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In this protocol, we briefly review some aspects of DNA- and RNA-motif finding in order to help

situate our new model within its broader theoretical context.

There are two major classes of motif model representations for sequence preferences of nucleic acid-

binding (i.e. DNA-binding or RNA-binding) proteins (NBPs). The models in the first class (hereafter

”word frequency (motif) models”) represent a probability distribution over nucleic acid (NA) words.

Models in the second class (hereafter ”affinity-based (motif) models”) parameterize a function that assigns

the relative binding affinity (or log binding affinity) of the protein for NA words.

Typically, algorithms that learn word frequency models take as input a set of sequences enriched for

NBPs binding sites and fit their models using maximum likelihood or penalized maximum likelihood

methods. Though recently methods that use different point estimates of the parameter posterior have

been developed [1, 2]. In contrast, most algorithms that learn affinity-based models directly also take as

input a numerical value associated with each sequence. This value is interpreted as a measurement of

the binding affinity of the NBP for the sequence. Typically, these types of models require examples of

both bound and unbound sequences. These types of affinity data have become increasingly common [3–5]

as have algorithms (including RNAcontext) to fit motifs using these values [6–11]. However, it is also

possible to transform a word frequency model into an affinity-based model, as we describe below.

Word frequency motif models

A key step in fitting word frequency motif models is using the input sequences to generate counts of words

that represent NBP binding sites; motif models are then fit to these counts. Often generating these word
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counts, or expected word counts, is done as part of procedure that iterates between attempting to locate

the NBP binding sites within the input sequences and refining the fit of the motif model [2, 12].

Formally, let {[P-s1], [P-s2], . . . , [P-sN ]} be the counts (or expected counts) of how often various words

{s1, s2, . . . , sN} appear as binding sites of protein P in the input set. Let Pr(s; Θ) be a word frequency

motif model where Pr(s; Θ) is a probability distribution over words s parameterized by Θ. Often, but

not always, the support of Pr(s; Θ) is NA words of a fixed, pre-defined length K. The parameters Θ can

be learned by optimizing the fit to the empirical word probabilities, i.e.,

Pr(si; Θ) ≈ [P-si]∑N
j=1[P-sj ]

,∀i. (1)

Until recently, NBP binding preferences were estimated from a relatively small number of binding

sites defined in vivo or through low-throughput in vitro selection procedures. This small number of

observations was insufficient to reliably estimate Pr(si; Θ) for each word, and as such word probabilities

for fixed-length motif models were estimated using a product-multinomial model, commonly known as a

position frequency matrix (PFM), in which the distributions of bases at each position in the word are

independent. In the PFM, Pr(si; Θ) =
∏K

k=1 Θk,si(k) where si(k) indicates the k-th base in word si.

This model only contains a small number of parameters, 3K, and its maximum likelihood estimate is

easily found by setting Θk,si(k) = fk,si(k) where fk,si(k) is the frequency of si(k) at position k. However,

because PFM models are inaccurate representations of transcription factor (TF) binding affinity [13,14],

a variety of more complex probability distributions have been developed to model interactions between

bases [15–19] or variable-spacing between binding sites of obligatory heterodimers like bZIP or bHLH

proteins [20].

Affinity-based motif models

These models are based on physical principles of protein-ligand interactions. In particular, consider the

equilibrium reaction of binding of a protein P to the NA word s:

P + s
kon−−−⇀↽−−−
koff

P-s (2)
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where kon and koff represents the protein binding and dissociation rates respectively. The binding affinity

of the protein for s can be expressed in terms of its equilibrium constant Ka(s):

Ka(s) =
[P-s]
[P][s]

=
kon

koff
(3)

where [P], [s], [P-s] correspond to the concentrations of the unbound protein, unbound s, and the

protein in complex with s respectively. Note that we are using the same notation for concentration as we

do for word counts because these two quantities differ only in their units. Affinity-based motif finding

methods fit parameters Ω of their motif models W (s; Ω) by trying to match their affinity estimates for a

given word s those implied by the input, i.e. W (s; Ω) ≈ Ka(s).

Note that, in addition to Ka(s), motif models in this class have also been designed to estimate a

number of other measures of binding affinity, e.g. the dissociation constant Kd(s) = Ka(s)−1 , the log

binding affinity log Ka(s), or the relative binding affinity CKa(s) up to an unknown constant C that is

independent of s [8]. The popular position weight matrix (PWM) [21,22] or the position-specific affinity

matrix (PSAM) [23] are examples of these types of models. Note also, that one can derive an estimate

of relative binding affinity W (si; Θ) implied by a word frequency model, Pr(si; Θ) by dividing the latter

by [si], i.e.

W (si; Θ) =
Pr(si; Θ)

[si]
≈

(
[P -si]

/∑N
j=1[P-sj ]

)

[si]
∝ Ka(si)

For example, MotifRegressor [6] uses this approach, approximating [si] with a third-order Markov model

trained on background sequence, to translate word frequency models fit by MDScan [24] into affinity-based

models suitable for scoring sequences.

Estimating sequence affinity from word affinity

Rarely do the sequences input into motif finding algorithms consist of delineated binding sites. Fur-

thermore, the input sequences ”enriched” for binding sites can contain more than one binding site, or

possibly none at all. As such, an important component of any motif finding procedure, is a sequence

scoring function that takes as input the probabilities or affinities assigned to each word by the motif

model and outputs a ”score” for the entire sequence that reflects the number of likely NBP binding sites

therein and their strength.
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Word frequency motif models are usually paired with probabilistic generative models of sequences.

The ”score” computed by these generative models for an arbitrary sequence is the probability of gen-

erating the sequence under the model. These procedures are often subject to certain constraints about

how the sequences were generated, such as the presence of exactly one, zero or one, or an arbitrary

number of binding sites per sequence. In the MEME (and MEMERIS [25]) algorithm, for example, these

three possibilities are called the OOPS, ZOOPS, and TCM options, respectively. Further refinements to

generative models of sequences employ, for example, Hidden Markov Models to model steric hindrances

that prevent overlapping binding sites and/or to model clustering of binding sites within cis-regulatory

modules. A good summary of recent work in this area is provided in [26]. One advantage to this approach

is that it is easy to incorporate competition for NBP binding sites from, for example nucleosomes [27]

or internal RNA secondary structure [25], by assessing a prior probability on possible NBP binding sites

according to the strength of competition for the site. A disadvantage to this approach is that the physi-

cal interpretation of these generative probabilities becomes difficult when there are multiple binding sites

within a sequence.

There remains some controversy about the best approach for scoring sequences using affinity-based

motif models. Early algorithms (e.g. [6–8]) used the sum of the affinities of each word in the sequence as

an estimate of the NBP affinity for the entire sequence. One criticism of this approach is that the number

of proteins bound to the sequence (also called the ”occupancy” of the sequence) also depends on the

number of proteins initially available for binding. So, if the initial protein concentration is low and the

sequence has many high affinity binding sites, the actual occupancy of the sequence can be much lower

than its potential occupancy implied by the estimated affinity. To address these concerns, some sequence

scoring functions use affinity-based motif models to compute a function N(s), the ”occupancy” of word

s [28–30], that also considers the initial concentration of proteins available for binding. This occupancy,

which represents the proportion of words s bound by the protein, can be expressed as follows:

N(s) =
[P-s]

[P-s] + [s]
. (4)
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Note that dividing both sides with [P-s] gives:

N(s) =
1

1 +
[s]

[P-s]

(5)

Now we can rewrite the occupancy in terms of Kd(S) since
[S]

[P-s]
is equal to

Kd(S)
[P]

:

N(s) =
1

1 +
Kd(s)
[P]

(6)

which is equal to:

N(s) =
1

1 + exp(log Kd(s))− log[P])
(7)

So, given an affinity-based motif model W (s; Ω) of binding affinity Ka(s) = Kd(s)−1, measured under

the same conditions, one can calculate an estimate N̂(s) of occupancy as follows:

N̂(s) =
1

1 + exp(− log W (s; Ω)− log[P])
. (8)

When fitting an affinity-based model using occupancy-based scoring, one can represent the often unknown

constant log[P] with a bias β and train it while fitting the model. Note also, that one can adapt an existing

affinity-based motif model W̃ for an NBP to predict occupancy under different experimental conditions

(i.e. a change in temperature) by also introducing a scale α, so that the final model becomes:

N̂(s) =
1

1 + exp(−α log W̃ (s; Ω)− β)
. (9)

In RNAcontext, we replace α log W̃ (s; Ω) ≈ log Kd(S) with
∑K

k=1 Θk,s(k) where Θ represents the model

parameters. So that we write equation 9 as follows:

N seq(s) = σ(
K∑

k=1

Θk,s(k) + bias) (10)

where σ(x) = 1/(1 + e−x) is the logistic function.

Occupancy-based sequence scoring functions include those that simply sum the occupancy of all words
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in the sequence [30], those that calculate the probability that at least one site in the sequence is bound

using the ”noisy-OR” function [29], and more complex schemes that consider competitive and cooperative

binding [29,31].
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