
Supplementary Text S1: Communities in the Interactome

A network consists of elements (called nodes) that are connected to each other by edges (called links). Many

real-world networks can be divided naturally into close-knit sub-networks called communities. The investigation

of algorithms for detecting communities in networks has received considerable attention in recent years [1, 2].

From an intuitive standpoint, communities should consist of groups of nodes such that there are many links

between nodes in the same group but few links between nodes in different groups. To detect communities algo-

rithmically, this notion must be formalised. In order to identify community structure in the various interaction

networks that we examine, we employ a method based on optimising the well-known quality function known

as graph ‘modularity’ [3, 4]. Suppose that an unweighted network with n nodes and m links is divided into

N communities C1, C2, · · · , CN . Let ki denote the degree (number of links) of node i and let A be the n × n

adjacency matrix, so that A(i, j) is 1 if nodes i and j have a link between them and 0 if they do not. The

modularity Q is then given by [4]
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where kikj/(2m) is the expected number of links between nodes i and j in a network with the same expected

degree distribution but with links placed at random. Graph modularity thus captures how many more links there

are within the specified communities than one would expect to see by chance in a network with no modular

structure. Note, however, that (1) assumes a particular null model that explicitly preserves the expected

degree distribution in the random setting. It is possible to employ other null models [2], though this is the

most common choice. In fact, we use an extension of this method based on an analogy to the Potts model

in statistical mechanics [5]. This incorporates a resolution parameter (denoted by γ) into the equation for

modularity, leading to the quality function
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Setting γ = 1 leads to the standard modularity function (1), which is what we use for the results in Figure 3.

However, we also present results for γ = 0.5 and γ = 2 in Figure S2, demonstrating that whilst the number of

communities changes substantially as we increase or decrease the resolution, the pattern of role assignments to
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the nodes remains similar.

Using this framework, we can detect communities by maximising the quality function (2) over all possible

network partitions. Because this problem is known to be NP-complete [6], reliably finding the global maximum

is computationally intractable even for small networks. Thankfully, there exist a number of good computational

heuristics that can be used to obtain good local maxima [1, 2, 7]. Here we use recursive spectral bisection [8].

One can use similar procedures to optimise quality functions other than modularity, and the analysis that we

have described can be employed in those cases as well.

Maximising graph modularity (1) is expected to give a partition in which the density of links within each

community is significantly higher than the density of links between communities. In Figure S4, we show the

network partition (with nodes coloured according to community) that results from applying such an optimisation

to the largest connected component of the filtered yeast interactome (FYI) data set [9].

To assess how well the obtained topological communities reflect functional organisation, we used annotations

from the Gene Ontology (GO) database [10] to define their Information Content (IC). GO provides a controlled

vocabulary for describing genes and gene products, such as proteins, using a limited set of annotation terms. It

consists of three separate ontologies—one each for biological process, cellular component, and molecular function.

For each community, we computed the p-value of the most-enriched GO annotation term; the frequency of this

term within its community is highest relative to its background frequency in the entire network. To do this, we

used the hypergeometric distribution, which corresponds to random sampling without replacement. The extent

of enrichment can then be gauged using IC [11], which is defined as

IC = − log
10

(p) , (3)

where p denotes the p-value. In Table S1, we summarise the results of calculating this measure for communities

detected (for γ = 1) on two of the yeast interaction data sets, FYI and the more recent filtered high-confidence

(FHC [12]). For comparison, we also examine a random partition of FYI into communities with the same size

distribution as the actual ones.

It is clear that on average there is very significant functional enrichment within the detected communities.

In particular, it is far greater than could be expected by chance. This is in accordance with previous studies on

communities in protein interaction networks [13–17]. It is also evident that IC varies widely over communities

and that not all of them are equally enriched. There are some relatively heterogeneous communities (which

are not aptly described by a single, specific GO term) and others that show a very high functional coherence.

In particular, a more detailed inspection of the community composition reveals that proteins that are part

of the large and small ribosomal subunit complexes are almost perfectly grouped together, and several other

communities consist exclusively of proteins that are known to be part of a given complex. Thus, the topology of
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the interaction network provides a great deal of information about the functional organisation of the proteome.

We do not claim that our particular partitioning is in any sense unique; rather, it is only a means to an end,

as our aim is to examine the implications of community structure for individual protein roles, with particular

reference to the notion of date and party hubs. We have also used the greedy algorithm described by Blondel et

al. [18] as an alternative method for optimising modularity. We obtained results that are very similar to those

presented here.
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