify to a single exponential synapse: 
 

 0 >= t for        e tancemax_conduc  (t)G decay_time

t-

syn  

 
Note also if decay_time = rise_time = alpha_time, the waveform is for an alpha synapse with 
peak at alpha_time: 
 

0
1

>=     for t e
alpha_time

t
 tancemax_conduc (t) G

    
alpha_time

t
-

syn  
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Models of synaptic conductances are discussed in chapters 5 of (Dayan and Abbott, 
2001) and in chapter 4 of (Koch, 1999).  

Simulator implementations: 

An introduction to the modelling of synaptic conductances can be found in chapter 6 of 
the GENESIS book (Bower and Beeman, 1997), and chapter 14 discusses the specifics 
of how this is implemented in GENESIS.  

Chapter 10 of the NEURON Book (Carnevale and Hines, 2006) also discusses modeling 
of synaptic transmission. 

 
 

10.4 Simple Network 

 
The NetworkML file below contains a simple network of consisting of 2 populations of cells, a 
network connection between them and an external synaptic input to the presynaptic population.  
 
 

<networkml xmlns = "http://morphml.org/networkml/schema"  

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"  

 xmlns:meta = "http://morphml.org/metadata/schema"  

 xsi:schemaLocation = "http://morphml.org/networkml/schema NetworkML_v1.8.1.xsd"  

 length_units = "micrometer"> 

                         

    <meta:notes>A simple network where instances of cell populations, connections, 

    etc. are specified. </meta:notes> 

 

    <populations> 

        <population name = "PopA" cell_type = "HH_Cell">  

            <instances size = "2">  <!--  All instances listed --> 

                <instance id = "0"><location x = "0" y = "0" z = "0"/></instance> 

                <instance id = "1"><location x = "100" y = "0" z = "0"/></instance> 

            </instances> 

        </population> 

        <population name = "PopB" cell_type = "HH_Cell"> 

            <instances size = "3">  <!--  All instances listed --> 

                <instance id = "0"><location x = "0" y = "100" z = "0"/></instance> 

                <instance id = "1"><location x = "100" y = "100" z = "0"/></instance> 

                <instance id = "2"><location x = "200" y = "100" z = "0"/></instance> 

            </instances> 

        </population> 

    </populations> 

     

     

    <projections units = "Physiological Units"> 

        <projection name = "NetworkConnection" source = "PopA" target = "PopB"> 

             

            <synapse_props synapse_type = "DoubleExpSynapse" internal_delay = "5" threshold = "-20"/> 

                 

            <connections><!--  All connection instances specified --> 

                <connection id = "0" pre_cell_id = "0" post_cell_id = "1"/> 

                <connection id = "1" pre_cell_id = "1" post_cell_id = "0">    

                    <properties weight = "0.5"/>        <!--  adjusted value  --> 

                </connection> 

            </connections> 

             

        </projection> 

    </projections> 

     

  

    <inputs units = "SI Units"> 

         

        <input name = "RandomInput"> 

            <random_stim frequency = "50" synaptic_mechanism = "DoubleExpSynapse"/> 

            <target population = "PopA"> 

                <sites> 

                    <site cell_id = "1"/>     

                    <site cell_id = "2"/>   

                </sites> 

            </target> 

        </input> 

         

    </inputs> 

 

</networkml> 
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It uses the instance based form of NetworkML and so all of the positions, connections and input 
locations are explicitly listed. 
 
The populations, PopA and PopB are both made up of instances of a cell of type HH_Cell. The 
populations consist of 2 and 3 cells respectively and the precise locations in 3D Cartesian 
coordinates are given.  
 
The projection specifies PopA as the presynaptic population and PopB as the postsynaptic 
population. The type of the synaptic mechanism is specified in synapse_props as 
DoubleExpSynapse. As with the reference to HH_Cell, the implementation of 
DoubleExpSynapse will be in an external NeuroML file.  
 
There is an internal_delay of 5 ms specified for all instances of connections in this projection 
(this could be used to model the delay associated with propagation of the action potential along 
an axon, or the time taken for vesicles to release and the neurotransmitter to cross the 
synapse). The threshold at which the presynaptic location should be considered spiking is set 
at -20 mV. Two connection instances are present. The second connection has a different 
weight associated with it, and a scaling factor of 0.5 will be applied to the conductance of the 
synapse as described in the original DoubleExpSynapse. 
 
The logical sequence associated with a spiking event in this model is: 
 

1) The membrane voltage of both the pre and postsynaptic cells evolve with time according 
to the electrical properties of their membranes (sections 10.1 and 10.2). 
 
2) When a "listener" at the presynaptic connection location sees that the membrane 
potential passes threshold, a spiking event is registered with an object at the postsynaptic 
location which is responsible for adding the synaptic current. No further spiking events will 
be transmitted until the presynaptic membrane potential has again passed below the 
threshold value (note this time will be greater than zero in the continuous HH case). The 
behavior of the presynaptic cell is not otherwise affected by the spiking event. 
 
3) The postsynaptic object for the synapse will wait for a time internal_delay before 
applying the conductance change (potentially scaled by a global or synapse specific factor 
weight). The time course of the conductance will be calculated as outlined in section 10.3. 
Note that the synaptic conductance may reach a value higher than max_conductance, if 
the conductance was already non zero due to a previous spiking event. 
 
4) The membrane potential of the postsynaptic cell will then evolve according to the first 
equation in section 10.1, with Iext(t) being the sum of currents due to synaptic inputs. 

 
The input on the presynaptic population specifies that a random_stim is applied, which 
consists of a Poisson process with an average frequency of 50 Hz (note SI Units specified in 
inputs) triggering a DoubleExpSynapse onto each of the 2 listed input sites. This current too 
should be incorporated into the Iext(t) term in the first equation in section 10.1 to determine the 
evolution of the voltage of the presynaptic cell. 
 

Chapters 10 and 12 of (Koch and Segev, 1998) give detailed descriptions of network 
model containing conductance based cell models.  

Simulator implementations: 

Chapter 17 of the GENESIS book (Bower and Beeman, 1997), describes the setup of a 
network of cells using its inbuilt objects.  

Chapter 11 of the NEURON Book (Carnevale and Hines, 2006) presents the commands 
and objects it supports for network modeling. 
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