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1 IP3R model (Supporting Figure 1 and Table 1)

We use a modified version of the DeYoung-Keizer model (DKM), but the following derived

reaction diffusion system and its solution can also be used with other channel models. The

DKM assumes each IP3R to consist of four identical subunits with 3 binding sites each.

One binding site for IP3, one for Ca2+ activating the subunit and another one for Ca2+,

which inhibits the subunit. The two binding sites for Ca2+ with a higher affinity for the

activating site and a lower affinity for the dominant inhibiting site is a minimal choice to

generate nonlinearities which are essential for Ca2+ induced Ca2+ release.

Since each of the 3 binding sites can be free or occupied, a single subunit has 23

different states Xijk and 12 possible transitions, which can be visualized on a cube as

shown in Supporting Figure 1A.
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Supporting Figure 1: A: Scheme of the DeYoung-Keizer model for a single subunit. A
subunit is active, if IP3 (I) is bound and Ca2+ (C) is only bound to the activating site, i.e.
in state X110. A channel opens if at least 3 of its 4 subunits are active. See text for more
details and Supporting Table 1 for values of rates bi and rate constants ai. B: Stationary
open probability Po defined by Equation (2) for the rate constants ai and rates bi given
in Supporting Table 1.

The first index of Xijk specifies IP3 binding and is 1 if IP3 is bound and 0 otherwise.

Analogously, the second index indicates Ca2+ binding to the activating site, and the last

one corresponds to Ca2+ binding to the dominant inhibiting site. A subunit is active in the
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a1 20 (µMs)−1 IP3 binding with no inhibiting Ca2+ bound
b1 20 s−1 IP3 dissociation with no inhibiting Ca2+ bound
a2 0.001 (µMs)−1 Ca2+ binding to inhibiting site with IP3 bound
b2 0.03 s−1 Ca2+ dissociation from inhib. site with IP3 bound
a3 2.6 (µMs)−1 IP3 binding with inhibiting Ca2+ bound
b3 20 s−1 IP3 dissociation with inhibiting Ca2+ bound
a4 0.025 (µMs)−1 Ca2+ binding to inhib. site with no IP3 bound
b4 0.1 s−1 Ca2+ dissociation from inhib. site without IP3

a5 10 (µMs)−1 Ca2+ binding to activating site
b5 1.225 s−1 Ca2+ dissociation from activating site

Supporting Table 1: Rates of the DKM used within simulations.

state X110 only and a channel will open if at least three of the four subunits are activated.

The transitions between the states Xijk occur by stochastic binding and dissociation

of signalling molecules to the corresponding binding sites. The rates for binding depend

on the particular rate constants ai and on the Ca2+ concentration C and the IP3 con-

centration I, respectively, as shown in Supporting Figure 1A, whereas dissociation occurs

with constant rates bi. Values are given in Supporting Table 1.

The binding and unbinding of Ca2+ and IP3 in an ensemble of receptors lead to a

fraction of channels pijk in the stateXijk. In the case of a large and homogeneous ensemble,

the dynamics of pijk can be described by rate equations taking the dependence on the Ca2+

and IP3 concentration into account. In general these concentrations are not constant in

time, and especially the Ca2+ concentration changes enormously by transitions from closed

to open states and vice versa. We can determine the stationary values p̄ijk for constant

Ca2+ and IP3 concentrations denoted by Cst and I, respectively. They are given by

p̄000 = γ1 d1d2d5 p̄100 = γ1 d2d5 I , (1a)

p̄010 = γ1 d1d2 Cst p̄001 = γ1 d3d5 Cst , (1b)

p̄011 = γ1 d3 C
2
st p̄101 = γ1 d5 I Cst , (1c)

p̄110 = γ1 d2 I Cst p̄111 = γ1 I C
2
st , (1d)
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where γ−1
1 = (Cst + d5) (d1d2 + Cstd3 + CstI + d2I) and di =bi/ai.

With these relations we can determine the stationary open probability Po in depen-

dence on Ca2+ and IP3. Since a channel opens if three or four subunits are in the state

X110, the open probability takes the form

Po = 4p3
110 − 3p4

110 , (2)

which is shown in Supporting Figure 1B in dependence on Ca2+ and IP3 for the rates

given in Supporting Table 1. We observe a bell shaped dependence on Ca2+ and the

monotonic increase of Po with increasing IP3. The values of Po are in the range found

experimentally [1, 2].
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2 Derivation of the linearized system (Supporting Figure 2

and Table 2)

To reflect the most important cytosolic properties, we take free [Ca2+] one mobile [B]

and one immobile buffer [Bi] in the cytosol into account leading to the following reaction

diffusion system

∂[Ca2+]
∂t

= DCa∇2[Ca2+]− Pp[Ca2+] + Pl([E]− [Ca2+]) +
Ncl∑
j=1

Jj(t) δ (r− ri) (3a)

− k+[B][Ca2+] + k−([B]T − [B])− k+
i [Bi][Ca2+] + k−i ([Bi]T − [Bi])

∂[B]
∂t

= DB∇2[B]− k+[B][Ca2+] + k−([B]T − [B]) (3b)

∂[Bi]
∂t

= −k+
i [Bi][Ca2+] + k−i ([Bi]T − [Bi]), (3c)

where we applied the buffer conservation and used a linear pump and leak flux with the

flux constants Pp and Pl. Jj(t) is the stochastically in time varying channel cluster current

of the jth cluster, k+ and k− denote the capture and dissociation rates of the buffers, and

[B]T and [Bi]T are the total mobile and immobile buffer concentrations. The linearization

of the nonlinear pump term Jnl
pump = V max [Ca2+]2

[Ca2+]2+K2
D

of the Form J lin
pump = Pp[Ca2+] is

shown in Supporting Figure 2, where KD is the dissociation constant of the pump. The

parameter Pp =
√

3V max/(4KD) is determined by J lin
pump = Jnl

pump at the inflection point

of Jnl
pump. The linearization matches the nonlinear pump term rather well for the most

relevant range up to 2 KD.

We introduce dimensionless concentrations by

c =
[Ca2+]
KB

, b =
[B]

[B]T
, bi =

[Bi]
[Bi]T

, e =
[E]
KB

(4)

where KB denotes the dissociation constant of the mobile buffer. For one channel cluster,
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Supporting Figure 2: Linearization of the SERCA pump term. The linearization (red) of
the nonlinear term Jnl

pump = V max[Ca2+]2
(
[Ca2+]2 +K2

D

)−1 (black) around its inflection
point leads to a quantitatively well approximation over a large concentration range. For
regions, where the concentration is even higher than 2 KD, i.e. close to open channels,
the dynamics is mostly determined by the diffusion and channel terms.

this leads to

1
Tk+[B]T

∂c

∂t
=

DCa

L2k+[B]T
∇2c− bc+ (1− b) +

Pl
k+[B]T

(ē− c)− Pp
k+[B]T

c

+
[Bi]Tk−i
[B]Tk−

(
1− bi − bic

KB

KBi

)
+

J(t)
L3k−[B]T

δ(r − r0) (5a)

1
Tk−

∂b

∂t
=

DB

L2k−
∇2b− bc+ (1− b) (5b)

[Bi]T
T [B]Tk−

∂bi
∂t

=
[Bi]Tk−i
[B]Tk−

(
1− bi − bic

KB

KBi

)
. (5c)

To obtain a dimensionless system we choose

DCa

L2k+[B]T
= 1⇒ L2 =

DCa

k+[B]T
(6a)

1
Tk+[B]T

= 1⇒ T =
1

k+[B]T
(6b)

defining the diffusion length L and reaction time T . They are used to rescale time t→ t/T

and space r → r/L. Similar the remaining quantities in equations (5) can be subsumed
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c [Ca2+]
KB

dimensionless free Ca2+ concentration

b [B]
[B]T

dimensionless free mobile buffer concentration

bi
[Bi]

[Bi]T
dimensionless free immobile buffer concentration

e [E]
KB

dimensionless free Ca2+ concentration within the ER

d DB
DCa

ratio of the diffusion coefficients

ετ
[B]T
KB

time separation of the mobile buffer

εiτ
[Bi]T
KB

time separation of the immobile buffer

εR
[Bi]T k

−
i

[B]T k−
ratio of buffer influence

σl,p
σi

k+[B]T
scaled fluxes of Pl and Pp

σ(t) J
k−[B]T

(
k+[B]T
DCa

) 3
2 scaled channel cluster current J(t)

κ KB
KBi

dissociation constants ratio of the mobile and immobile buffer

Supporting Table 2: Definition of non-dimensional parameters as given in Table 1 in the
main text.

in dimensionless parameters given in Supporting Table 2 and in Table 2 of the main text.

Thus equations (5) take the form

∂c

∂t
= ∇2c− (bc+ b− 1)− εR (bicκ+ bi − 1)− σpc

+ σl(ē− c) +
Ncl∑
i=1

σ(t)δ(r − ri) (7a)

ετ
∂b

∂t
= dε∇2b− (bc+ b− 1) (7b)

εiτ
∂bi
∂t

= −εR (bicκ+ bi − 1) . (7c)

In order to solve these equations analytically we linearize them around the initial state

which is assumed to be the stationary state when all channels are closed. The scaled initial

conditions read

c0 =
[Ca2+]0
KB

, b0 =
1

c0 + 1
, bi,0 =

1
c0κ+ 1

, (8a)

where κ = KB
KBi

denotes the ratio of the dissociation constants of the mobile and immobile

buffer respectively. Replacing c = c0 + δc, ē = ē0 + δē, b = b0 + δb and bi = bi,0 + δbi in
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equations (7) we get

∂δc

∂t
= ∇2δc− [(1 + c0)δb+ εR(1 + κc0)δbi + (b0 + bi,0εRκ+ σp − σl)δc

+δcδb+ εRκδcδbi] + σlδē+
Ncl∑
i=1

σ(t)δ(r − ri) (9a)

ετ
∂δb

∂t
= dε∇δb− [(1 + c0)δb+ b0δc]− δcδb (9b)

εiτ
∂bi
∂t

= −εR [(1 + κc0)δbi + bi,0κδc]− εRκδcδbi . (9c)

We now neglect all nonlinear terms in (9) in δc, δb and δbi and end up with the linearized

dimensionless system of the form

∂δc

∂t
= ∇2δc− [(1 + c0)δb+ εR(1 + κc0)δbi + (b0 + bi,0εRκ+ σp − σl)δc]

+ σlδē+
Ncl∑
i=1

σ(t)δ(r − ri) (10a)

ετ
∂δb

∂t
= dε∇2δb− [(1 + c0)δb+ b0δc] (10b)

εiτ
∂bi
∂t

= −εR [(1 + κc0)δbi + bi,0κδc] . (10c)

For more convenient reading we drop the δs of the concentrations and find the system

∂c

∂t
= ∇2c− [(1 + c0)b+ εR(1 + κc0)bi + (b0 + bi,0εRκ+ σp − σl)c]

+ σlē+
Ncl∑
i=1

σ(t)δ(r − ri) (11a)

∂b

∂t
= d∇2b− 1

ετ
[(1 + c0)b+ b0c] (11b)

∂bi
∂t

= −εR
εiτ

[(1 + κc0)bi + bi,0κc] (11c)

given in the main text with the definitions of σm = (1 + c0), σim = εR(1 + κc0) and

σc = (b0 + bi,0εRκ+ σp − σl).
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3 Deriving the solution (Supporting Figure 3)

The model uses Green’s functions [3, 4] to determine the concentrations. The solution of

a partial differential equation calculated by Green’s function is

C(r, t) =
∫
V
dr′F0(r′)G(r, t|r′, τ) +

∫
S
dS′

∫ t

0
dτΦ(r′, τ)G(r, t|r′, τ)

+
∫
V
dr′
∫ t

0
dτF (r′, τ)G(r, t|r′, τ) , (12)

where V denotes the cell volume and S the cell surface. The solution depends on the

initial concentration distribution F0(r′), the time dependent boundary condition Φ(r′, τ)

and the volume production term F (r′, τ).

Before we solve the system (11) by coupled Green’s functions for a spherical cell with

radius R, we first determine the Green’s function for a single component system, i.e.

neglect buffer reactions and coupling with the ER.

The general equation in spherical coordinates reads

∂c

∂t
= D∇2c+ g(r, θ, t) (13a)

c(r, θ, 0) = f(r, θ) (13b)

∂c

∂r

∣∣∣∣
r=R

= j(θ, t) (13c)

c|r=R = CR (13d)

where g(r, θ, t) is a source density depending on r and θ and t and f(r, θ) denotes the initial

condition. The boundary conditions given by j(θ, t) for no-flux conditions (13c) specifies

influx through the cell membrane or is given in case of Dirichlet boundary conditions (13d)

by the concentration at the surface.

The Green’s function is the response of a system at point P (r) at time t due to

a δ source in time (t′) and space at point P ′(r′). Hence, for two points we can use

the symmetry and neglect first the φ dependence which can be incorporated later by

trigonometric properties.
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The corresponding equation of Equation (13) for the Green’s functionG = G(r, θ, t|r′, θ′, t′)

takes the form

∂G

∂t
= D∇2G+

1
r′2 sin θ′

δ(r − r′)δ(θ − θ′)δ(t− t′) (14a)

G(r, θ, t|r′, θ′, t′) = 0, t ≥ t′ , (14b)

where G has to fulfil the corresponding boundary condition in (13). This problem can be

solved by Laplace transformation and separation ansatz. After Laplace transform with

respect to t the governing equation of the transformed Green’s function G̃(r, θ, s|r′, θ′, t′)

reads

G̃ = D∇2G̃+
1

r′2 sin θ′
δ(r − r′)δ(θ − θ′)e−st′ . (15)

We first solve the homogeneous problem being the Helmholtz equation

∇2ψ(r, θ) + λ2ψ(r, θ) = 0 (16)

where the λs are determined by the particular boundary condition.

It reads in spherical coordinates

∂2ψ

∂r2
+

2
r

∂ψ

∂r
+

1
r2 sin θ

∂

∂θ

[
sin θ

∂ψ

∂θ

]
= −λ2ψ , (17)

which can be solved by a standard separation ansatz. We expand the space dependent

part D∇2G̃ in eigenfunctions of the Laplace operator ∇2. The radial part leads to Bessel’s

differential equation and the angle dependent part obeys a Legendre differential equations.

Due to convergence restrictions, the solution of the Helmholtz equation (16) takes the form

ψlp(r, θ) =
Jl+1/2(λlpr)

r1/2
Pl(cos θ), p = 1, 2, 3, . . . l = 0, 1, 2, . . . (18)

ψ00(r, θ) = 1 , (19)

where Jl+1/2(x) denotes the Bessel function of the first kind, Pl(cos θ) is the Legendre
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polynomial and λlp is determined for no-flux boundary condition by

∂

∂r

Jl+1/2(λlpr)
r1/2

∣∣∣∣
r=R

=
l

Rλlp
Jl+1/2(λlpR)− Jl+3/2(λlpR) = 0. (20)

Thus we can solve Equation (15) by inserting the ansatz

G̃(r, θ, s|r′, θ′, t′) =
∞∑

l,p=0

βl,pψl,p(r, θ). (21)

leading to

s
∞∑

l,p=0

βl,pψl,p(r, θ) = −D
∞∑

l,p=0

βl,pλ
2
lpψl,p(r, θ) +

1
r′2 sin θ′

δ(r − r′)δ(θ − θ′)e−st′ . (22)

By applying the integral-operators

∫ +1

−1
dµPm(µ) (23a)∫ b

0
dr r3/2Jm+1/2(λmqr) (23b)

we get due to orthogonality

sβm,q = −βm,qλ2
mqD +

1
N (m)N (λmq)

ψmq(r′, θ′)e−st
′
, (24)

where the norms N are given by

N (l) =
∫ +1

−1
dµP 2

l (µ) =
2

2l + 1
(25a)

N (λlp) =
∫ R

0
dr r2

[
Jl+1/2(λr)

r1/2

]2

(25b)

=
R2

2

[
J2
l+1/2(λlpR)− Jl−1/2(λlpR)Jl+3/2(λlpR)

]
N (λ00) =

∫ +1

−1
dµ

∫ R

0
dr r2 = 2

R3

3
. (25c)

Equation (24) determines the unknown coefficients βlp. The solution in Laplace space is
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thus given by

G̃(r, θ, s|r′, θ′, t′) =
∞∑

l,p=0

1
N (l)N (λlp)(s+Dλ2

lp)
ψlp(r′, θ′)e−st

′
ψl,p(r, θ). (26)

It can be transformed back easily to time by the residual theorem, since we have first

order poles, s + Dλ2, along the negative real axis only. The Green’s function of the

inhomogeneous diffusion problem (13) without the φ dependence finally is

G(r, θ, t|r′, θ′, t′) =
∞∑

l=0,p=1

1
N (l)N (λlp)

Jl+1/2(λlpr′)
r′1/2

Pl(cos θ′)eλ
2
lpDt

′

Jl+1/2(λlpr)
r1/2

Pl(cos θ)e−λ
2
lpDt +

3
2R3

. (27)

For simulation of a cell the spherical symmetry is not valid and we have to introduce

explicitly the φ dependence in the Green’s function (27). This only depends on the cosines

of the angles of the two points P (r) and P ′(r′), and hence we can rotate the coordinate

system such as one of the angles is zero leading to Pl(cos θ) = 1. The angle Θ between the

points is given by

cos(Θ) = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ− φ′) , (28)

as shown Supporting Figure 3.

The Green’s function takes the form

G(r, θ, φ, t|r′, θ′, φ′, t′) =
∞∑

l=0,p=1

Jl+1/2(λlpr)Jl+1/2(λlpr′)

2πN (l)N (λlp)
√
rr′

Pl(cos Θ)×

e−λ
2
lpD(t−t′) +

3
4πR3

, (29)

where the φ dependence gives another normalization factor of 1/(2π). D denotes the

diffusion coefficient and the norms N are given by (25). The λlps are determined by the

corresponding boundary conditions as described in Section 3.2.
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Supporting Figure 3: Sketch of the angles of two points P and P ′ in spherical coordinates.
For more than two asymmetrically distributed points we have to incorporate the φ depen-
dence. Since the solution (27) does only depend on the cosine of the angle between the
two points P and P ′, we can use Equation (28) to rotate the system with respect to the
coordinates of the two points.

3.1 Ca2+ dynamics

We now introduce the coupling with buffer reactions. Therefore we write the RDS (11) in

matrix form


1 0 0

0 d 0

0 0 0

∇2 −


1 0 0

0 ετ 0

0 0 εiτ

 ∂

∂t
+


a11 a12 a13

a21 a22 0

a31 0 a33




c

b

bi

 = −


fc(r, t)

fbm(r, t)

fbi(r, t)

 . (30)
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In order to solve this system of coupled PDEs by coupled Green’s functions or a Green’s

dyadic G [5], we have to solve similar to Equation (14) the following problem,

LG =


∇2 − ∂

∂t + a11 a12 a13

a21 dε∇2 − ετ ∂∂t + a22 0

a31 0 −εiτ ∂∂t + a33



g11 g12 g13

g21 g22 g23

g31 g32 g33



= − 1
r′2 sin θ′

δ(r − r′)δ(θ − θ′)δ(t− t′)


1 0 0

0 1 0

0 0 1

 . (31)

Analogously to (15) the time derivative can be replaced by s due to a Laplace transform

leading to

L̃G̃ = − 1
r′2 sin θ′

δ(r − r′)δ(θ − θ′)e−st′13×3 . (32)

With the same boundary conditions for calcium and the buffers, the system (30) can be

solved by the spectral ansatz

G̃ =
∞∑

l=0,p=0

αlpψlp(r, θ), (33)

where ψlp(r, θ) is the solution for the Helmholtz equation (18), which respects the appro-

priate boundary conditions. Thus, the Green’s matrix is determined by the amplitude

matrix αlp. By inserting (33) into equation (32) we get

∞∑
l=0,p=0

Mlp αlp ψlp = − 1
r′2 sin θ′

δ(r − r′)δ(θ − θ′)e−st′ 13×3 . (34)

By applying the integral operators (23) on both sides, the amplitude matrix is given by

αmq =
ψmq(r′, θ′)e−st

′

N (m)N (λmq)
M−1

lp , (35)
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with the coupling matrix

Mlp =


λ2
lp + sσc σm σim

b0 dετλ
2
lp + sετ + σm 0

bi,0εrκ 0 sεiτ + σim

 , (36)

with the previously introduced shortcuts σm = (1 + c0), σim = εR(1 + κc0) and σc =

(b0 + bi,0εRκ + σp − σl). Equation (34) can be transformed back into real space by the

property of the matrix inversion

M−1 =
1
|M|

adj(M) , (37)

which enables us to apply the residual theorem by determining the zeros of |M| leading

to a cubic equation for s. Thus the Green’s matrix takes the form

G̃(r, θ, t|r′, θ′, t′) =
∞∑

l=0,p=1

3∑
i=1

adj(Mlp)
∂|Mlp|/∂s|s=slp

i

1
N (l)N (λlp)

Jl+1/2(λlpr′)
r′1/2

Pl(cos θ′)e−sit
′

Jl+1/2(λlpr)
r1/2

Pl(cos θ)esit +
3

2b3c
esi(t−t′) adj(M00)

∂|M00|/∂s|s=slp
i

(38)

with the dimensionless cell radius bc. If we now assume a δ source density describing a

channel cluster

σ(t)
δ(r − rc)δ(θ)
r2 sin θ


1

0

0

 (39)

the concentrations at point r due to release at point rc and uptake are given by


c

b

bi

 (r, t) =
∞∑

l=0,p=1

Jl+1/2(λlpr)
r1/2

Pl(cos Θ)


χ

(lp)
1

χ
(lp)
2

χ
(lp)
3

 (rc, t) +


χ

(00)
1

χ
(00)
2

χ
(00)
3

 (t) +


cout

bst(cout)

bi,st(cout)

 ,

(40)
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with the relation (28) for Pl(cos Θ) (See Supporting Figure 3). The time and boundary

dependent response functions read


χ

(lp)
1

χ
(lp)
2

χ
(lp)
3

 (rc, t) =
3∑
i=1

1
2πN (l)N (λlp)

Jl+1/2(λlprc)

r
1/2
c

× (41)

∫ t

0
dt′σ(t′)esi(t−t′) adj(Mlp)

∂|Mlp|/∂s|s=slp
i


1

0

0



χ

(00)
1

χ
(00)
2

χ
(00)
3

 (t) =
3∑
i=1

3
4πb3c

∫ t

0
dt′σ(t′)esi(t−t′) adj(M00)

∂|M00|/∂s|s=slp
i


1

0

0

 , (42)

taking into account the in time varying cluster current σ(t). The last term describes

possible extracellular induced concentrations cout, bst and bi,st.

3.2 Boundary conditions

Intracellular Ca2+ dynamics can be determined by Neumann (no-flux) boundary condition

or by Dirichlet boundary condition in dependence on the cell type and kind of experiment.

The boundary conditions at the plasma membrane r = bc (the scaled cell radius R) are

reflected by the λlps and the two last terms in Equation (40). No-flux boundary conditions

require
∂

∂r

Jl+1/2(λlpr)
r1/2

∣∣∣∣
r=bc

=
l

bcλlp
Jl+1/2(λlpbc)− Jl+3/2(λlpbc) = 0. (43)

and cout = bst(cout) = bi,st(cout) = 0 holds. Dirichlet boundary conditions for c with

c(bc) = cout require

Jl+1/2(λlpbc) = 0. (44)

bst(cout) and bi,st(cout) are the stationary values of the concentration dynamics with all

channels closed. χ(00) vanishes with Dirichlet conditions.
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The simulations in the main text were all done with Neumann boundary conditions

since we focused on the influence of single channel behavior on the intracellular dynamics.

3.3 Average concentrations

The channel currents are set by the difference of the average Ca2+ concentrations in the

cytosol and in the ER (see Equation 1 in main paper). These concentrations can be

determined by spatial integration over the whole cell.

If we do not assume Ca2+ entry through the cell membrane, the total amount of Ca2+

will stay constant

Ntot =
[
(c̄(t)− c0) + (b0 − b̄(t)) + (bi,0 − b̄i(t)) + ē(t)/γ

]
Vcyt = const . (45)

With the assumption that at time t = 0 the cell has no open channels and is in equilibrium

we have also the relation

Ntot = (c0 + (bT − b0) + (bi,T − bi,0) + ē0/γ)Vcyt , (46)

where γ is the volume ratio between the cytosol and the ER. Hence, to calculate the

average Ca2+ concentration within the ER ē(t), we rely on the average concentrations c̄

of all three components. Since Vcytc̄ =
∫
Vcell

dV c we have to integrate the solution (40)

over the entire cell:

c̄ =
1
Vcyt

∫ bc

0

∫ π

0

∫ 2π

0
c r2 sin(θ) dr dθ dφ . (47)

The φ integration simply gives a factor of 2π whereas the other two integrations lead to
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the equations

R =
∫ bc

0

Jl+1/2(λlpr)
r1/2

r2dr

=
2−( 3

2
+l) b(3+l)

c λ
1
2

+l

lp Γ
(

3+l
2

)
Γ
(

5+l
2

)
Γ
(

3
2 + l

) 1F2

[
3 + l

2
;
(

5 + l

2
,
3 + l

2

)
;−
(
bcλlp

2

)2
]

(48a)

Q =
∫ π

0
Pl(cos θ) sin θdθ =

∫ 1

−1
Pl(x)dx =

2 sin(lπ)
lπ + l2π

=

 0 , l > 0

2 , l = 0
, (48b)

where 1F2 [x,y, z] denotes the hyper-geometric function [6]. Hence, only modes with l = 0

contribute to the global concentration and Equation (48a) can be simplified to

R =

√
2
π

sin (λ0pbc)− bcλ0p cos (λ0pbc)

λ
5/2
0p

. (49)

With this solution we can calculate the total cell response for one cluster by

Vcytc̄ = 2π R Q ~χlp +
4πb3c

3
~χ00 , (50)

what can be used to determine ē(t) by relations (45) and (46). In the case of no Ca2+

conservation, ē(t) is given by

ē(t) = ē0 − γ
∫ t

0

[
σ(t′)− c̄(t′)σp + σl

(
ē(t′)− c̄(t′)

)]
dt′ , (51)

this means by the difference of the initial ER concentration ē0 and the difference of the

released Ca2+ and Ca2+ pumped back into the ER. This method requires the calculation

of the average cytosolic Ca2+ concentration as well.

The real concentrations are obtained by rescaling c̄(t) and ē(t) according to Equa-

tion (7).
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4 Green’s cell algorithm implementation

The analytical solution for the concentration dynamics (40) can be used as a natural

environment for localized IP3R clusters to study the interplay of their nonlinear stochastic

opening behavior and the feedback of Ca2+. The stochastic opening and closing of the

IP3Rs is translated by the single channel approximation to time-dependent source terms in

the RDS (see Box 1 in the main text). The stochastic transitions depend on the local IP3

and Ca2+ concentrations and are modelled by a hybrid version of the Gillespie algorithm

[7], which was already used by Rüdiger et al. in relation to Ca2+ dynamics [8].

4.1 Gillespie algorithm

The Gillespie algorithm allows for simulation of stochastic processes [9]. Given the actual

time t, the probability that the next stochastic event occurs in the infinitesimal time

interval [t+ τ, t+ τ + dt] and is an event Ξi, is given by

P (τ, i)dt = αie
−α0τdt , (52)

where α0 =
∑
αj is the sum of all propensities. The event probability P (τ, i) can be

realized by drawing two random numbers r1 and r2 from a uniform distribution in the

interval [0, 1]. Then τ and i are determined by

α0τ = ln (1/r1) ,
i∑

j=1

αj ≤ α0 r2 <

n∑
j=i+1

αj . (53)

The original Gillespie method assumes that the propensities during two events stay con-

stant. This is not valid for our problem, since opening and closing of channels change the

Ca2+ concentration respectively the propensities by up to three orders of magnitudes.

To resolve this problem we use the method described in [8], which adopt the hybrid

version of the Gillespie algorithm [7] to Ca2+ dynamics. The time of the next stochastic
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event is determined by solving

∫ t+τ

t
α0(s, c)ds = ln(r1) , (54)

where the propensities α0 depends explicitly on time s and the concentration c. For

constant α0 Equation (54) simplifies to (53). For the determination of τ we rewrite the

first equation in (53) by introducing a new variable g(τ) and solve

ġ(s) = α0(s, c) , (55)

with the initial condition g(0) = 0. A reaction occurs, when g(s) reaches ln(r1). The

corresponding reaction event is determined as before by a second random number r2

according to the second condition in Equation (53).

For the Ca2+ dynamics, the channel transitions Ξ correspond to jumps on the Markov

chains representing the subunits of the DKM shown in Supporting Figure 1A. Hence,

Ξ describes the transition Xijk → Xi′j′k′ , where a single transition does only change

one index. For a channel consisting of four subunits the Xijk correspond to occupation

numbers. Since each of the four subunit is in one of the states the sum over all i, j and

k equals 4. In this context Ξ corresponds to an decrease of Xijk by 1 and a subsequently

increase of another state Xi′j′k′ by 1 according to Supporting Figure 1A.

Since the Ca2+ concentrations at open channel clusters are rather high, the Ca2+

concentration dependent transitions are favored at open clusters. This leads to small time

steps. Moreover, the Ca2+ concentration changes due to channel transitions very rapidly,

and consequently we have to calculate the concentrations for many times.

4.2 Parallel algorithm structure (Supporting Figure 4)

To deal with this enormous computational requirements, we developed a parallel algo-

rithm in C++ using the standard library for parallel computing Message Passing Interface

(MPI) and the Gnu Scientific Library (GSL) for the implementation of Bessel functions

Jl+1/2(x) and Legendre polynomials Pl(cos θ). The two key elements of the algorithm are
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Supporting Figure 4: The scheme of the parallel Green’s cell model algorithm. The
algorithm is split into two parts. The master process determines the cell arrangement and
performs the Gillespie algorithm leading to channel transitions Ξ and reaction times τ .
Therefore it relies on the Ca2+ concentrations [Ca2+]cluster at the cluster locations, which
are calculated by the analytical solution on worker processes in dependence on the channel
state history σi(t) of each cluster.

the determination of channel transitions and the calculation of the analytical concentration

responses at the cluster locations. One benefit of the analytical solution of the linear RDS

is that we only have to calculate the concentration at points where IP3R clusters are local-

ized. Another advantage is the linearity, which enables us to calculate the concentrations

of clusters independently and to superpose them in the following.

These properties can be used for a sufficiently parallelized algorithm depicted in Sup-

porting Figure 4. Therefore the problem is split into two parts leading to two different

kinds of processes. The master process is the ”coordinator” of the algorithm, which de-

termines the channel transitions, reaction times and collects global properties. For this
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tasks it requires the concentration at the IP3R clusters. These are determined by worker

processes, which calculate the concentration at a cluster according to Equation (40).

The Ca2+ concentration of each cluster is calculated by a single worker process for

which the channel state history of all clusters is required. Therefore each worker process

has a copy of the source term σj(t) of each cluster. These source vectors are updated

according to the Gillespie algorithm performed by the master process. This relies on

the Ca2+ concentration at each cluster. Hence, in each iteration step one bidirectional

communication occurs. First the master process broadcasts the time of the next reaction

τ and the corresponding channel transition Ξ consisting of three integers: which reaction

occurs in which channel of which cluster. Second each worker process sends the calculated

Ca2+ concentration of the corresponding cluster to the master process, where they are

used to determine the next transition Ξ and occurrence time τ .

The structure of the algorithm can be summarized as follows.

• The master process initializes the cell arrangement by reading a parameter file, which

determines e.g. the cell radius R, the number of clusters Ncl and their locations,

the Ca2+ base level
[
Ca2+

]
0

and buffer concentrations, buffer dissociation rates and

various other properties of the RDS. The clusters are set randomly with a randomly

chosen number of channels in the cell. The channel states are initialized according

to the stationary probabilities defined in Equations (1).

• These specifications are sent to all other processes and translated into dimensionless

parameters. Moreover, the λlps and most of the response functions χ are determined

and stored at each worker process with the cluster specific values.

• The master determines the next estimated reaction time by relation (54). For the

new time tnew = told+τ the property gnew is calculated by (55). Therefore the master

collects the Ca2+ concentrations at each cluster [Ca2+]cluster from the corresponding

worker processes.

• If gnew < ln r1 (no stochastic event occurs), the master sets told = tnew and deter-

mines the next time step τ , which is broadcasted to the worker processes.
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• If gnew ≥ ln r1 (a stochastic event occurs in [told = tnew]), the event time ts and

the corresponding [Ca2+]cluster are determined by linear interpolation. The master

process draws a random number r2 and determines the stochastic event Ξ according

to Equation (53) and updates the channel states. The next time step τ is determined

and sent together with the channel transition Ξ to the worker processes. Then

gnew = 0 is set and a new random number r1 is drawn on the master process.
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5 Spiking in dependence on IP3 and Ca2+ (Supporting Fig-

ure 5)

To analyze the dependence of spiking on the IP3 and Ca2+ base level concentrations, we

used a fixed setup of a cell with 47 randomly distributed clusters, which are separated

by a minimal cluster distance of 1.4 µm and have between 4 and 16 channels each. The

standard parameters of the RDS are given in Table 1 of the main text.

The prototype of a cell was simulated with different values of the cytosolic Ca2+ base

level and IP3 concentration leading to distinct channel behaviors as shown in Supporting

Figure 5.

If both concentrations are high as in panel A, the channels do not exhibit a cooperative

signal, since due to high
[
Ca2+

]
0

most channels are inhibited, and as soon as they are

excitable, they will open again and return into the inhibited state leading to the shown

noisy signal. This mechanism also holds for very low [IP3] (D), but now the total amount

of sensitized, inhibited and open channels is decreased.

If we switch
[
Ca2+

]
0

to physiological concentrations at high [IP3], i.e. going from A to

B, we observe very regular oscillations. Due to the high IP3 concentration, most channels

are in the excitable state, and as soon as a single IP3R opens, a global wave travels through

the system, synchronizing the inhibition of the channels and terminating the Ca2+ release.

As soon as the inhibiting Ca2+ dissociates from the corresponding binding site, one channel

will open again since
[
Ca2+

]
0

respectively the open probability is high.

For a further decrease of
[
Ca2+

]
0
, means going to B and F, the oscillations become

slower and more irregular, as the probability of an initial event decreases (note the different

time ranges for each column in Supporting Figure 5). In both cases (B and F) only rare

single events, as blips or puffs, are observed, caused by full inhibition and additionally by

low
[
Ca2+

]
0

in panel F.

Lowering the IP3 concentration for fixed
[
Ca2+

]
0
, i.e. going from B to C, H and E

or from F to G, K and J, causes an increase of Tav and shrinks the amplitudes, as the

channels are less sensitized and the nucleation probability decreases. In these less sensitized
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Supporting Figure 5: Channel signals of a specific cell with 47 randomly scattered clusters
having between 4 and 16 channels for different Ca2+ base level concentrations

[
Ca2+

]
0

and
IP3 concentrations [IP3]. For very high (A) and low (L) concentrations, no constructive
signal of the total 405 channels is observed, whereas in the intermediate parameter region,
the nonlinear properties of the IP3R combined with those of the RDS serve for fast and
regular oscillations (such as in B) or slower irregular oscillations with smaller amplitudes
(J). Note the different time ranges for each column and see text for more details.

regimes,
[
Ca2+

]
0

sets the probability for the initial events, as can be seen by comparing

E, I and J, where puff sizes decrease with decreasing
[
Ca2+

]
0
, but the amplitudes of the

less frequent spikes at
[
Ca2+

]
0
= 45 nM are similar to those with 75 nM but shrink for a

even lower concentration of 35 nM.

Finally, if we go to very low concentrations of both IP3 an Ca2+(L), no spikes are

observed, and the resulting signal is the random overlay of single uncoordinated blips.

From a physiological point of view, oscillations evolve from the last depicted case of low

concentrations by increasing [IP3] caused by external or internal signals inducing PLCs.
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6 Population slopes (Supporting Figure 6)

The population slopes are averages of individual slopes obtained by single parameter varia-

tions. By varying the mobile buffer concentration for a fixed cell, the cell exhibits different

σ-Tav values leading to individual σ-Tav relations as those shown in Supporting Figure 6.

Each panel shows the relation for a fixed cell with varying buffer concentration and dif-

ferent panels correspond in these representative examples to different minimal intercluster

distances. For each cell, the slope is determined by linear regression leading to individual

slopes and deterministic recovery periods Tdet as stated in the panels. These values lead

to the population slope mbuffer by averaging.

The cells in column A have a single channel current of 0.12 pA and a BAPTA concen-

tration varying between 5 µM and 35 µM. The minimal intercluster distance decreases

from top to bottom from 2 µm to 1.5 µm and 1 µm. Smaller distances lead to smaller σ

and Tav values but the individual slopes are all close to 0.9 and also Tdet is in the same

range.

Cells in column B have a single channel current of 1.2 pA, a BAPTA concentration

between 5 µM and 125 µM and decreasing intercluster distances from 2.5 µm to 2 µm and

1.5 µm. Smaller distances again lead to smaller values of σ and Tav. The individual slopes

are rather self-consistent and decreased to 0.6 compared to the cells with the smaller

current.

Analogously, we determined also individual slopes for cells which do not vary in the

buffer concentration but in the IP3 concentration (between 60 nM and 0.3 µM), spa-

tial arrangements (minimal intercluster distances between 1 µm and 2.5 µm) and pump

strength (between 22 s−1 and 250 s−1). It turns out that the observed dependence of the

slope on the current strength is stable under these circumstances as well. This points to

a functional robustness as explained in the main text.
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Supporting Figure 6: Determination of population slope from individual slopes m for
small (A) and large (B) single channel currents. Each panel depicts the σ and Tav values
obtained from a fixed cell with varying buffer concentrations. The slope of the individual
σ-Tav relations are obtained by linear regression and the population slope is determined
by the average of the individual slopes. The minimal intercluster distance decreases from
top to bottom for each column leading to smaller σ and Tav values. (See text for more
details.)
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