Supplement Protocol S1 – Bionet Program Listings

Vicious Cycle (VC) Model

```
# Hypothesis Vicious Cycle
# Jan 5, 2010
nFuzzyStates 6
starttime 0.0
endtime 40.0
ntimesteps 10000
PopulationSize 1
nGenerations 1
mutationRate 0.05
Exp
# Define variables to be plotted
Plot ROS
# Level of Free Radicals
Plot OxProt
# Level of oxidized proteins
Plot MRSP
# Mitochondrial Respiration
Plot ATP
# ATP levels
Plot ADP
# ADP levels
Plot Energy_tot
# Plot total energy consumed
Plot ATPconsume
# Plot total energy consumed
Plot ProtBiosynth
# Biosynthesis Activity levels
# Define nodes, start with initial condition
# High ATP and Biosynthesis, ROS and NF-kB set low
Node ATP 0.70
Node ADP 0.70
Node ATPconsume 0.8
Node Energy_tot 0.0
Node MRSP 0.80
Node ROS 0.1
Node OxProt 0.0
Node ProtBiosynth 0.8
```

```
# PROCESSES
# 01 Free radical levels
Reaction OXROT ROS 0.1
 pro OxProt 5 5 5 5 5 0
 act ROS
# Protein Turnover
Reaction OxProt Bio 0.1
 pro OxProt 5 5 5 5 5 0
 inh ProtBiosynth
#Reaction ROS scavenged/absorbed
Reaction ROS_decay 0.4
sub ROS 1 2 3 4 5 5
#
# 02 Mitochondrial activity
# Damage by ROS inhibits mitochondrial respiration
# Mitochondrial respiration (MRSP) activated by ADP
Reaction MRSP_activation 0.8
 pro MRSP 5 5 5 5 5 5
 act ADP
# Any damage reduces MRSP
Reaction MRSP_inhibition 0.15
 sub MRSP 5 5 5 5 5 5
 act OxProt
Reaction MRSP_ATP 1.0
 pro ATP 5 5 5 5 5 0
 act MRSP
Reaction MRSP ADP 1.0
 sub ADP 5 5 5 5 5 5
 act MRSP
# ROS generation related to mitochondrial activity and damage
Reaction ROS_produced 0.25
 pro ROS 5 5 5 5 5 0
 act MRSP
Reaction ROS_produced 0.50
 pro ROS 5 5 5 5 5 0
 act OxProt
Reaction MRSP_deactivation 0.8
 sub MRSP 5 5 5 5 5 5
 act ATP
# Autophagy
```

```
Reaction Autophagy_OXPROT 0.15
 sub OxProt 1 2 3 4 5 5
 act ATP
#03 ER Reactions
# Biosynth inhibited by oxidized proteins, damage to ER
# Production of ADP
Reaction Biosynth_act 1.0
 pro ATP consume 5 5 5 5 5 0
 act ATP
# Effective Protein Synthesis
Reaction ProteinSynth 0.20
 sub ProtBiosynth 5 5 5 5 5 5
 inh ATPconsume 5 4 3 2 0 0
# Inhibition of biosynthesis by damaged ribosomes
Reaction Biosynth_OXPROT_inh 0.01
 sub ATPconsume 5 5 5 5 5 5
 act OxProt
Reaction ATP_used 1.0
 sub ATP 5 5 5 5 5 5
 act ATPconsume
Reaction Biosynth_ADP 1.0
 pro ADP 5 5 5 5 5 0
 act ATPconsume
# total acc. energy consumed
Reaction Energy_totals 0.015
 pro Energy_tot 5 5 5 5 5 5
 act ATPconsume
Reaction Biosynth_consumed 1.0
 sub ATPconsume 5 5 5 5 5 5
 act ADP
# end of input file
```

Adaptive Response (AR) Model

```
# Adaptive Response Model
# NF-kB & mTor
# Jan 5, 2010
nFuzzyStates 6
starttime 0.0
endtime 40.0
ntimesteps 10000
PopulationSize 1
nGenerations 1
mutationRate 0.05
Exp
# Define variables to be plotted
Plot ROS
# Level of free radicals
Plot OxProt
# Level of oxidized proteins
Plot MRSP
# Mitochondrial respiration
Plot ATP
# ATP levels
Plot Energy_tot
# Total Energy turnover
Plot ADP
# ADP levels
Plot ATPconsume
# Protein Synthesis
Plot ProtBiosynth
# Biosynthesis activity
Plot NFKB
# NFkB levels
Plot MTOR
#Plot of mTor activity
# Define nodes, start with initial condition
# ATP and Biosynthesis high, ROS and NF-kB set low
Node ATP 0.70
Node ADP 0.70
```

```
Node ATPconsume 0.80
Node ProtBiosynth 0.8
Node Energy_tot 0.0
Node MRSP 0.80
Node NFKB 0.07
Node MTOR 0.4
Node ROS 0.1
Node OxProt 0.0
# PROCESSES
#
# 01 Free radical levels
# ROS causes increase in oxidized proteins
Reaction OXPROT_ROS 0.1
 pro OxProt 5 5 5 5 5 0
 act ROS
# Oxidation dependent on protein turnover
Reaction OXPROT_Bio 0.1
 pro OxProt 5 5 5 5 5 0
 inh ProtBiosynth
Reaction ROS decay 0.4
 sub ROS 1 2 3 4 5 5
# NFKB activates scavengers was 0.2
Reaction ROS_scavenge 0.2
 sub ROS 1 2 3 4 5 5
 act NFKB
# 02 Mitochondrial activity and ATP generation
# Buildup of mitochondrial respiration inhibited by ROS
# Addtl. ATP generated by glycolysis mediated by mTOR and NF-kB
Reaction Glycolysis_ATP 0.75
 pro ATP 5 5 5 5 5 0
 act MTOR 5 3 0 0 0 0
# ADP consumed by Glycolysis
Reaction ADP Glycolysis 0.75
 sub ADP 0 5 5 5 5 5
 act MTOR 5 3 0 0 0 0
Reaction Glycolysis_NFKB_ATP 0.1
 pro ATP 5 5 5 5 5 0
 act NFKB 0 0 1 2 3 4
# ADP consumed by Glycolysis
Reaction ADP NFKB Glycolysis 0.1
```

```
sub ADP 0 5 5 5 5 5
 act NFKB 0 0 1 2 3 4
# Remaining ADP builds potential for mitochondrial respiration
Reaction MRSP activation 0.8
 pro MRSP 5 5 5 5 5 5
 act ADP
# Downregulation of mitochondrial respiration by stress response
Reaction MRSP_change 0.15
 sub MRSP 5 5 5 5 5 5
 act MTOR 2 1 0 0 0 0
Reaction MRSP_change 0.15
 pro MRSP 5 5 5 5 5 5
act MTOR 0 0 0 1 2 3
Reaction MRSP_inhibition 0.15
sub MRSP 5 5 5 5 5 5
 act OxProt
# NFKB inhibits MRSP
Reaction NFKB_MRSP 0.05
 sub MRSP 5 5 5 5 5 5
 act NFKB
Reaction MRSP_ATP 1.0
 pro ATP 5 5 5 5 5 0
 act MRSP
Reaction MRSP_ADP 1.0
 sub ADP 5 5 5 5 5 5
 act MRSP
Reaction ROS produced 0.25
 pro ROS 5 5 5 5 5 0
 act MRSP
Reaction ROS_produced 0.50
 pro ROS 5 5 5 5 5 0
 act OxProt
# Autocrine loop NADPH Oxidase System
Reaction NADPHOXD_produced 0.1
 pro ROS 5 5 5 5 5 0
 act NFKB
Reaction MRSP_deactivation 0.8
 sub MRSP 5 5 5 5 5 5
act ATP
# NF-kB degradation
```

```
Reaction NFKB_decay 0.4
 sub NFKB 0 1 2 3 4 5
# 03 Activation of Stress Response
# through ROS levels and oxidized proteins (1:1)
Reaction NFKB Stress ROS 0.25
 pro NFKB 5 5 5 5 5 0
 act ROS
Reaction NFKB_Stress_OXPROT 0.25
 pro NFKB 5 5 5 5 5 0
 act OxProt
# Activation of mTOR
# by low ATP levels
# >>>> For 20% less mTOR sensitivity constant is
      decreased from 0.075 to 0.06
#
Reaction MTOR ATP 0.075
 sub MTOR 0 1 5 5 5 5
 inh ATP
# Activation of mTOR by ROS
Reaction MTOR ROS 0.08
 pro MTOR 5 5 5 1 1 0
 act ROS
# Autophagy
Reaction Autophagy_OXPROT 0.15
sub OxProt 1 2 3 4 5 5
act ATP
# Reaction Autophagy_MTOR 0.05
sub OxProt 1 2 3 4 5 5
act MTOR 5 2 1 0 0 0
#03 ER Reactions
# ATP consumption inhibited by oxidized proteins
# damage to ER
# Production of ADP
Reaction Biosynth_act 1.0
 pro ATP consume 5 5 5 5 5 0
act ATP
# Relative Protein Synthesis Scaled
# >>>>> scaled to be 30% at 60% ATPconsume
         for lower sensitivity of mTor rate is set to 0.06
Reaction ProteinSynth 0.07
```

```
sub ProtBiosynth 5 5 5 5 5 5
 inh ATPconsume
# Oxidative damage to ribosomes
Reaction Biosynth_OXPROT_inh 0.01
 sub ATPconsume 5 5 5 5 5 5
 act OxProt
# Modulation of ATP consumption regulated by mTor
#
Reaction Biosynth_mTOR_inh 0.05
 sub ATPconsume 5 5 5 5 5 5
 act MTOR 5 3 0 0 0 0
Reaction Biosynth_mTOR_inh 0.05
 pro ATPconsume 5 5 5 5 5 5
 act MTOR 0 0 0 3 5 0
# Biosynthesis required for upregulated inflammatory proteins
Reaction Biosynth_NFKB_inflamm 0.05
 pro ATPconsume 5 5 5 5 5 5
 act NFKB
# Final ATP/ADP levels
Reaction ATP_used 1.0
 sub ATP 5 5 5 5 5 5
 act ATPconsume
Reaction Biosynth_ADP 1.0
 pro ADP 5 5 5 5 5 0
 act ATPconsume
# total accumulated energy turnover
Reaction Energy_totals 0.015
 pro Energy_tot 5 5 5 5 5 5
 act ATPconsume
Reaction Biosynth_consumed 1.0
 sub ATPconsume 5 5 5 5 5 5
 act ADP
# end of input file
```