
Hermann Cuntz, Friedrich Förstner, Alexander Borst, Michael Häusser

2010

the TREES toolbox - on the nature of neuronal branching 2

Foreword

More than a century ago, Ramón y Cajal provided a qualitative description of neuronal
branching in all its forms and variants. However, few rigorous and useful formalisms exist even
today to describe neuronal branching. In particular, working with functional models consisting
of detailed neuronal morphologies reveals this gap. Ways to compare branching structures
between different types of neurons or neurons of the same type are a source of growing
interest in the neuroscience community, and yet morphological statistics remain mostly
unrelated to their functional impact.

With the TREES toolbox we aim to take two important steps:

1. We start with a simple description of neuronal morphology and provide the basic tools to
edit, visualize and analyze neuronal trees on the basis of this description.

2. We develop an approach which assumes that neuronal branching can largely be expressed by
local optimization of total wiring and conduction distances, and provide tools to automatically
reconstruct neuronal branching from microscopy image stacks and for generating artificial
branched structures.

This software package is written in Matlab (Mathworks, Natick, MA), the most widely used
scientific programming language. We hope that other groups can therefore easily add to the
TREES toolbox with their own code for their own specific applications, and the code is therefore
freely distributed. When publishing scientific work using this toolbox please cite the current
paper:

"One rule to grow them all: A general theory of neuronal branching and its practical application.
Cuntz H, Forstner F, Borst A, Häusser M 2010 PLoS Computational Biology".

We encourage users of the toolbox software to recommend the toolbox to their peers, and also
to funding and award agencies.

In return for the services we provide with this toolbox, we invite users to incorporate any
extensions and/or related code which they develop. Ideally, suggestions for improvements or
add-ons to the code should be sent directly as improved pieces of code. The contributor‟s name
will be mentioned in the header of the function when integrated in the toolbox and in the
toolbox documentation. For the contribution of a new method to either generate artificial
neurons or reconstruct neuronal morphology from image stacks we offer to call the core
function “lastnameofcontributor_tree” to acknowledge the author‟s contribution. We hope that
this will provide a further incentive for making contributions to the toolbox.

Hermann Cuntz, Friedrich Forstner, Alexander Borst, Michael Häusser

This work was supported by the Gatsby Charitable Foundation, the Wellcome Trust, the
Alexander von Humboldt Foundation, and the Max-Planck Society.

This document is supplementary material Protocol S1 to a manuscript entitled “One rule
to grow them all: A general theory of neuronal branching and its practical application”
published in PLoS Computational Biology. The software package and updated materials
are available at www.treestoolbox.org.

the TREES toolbox - on the nature of neuronal branching 3

Definitions

a tree is a graph, p. 4

adjacency matrix, p. 5

using graph theory, p. 6-7

BCT formalism, p. 8-9

sorted and equivalent tree p.10

the “topological gene”, p. 11

tree morphing, p. 12

electrotonic signature, p. 13-14

resampling a tree, p. 15

MST rule, p. 16-17

diameter tapering, p. 18

Nx1 vectors, p.19

obtaining some statistics, p.20

Table of contents

Reference

First steps

starting with TREES, p. 22

exploration of a tree, p. 23

visual exploration, p. 24

code comments, p. 25

GUI

starting the GUI, p. 146

the vis_ panel, p. 147-149

the stk_ panel, p. 150-153

the thr_ panel, p. 154-155

the skl_ panel, p. 156-157

the mtr_ panel, p. 158-165

the cat_ panel, p. 166

the ged_ panel, p. 167-170

the slt_ panel, p. 171-172

the ele_ panel, p. 173

the plt_ panel, p. 174-177

contents, p. 26

full function list, p.27

general remarks, p. 28

graphtheory, p. 29-50

edit, p. 51-61

metrics, p. 62-79

graphical, p. 80-94

construct, p. 95-113

electrotonics, p. 114-124

IO, p. 125-133

scheme, p. 135

stacks, p. 136-144

sample, p. 145

the TREES toolbox - on the nature of neuronal branching 4

root

nodes

(vertices)

segments

(edges)

termination

point (T)

Definitions a tree is a graph

branch

branch

point (B)
continuation

point (C)

branch

As a graph, a tree is represented by a set of labelled nodes connected by edges. Since most
statistics describing a neuron„s branching relate to the root (e.g. branch order, which increases
after each branch point on the way from the tree root to all terminal nodes) it makes sense to
attribute a directionality to the edges and to define the root as the node with the index 1. All
edges lead away from the root. That defines their directionality uniquely.

the TREES toolbox - on the nature of neuronal branching 5

The directed adjacency matrix describes how

nodes are directionally connected to a graph

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0

5 0 0 1 0 0 0 0 0

6 0 1 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0

8 0 0 0 0 0 1 0 0

looking at trees using graph theory
Definitions adjacency matrix

When neuronal trees are regarded as graphs, their branching structure can be well described with
the corresponding directed adjacency matrix dA (see “dA_tree”), a quadratic matrix of size NxN
where N is the number of nodes in the tree. As mentioned earlier, the direction of the edges shows
away from the first point, representing the arbitrary starting vertex S (= 1), the root of the tree.
Note that the widely used .swc format (Cannon RC, Turner DA, Pyapali GK, Wheal HV, 1998, J
Neurosci Methods 84: 49-54) for storing neuronal morphology is nothing else than a sparse
representation of the adjacency matrix since it simply attributes to all nodes (row index) a parent
node (column index).

Not each possible directed adjacency matrix represents a possible neuronal tree, since loops and
branching points with more than two child branches are possible, but do not exist in natural
dendritic trees. dA therefore never contains more than two entries in one column and no entry will
lay directly on the diagonal. Also, each node has exactly one parent, apart from the root, which has
none. Each row of dA therefore contains exactly one entry apart from the first, which contains
none.

adjacency matrix dA

In order to derive most dendritic branching statistics using the typical descriptions, an algorithmic
formulation by recursion is required to “walk” through a tree and collect statistics. Many
operations for example on dendritic trees require processing with a stack and can therefore not be
written analytically. With repeated matrix multiplication on the directed adjacency matrix as in dAr

the (i, j)-entry represents the number of distinct r-walks from node i to node j in the graph.

the TREES toolbox - on the nature of neuronal branching 6

Further order r parents are simply obtained by applying repeated matrix multiplication (see
“ipar_tree”):

Where r = 0 corresponds to the node itself, r = 1 the parent, r = 2 the grand-parent etc…

 Trr NdAipar ...21

Using simple multiplications of the adjacency

matrix allows one to “walk” through a tree

looking at trees using graph theory
Definitions using graph theory

Therefore, the derivation of some elementary branching properties follows directly from the
graph representation of the tree. As such, the child nodes of each node i can be read out in the
non-zero elements directly from dA in column i. The index of the direct parent node idpar to
any node i (see “idpar_tree”) is simply the i-th element of:

 TNdAidpar ...21

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1

2

3

4

5

6

7

8

x

= 0 1 2 3 3 2 6 6

the TREES toolbox - on the nature of neuronal branching 7

Correspondingly, the vector of topological path lengths PL (see “PL_tree”) from all nodes to the
root of the directed graph can be obtained as follows:

where dA1 is the first column of dA.

A similar approach can be used to obtain the vector of branch order values for all elements
compared to the root of the graph in position 1. A supporting adjacency matrix sdA is required,
which is weighted by the number of child nodes of each node:

By multiplying this matrix, branch points get potentiated, and the branch order BO (function
“BO_tree”) can be extracted by taking the base 2 logarithm:

Where sdA1 is the first column of sdA.

Topological path length and branching order values

can be obtained by such matrix multiplications

looking at trees using graph theory
Definitions using graph theory (II)

 


 
N

r

r dAdArLP
1

1

)1(


 ))((dAsumdiagdAsdA 

dA = dA
1

= dA x dA
1
= dA

2
x dA

1
=

 


 
N

r

r sdAsdABO
1

1

)1(

2log

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0

1

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

0

0

the TREES toolbox - on the nature of neuronal branching 8

With the BCT form, the topology of a tree can be

written as a simple string

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0

5 0 0 1 0 0 0 0 0

6 0 1 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0

8 0 0 0 0 0 1 0 0

looking at trees using graph theory

1 2 2 0 0 2 0 0

C B B T T B T T

BCT formalism

Definitions BCT formalism

None of the common formats for dendritic trees
represent one and the same tree in a unique way. This
becomes very clear for the graph representation
where all permutations of labels (indices) result
in the same tree:

Again, the same is true for the .swc format. A more
constrained representation is given by the BCT
formalism (which was developed as far as we know by
Rocky Nevin and implemented in the compartmental
modelling software NeMoSys, Eeckman FH,
Theunissen FE and Miller JP, 1994, Nemosys: a system
for realistic single neuron modeling. In Neural
Network Simulation Environments, ed. Skrzypek J, pp.
114-135. Boston, Dordrecht, London: Kluwer Academic
Publishers). There, the node labels are sorted
hierarchically so that the nodes of a sub-tree remain
in sequence and within each sub-tree parent nodes
always precede their respective daughter nodes. This
was done in our example: the resulting BCT string can
then be read out by summing over the columns of dA.

 ),(, jjdAiidA 

Nodes where this sum is 0 (no daughter nodes) are termed “T” for terminal. Nodes where the
sum is 1 are termed “C” for continuation. Nodes where the sum is 2 are termed “B” for branch.
The resulting string reads “CBBTTBTT”:

“Define a root and start a branch. Continue to next node (C). Open new branch (B1). Open new
branch (B2). Terminate last branch which is still open (T2). Terminate previous branch (T1). Open
new branch (B3). Terminate last opened branch (T3). Terminate full tree (T0).”

The adjacency matrix is fully described by the BCT string and additionally the labelling of the
nodes is now more restricted. But at each branch point permuting the sub-trees would still
result in the exact same underlying tree.

A simple way to arrange the node labels to conform to BCT is to insert each node one by one
directly behind its parent node and to re-label the nodes after the whole process (see
“sort_tree” function of the TREES toolbox).

An important note here: If the nodes are pre-sorted beforehand (for example lexicographically
or by level order and topological path length, see section “sorting a tree”) a perfectly unique
representation of the topology can be obtained. Note also: In BCT form, all entries in dA are
strictly below the diagonal.

ji 

In order to find the directed adjacency matrix from a BCT string (see “BCT_tree”) by
maintaining the order of elements (metrics can then be directly transferred) the following
algorithmic procedure can be applied:

% basic algorithm:
Set dA to square matrix of zeros
Use a stack
For i = 1:N

if index exists then dA(i,index) = 1
index = i
If BCT(i) == ‘0|T’ then index = POP stack
If BCT(i) == ‘2|B’ then PUSH i to stack

End

If an adjacency matrix represents a correct BCT order, a pointer starting with one at the root
diminishing by one for each terminal and increasing by one for each branching point should
become zero exactly at the end of the string (position N, number of nodes). This can be
represented by the cumulative sum Cx:

Note that one rough way to obtain all possible BCT strings with N nodes is by setting all
numbers from 0 to 3N-1 into base 3 and verifying whether they are BCT.



 


elsefalse

Conlyiftrue
isBCT

N 0

the TREES toolbox - on the nature of neuronal branching 9

The BCT form can be obtained by a simple

algorithm

looking at trees using graph theory
Definitions BCT formalism (II)

dAT N  11


 



i

j

ji TC
1

11

the TREES toolbox - on the nature of neuronal branching 10

Even in BCT order the representation of a tree‟s connectivity matrix is

not unique. Sorting the labels is a solution

Definitions sorted and equivalent tree

)()(jXiX )()(jYiY )()(jZiZ )()(jDiD 

hierarchical sorting

BCT order
topological sorting

The labeling of the nodes of a tree should be unique if one wants to for example
compare the graphs of two trees topologically or electrotonically. In principle,
the labels on the nodes describing a graph can be attributed arbitrarily. As
mentioned before, all permutations of labels (indices) result in the same
tree by rearranging the adjacency matrix and any metric elements attributed to
the nodes:

In a hierarchical sorting, node label values always increase towards daughter
nodes. This can constrain the otherwise arbitrary labelling. As discussed before,
labelling can be constrained further in the BCT order (see introduction part
“BCT formalism”). Within any sub-tree, the labelling is then continuous. A truly
unique labelling arises in a topological sorting when labels additionally carry a
weight according to some topological values such as the topological depth or the
number of child nodes. At each branch point for example, the heavier sub-trees
can then be labelled first. Rearranging the metrics of a tree based on its
topologically sorted label order leads to a unique electrotonic equivalent tree.

In order to arrive to such a labelling, nodes are first sorted according to their
topological depth. Each node is then inserted in that order into a one
dimensional string one by one directly behind its direct parent node.
Subsequently, the resulting string of labels is mapped back onto the nodes of
the tree.

equivalent tree

 ),(, jjdAiidA 

ji 

equivalent tree

the TREES toolbox - on the nature of neuronal branching 11

Variants of the BCT string can be used as a

“topological gene” description of a tree

looking at trees using graph theory
Definitions the “topological gene”

21 B 29 B 21 T 10 B8 T 17 B 9 T 11 T 9 T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Once the labels of a tree are topologically sorted
(see “sort_tree”), a unique representation of the
topology is given by the topological “gene” (see
“gene_tree”):

green segments are branches ending with a branch point, black segments are branches
ending with a termination point; the order is determined by the topological sorting described
on the previous page. Numbers on the “gene” branches (and also their actual length)
correspond to the path length along each branch. In this case the node labels are displayed
under the “gene” for descriptive purposes. Apart from the diameter mapping, the equivalent
tree can be reconstructed solely from this one-dimensional string.

Because of the continuous labelling sub-trees of the original
tree are continuous bits within the topological “gene” (see
red contours).

the TREES toolbox - on the nature of neuronal branching 12

Morphing a tree is the process of mapping new metric length values

on an existing tree, while preserving its topology and local angles

Definitions tree morphing

Segev and colleagues derived a new representation of neuronal trees depending on electrotonic
measures. The method used for this representation was called the “Morphoelectrotonic
Transform” (Zador et al. 1995, J Neurosci 15(3):1669-82).

In fact, the method used in that case is very generalizable. Any Nx1 vector of length values may
be mapped on a tree with N nodes. This is done by scaling the length value li of all segments to
the new segment lengths while conserving the direction of the segment indicated by the
direction vector (arrow below). At each step the entire sub-tree needs to be translated
accordingly.

Only in the case of 0-length segments, a direction needs to be picked arbitrarily. A TREES
toolbox function (see “morph_tree”) performs this type of morphing operation which can have
various applications of which the morpho-electrotonic transform is just one .

On the path sum (see “Pvec_tree”), child sum (see “child_tree”), parent daughter ratio (see
“ratio_tree”), segment binning (see “bin_tree”) are further examples of such “meta-functions”
which apply an Nx1 vector on a tree structure to result in a wide variety of applications.

































































3

2

1

3

2

1

232

22121

111

0

0

I

I

I

V

V

V

ggg

ggggg

ggg

imi

iiim

iim

the TREES toolbox - on the nature of neuronal branching 13

Definitions Electrotonic signature

Using linear algebra in combination with Kirchhoff‟s laws of current conservation, the

adjacency matrix can be used directly to obtain a full signature of passive steady-state

current propagation in a tree

M = G
m

D
S

+ G
a
{ diag [sum (AD

l
+ D

l
A

T
)] - (AD

l
+ D

l
A

T
) }

M

Combining Kirchhoff‟s junction law for electrical circuits with simple linear algebra, a matrix
can be derived which describes the equivalent circuit of a tree. If we cut the circuit at node 3
in the above example the following matrix appears:

Gm, Ga: spec. membrane and axial conductances
Ds, Dl: diag. matrices with compartment surfaces and

inverse volumes
A: adjacency matrix

Dividing a vector or matrix of input currents I by the conductance matrix M results in
potential vectors V (or matrix respectively) according to Ohm‟s law.

the TREES toolbox - on the nature of neuronal branching 14

adjacency matrix electrotonic signature

p
o
t
e
n
t
ia

l
[
m

V
]

200 mm

Definitions Electrotonic signature (II)

The electrotonic signature describes the

compartmentalization of the neuronal tree

Simply taking the inverse of the conductance matrix M (see previous page) results in the steady
state electrotonic signature of the tree:

VSSE = M -1

This electrotonic signature (see “sse_tree”) describes well the electrotonic compartment-
alization of a neuronal tree. In this case the matrix of input currents I is simply the identity
matrix. Currents of 1 (nA) are therefore injected one at a time in each node in subsequent
columns or rows. The symmetrical square matrix VSSE contains in each column or row the
potential distribution in all nodes following the current injection in the corresponding node
(i.e. the current transfer). The diagonal therefore contains the local input resistances since
there the potential change is measured in each node resulting from current injection into the
same node. Red squares correspond to sub-trees with increased electrotonic inter-connectivity.
The electrotonic signature therefore follows closely on the adjacency matrix (as can be seen
from the relationship between M and dA).

the TREES toolbox - on the nature of neuronal branching 15

Definitions resampling a tree

By redistributing nodes on a tree structure such that segments are constant length,

node locations become unique (not arbitrary) and trees can be simplified.

CCBCBBCCBCBBBCTCTCTBCTTTCCTCCTCCCTCBCBB

BBBCTCTCTTCTCCTCCTBCCCTCTCBCTTCCBBBCCBB

CTCTCCTTCCCTT

The direct comparison of two trees along strict criteria requires (apart from a unique label
distribution) a unique distribution of node locations on the graph. The process of manual
reconstruction attributes node locations in an arbitrary manner. However, nodes can be
redistributed on the same tree structure assigning homogeneous inter-nodal distances, a
process we term resampling (see “resample_tree”). Resampling compromises either the total
length (see loss resampling) or the shape of the neuronal tree (see length conservation)
when undersampling. This is because a tortuous path is simplified by a straight line (always
shorter). If the length is conserved then the shape of the neuronal tree is altered (the tree
spannning field becomes larger, see length conservation). A zig-zag implementation of
resampling would best remediate this but would also alter the original shape of the tree (and
was not implemented).
The resulting electrotonic signature or BCT string will then be entirely independent of the
reconstruction procedure. Furthermore, simplified tree structures, which preserve the
electrotonic compartmentalization, can be obtained. Computing current flow in a
corresponding model will be much faster since the number of nodes is decreased drastically
(from 297 to 39 in the example on the far right).

loss resampling length conservation zig-zag resampling

(not implemented yet)

manual node

distribution

length conservation

20 mm

loss resampling

10 mm

loss resampling

20 mm

BCT string

the TREES toolbox - on the nature of neuronal branching 16

Definitions MST rule

A greedy algorithm can be implemented which optimizes locally total wiring and path

length to the root inspired by Cajal‟s laws of conservation of material and conduction

time. This represents an extension to the minimum spanning tree (MST) algorithm.

The figure above exemplifies the general approach to obtain a locally optimized graph. In the
process, unconnected carrier points (red dots) connect one by one to the nodes of a tree
(black dots). At each step, the unconnected carrier point, which is closest to the tree
according to some cost function, connects to the node in the tree to which it is closest. The
distance cost in this case is composed of two components inspired by Ramón y Cajal‟s laws
of neuronal branching: 1. the wiring cost corresponding to the Euclidean distance to the node
in the tree (red dashed lines show three sample segment distances for carrier point P); 2. the
conduction time cost, corresponding to the path length from the root (large black node) to
the carrier point P. In the example here, even though P is closer to node 5 in Euclidean terms,
the additional cost of path length (adding distance between node 4 and node 5) might tip the
balance in favour of node 4. A balancing factor bf weighs these two cost functions against
each other (see “MST_tree”).

the TREES toolbox - on the nature of neuronal branching 17

density of carrier

points

MST

cost function

balancing

factor

bf

path length

total wiring

Definitions MST rule (II)

One parameter, the balancing factor bf,

determines the formants of potential trees

This approach produces realistic neuronal branching structures in all cases. The balancing
factor between the two costs determines the electrotonic compartmentalization of the
neuronal tree. At one extreme, one finds the pure minimum spanning tree, at the other, the
entirely compartmentalized stellate structure, which connects each carrier point directly to
the root.

the TREES toolbox - on the nature of neuronal branching 18

Definitions quadratic diameter taper

Optimizing diameter values for an equal current transfer to the root (synaptic

democracy) results in a quadratic taper. The latter can be mapped on a neuronal tree.

A quadratic diameter taper optimizes
current transfer in cables from any
point to the root (Cuntz, Borst and Segev
2007, Theor Biol Med Model, 4:21, see
right figure). For different cable lengths,
different parameter sets can be derived
to fit the quadratic equation with
distance x:

y = P1x
2 + P2x + P3.

in black: original tree

in red: mapped quadratic diameter taper

Each single triplet P corresponds to the best fit to a segment of a specific cable length ldend. In
order to map a quadratic diameter to a full tree, each path from terminal to the root is
compared to its closest value in a predetermined set of ldend. Then the quadratic equation
parameters P are chosen according to ldend. This is done for all paths from root to terminal
points and for each node the diameter is set to the average of all local diameters of all paths
leading through that node (see “quaddiameter_tree”). P and ldend depend on the total leak and
the minimal diameter: these have to be adjusted by the parameters scale and offset
respectively (see “quadfit_tree”). The resulting tree diameter mapping compares well with the
original even though it is set merely by two parameters, the scale and offset values.

in black: optimized diameter

in red: quadratic fit

the TREES toolbox - on the nature of neuronal branching 19

Definitions Nx1 vectors

Nx1 vectors are vectors which attribute a value to

each node of the tree

B_tree Branch point 1, other 0 001001000101000’

C_tree Continuation point 1, other 0 110110100010000’

T_tree Termination point 1, other 0 000000011000111’

typeN_tree C, 1: Continuation, B, 2: Branch,

T, 0: Termination

112112100212000’

CCBCCBCTTBCBTTT’

PL_tree topological path length to the root 012345676345664

BO_tree branch order 000111222122332

1234567891

0

1

1

1

2

1

3

1

4

1

5

Here is a sample overview of the outputs of some TREES toolbox functions whose form is an
Nx1 vector, attributing thereby one value to each node.

the TREES toolbox - on the nature of neuronal branching 20

Obtaining some statistics

Here are some example statistical measures of neuronal trees and

the ways to obtain them using the TREES toolbox

GLOBAL PROPERTIES

width, height, depth and much more..
spanning = gscale_tree ({tree})

total cable length
sum (len_tree (tree))

total membrane surface
sum (surf_tree (tree))

terminal density
M = gdens_tree (tree, sr, …

T_tree (tree))

number of branches
sum (B_tree (tree))*2+1

number of tips (related measure…)
sum (T_tree (tree))

HULL/AREA PROPERTIES

surface
[a b c area] = vhull_tree (tree,…

[],[],[],[],'-2d‘); sum (area)

volume
[a b c volume] = vhull_tree (tree);

sum (volume)

IN GENERAL

stats_tree and gscale_tree can be helpful

COMBINATIONS

Be creative…

BRANCH STATISTICS/DISTRIBUTIONS

diameter
tree.D

segment membrane surfaces
surf_tree (tree)

segment volumes
vol_tree (tree)

branch order
BO_tree (tree)

euclidian distance
eucl_tree (tree)

path distance
Pvec_tree (tree)

terminal diameters
tree.D (T_tree (tree))

sholl analysis
sholl_tree (tree)

RATIOS

branch asymmetry
e.g. asym_tree (tree)

tapering
e.g. ratio_tree (tree, tree.D)

distance to root path/Euclidian
Pvec_tree (tree) / eucl_tree (tree)

the TREES toolbox - on the nature of neuronal branching 21

the TREES toolbox - on the nature of neuronal branching 22

First steps starting with TREES

Simply unzip the TREES package obtained from www.treestoolbox.org unto your computer and
change directory to its parent folder after opening Matlab. Set the path and create a global
empty cell array called „trees“ by typing „start_trees“ in the command window.

By default, most functions append new trees to this cell array „trees“. Try out:

>> load_tree

which opens a fileselect. You can find some sample trees in „.\sample\mtr\“. We will start by
loading the tree called „sample2.mtr“.

http://www.treestoolbox.org/
http://www.treestoolbox.org/
http://www.treestoolbox.org/
http://www.treestoolbox.org/
http://www.treestoolbox.org/

the TREES toolbox - on the nature of neuronal branching 23

First steps exploration of a tree

The tree was appended to the cell array „trees“:

>> trees

trees =

[1x1 struct]

as a structure with the following organization:

>> trees{1}

ans =

dA: [15x15 double]

X: [15x1 double]

Y: [15x1 double]

Z: [15x1 double]

R: [15x1 double]

D: [15x1 double]

rnames: {'1' 'dendrite'}

Ri: 100

Gm: 5.0000e-004

Cm: 1

name: 'tree1'

It contains the NxN adjacency matrix „dA“ in sparse form which describes the edges between

the N nodes of the graph. A few Nx1 vectors attribute individual values to all nodes (e.g. „X“,

„Y“, „Z“ coordinates; „R“ region index; „D“ diameter values). A cell array of strings „rnames“

attributes a name to each region. A few single values describe homogenously distributed

features, here the passive electrotonic parameters. A string „name“ attributes a name to the

given tree.

>> trees{1}.dA

ans =

(2,1) 1

(3,2) 1

(4,3) 1

(10,3) 1

(5,4) 1

(6,5) 1

(7,6) 1

(9,6) 1

(8,7) 1

(11,10) 1

(15,10) 1

(12,11) 1

(13,12) 1

(14,12) 1

>> trees{1}.D

ans =

4.2506

3.4969

2.8540

2.4839

2.0405

1.6907

1.6019

1.3737

1.2672

2.2141

1.9202

1.6343

1.3279

1.4731

1.2903

the TREES toolbox - on the nature of neuronal branching 24

First steps visual exploration

Many ways were implemented to
explore the tree visually, for example:

>> xplore_tree; axis off;

of course this is equivalent to
„xplore_tree (1)“ or „xplore_tree
(trees{1})“or „xplore_tree ([])“.

But the most common function will be:

>> plot_tree (1, [1 0 0]);

which takes a color as a first argument,
here RGB: red.

This is all in 3D of course. This
becomes clearer when adding light
(turning on opengl) and adopting
another view:

>> shine; axis off; view

(15,55)

the TREES toolbox - on the nature of neuronal branching 25

In order to get more information about a function check out the reference (in the end of this
manual) or type “help function-name”, for example here we might want to know what “BO_tree”
does:

>> help BO_tree

BO_TREE Branch order values in a tree.

(trees package)

BO = BO_tree (intree, options)

returns the branch order of all nodes referring to the first node as the

root of the tree. This value starts at 0 and increases after every branch

point.

Input

- intree::integer:index of tree in trees or structured tree

- options::string: {DEFAULT: ''}

'-s' : show

Output

BO::Nx1 vector: vector of branching order values

Example

BO_tree (sample2_tree, '-s')

See also PL_tree LO_tree

Uses ver_tree typeN_tree dA

First steps code comments

Importantly, the color can also be an Nx1
vector which is then mapped to the color of the
tree:

>> plot_tree (1, BO_tree (1));

>> colorbar

the TREES toolbox - on the nature of neuronal branching 26

The reference contents

graphtheory

edit

metrics

graphical

construct

electrotonics

IO

scheme

stacks

sample

GUI

basic topological readout

edit topology of a tree

readout or change tree metrics

visual output and various hulls

generation of artificial trees

calculate current flow in a tree

export and import in various formats

non-TREES related dependencies

handling of image stacks

sample trees and image stacks

user interface for tree reconstruction

For more information on each function please type „help functionname“ in the matlab command or
have a look at the code directly. Usually the code is very simple and commented.

press here to

get to the

function list

the TREES toolbox - on the nature of neuronal branching 27

The reference contents (II)

graph theory

asym_tree

B_tree

bin_tree

BO_tree

C_tree

child_tree

dissect_tree

dist_tree

gene_tree

idpar_tree

ipar_tree

LO_tree

PL_tree

Pvec_tree

ratio_tree

redirect_tree

rindex_tree

sort_tree

sub_tree

T_tree

typeN_tree

edit

cat_tree

delete_tree

elim0_tree

elimt_tree

insert_tree

insertp_tree

recon_tree

repair_tree

resample_tree

root_tree

metrics

angleB_tree

cvol_tree

cyl_tree

dstats_tree

eucl_tree

flatten_tree

flip_tree

len_tree

morph_tree

rot_tree

scale_tree

sholl_tree

surf_tree

stats_tree

tran_tree

vol_tree

zcorr_tree

graphical

chull_tree

dA_tree

dendrogram_tree

gdens_tree

hull_tree

lego_tree

plot_tree

plotsect_tree

pointer_tree

spread_tree

vhull_tree

vtext_tree

xdend_tree

xplore_tree

construct

allBCTs_tree

BCT_tree

clean_tree

clone_tree

cplotter

cpoints

gscale_tree

in_c

isBCT_tree

jitter_tree

MST_tree

quaddiameter_tree

quadfit_tree

rpoints_tree

smooth_tree

smoothbranch

soma_tree

spines_tree

electrotonics

elen_tree

gi_tree

gm_tree

lambda_tree

loop_tree

M_tree

sse_tree

ssecat_tree

syn_tree

syncat_tree

IO

load_tree

neurolucida_tree

neuron_tree

pov_tree

save_tree

swc_tree

ver_tree

x3d_tree

neu_tree

scheme

deg2rad

eucdist

gauss

rad2deg

rotation_matrix

roundshow

scalebar

Shine

tprint

gifmaker

stacks

fitD_stack

imload_stack

load_stack

loaddir_stack

loadtifs_stack

save_stack

show_stack

skel_stack

samples

GUI

the TREES toolbox - on the nature of neuronal branching 28

The reference general remarks

The suffix „_tree“ is usually appended to indicate that a function belongs directly to

the TREES toolbox. An input tree intree is generally the first argument which is

passed on (this proved to be more comfortable in most cases). This first argument

intree can be a tree structure or an index (single value) to the global cell array trees.

If the first input is omitted (or „[]“) the last entry in the trees array is used.

In general, omitting an input argument by typing in the empty vector „[]“ or by simply

sending out too few arguments to a function will result in replacing the input

arguments by default values. These default values are indicated precisely in the

headers of each function (simply typing „help function_name“ will retrieve the header)

and in the code. For most functions only a subset of the full tree definition is used

(e.g. only the diameter values, only the X and Y coordinates or only the topology). In

those cases the functions will not complain if the tree is not complete but the

required fields are existent in the tree structure. Missing fields might even be

replaced: the „plot_tree“ function for example will attribute sensible fake metrics if

real ones are missing.

In most cases the last input argument to a TREES function is the options string. This

string contains concatenated flags starting with „-“. Examples of typical options are:

‚-s„ show the result, this is mostly for demo purposes

‚-m„ demonstration movie in very few cases

‚-w„ waitbar to indicate the progress of long-lasting calculations

‚-e„ echo changes made to the tree

Note that if options is left empty (‚„) default options will be used rather than all flags

off. To be sure that all flags are off set options string to ‚none„. Note also that when

demo flags are on, features of a tree as well as other TREES toolbox functions might

be required which are not required when the flags are off.

Meta-functions are generalized functions whose input of an Nx1 vector can vary their

application greatly (see introductary explanation of morphing a tree for one such

example).

Examples are not necessarily useful but try to also exemplify typically more

unintuitive applications. Output values and resulting plots are formatted and do not

always correspond to the correct output (e.g. rounded values) of the Matlab function.

the TREES toolbox - on the nature of neuronal branching 29

graphtheory edit metrics graphical construct electrotonics IO

graphtheory

functions relating to the tree as a graph

asym_tree

B_tree

bin_tree

BO_tree

C_tree

child_tree

dissect_tree

dist_tree

gene_tree

idpar_tree

ipar_tree

LO_tree

PL_tree

Pvec_tree

ratio_tree

redirect_tree

rindex_tree

sort_tree

sub_tree

T_tree

typeN_tree

branch point asymmetry

branch points

binning nodes

branch order values

continuation points of tree

add up child node values

groups nodes belonging to same branch

nodes at a path distance away from root

string describing tree topology

index to direct parent node

path to root: parent indices

level order values

topological path length

cumulative summation along paths

parent to daughter ratio

set root to new point and redirect graph

region specific indexation

relabel nodes after sorting

child nodes forming a subtree

termination points

number of daughters to each node (BCT)

the TREES toolbox - on the nature of neuronal branching 30

asym_tree branch point asymmetry

graphtheory edit metrics graphical construct electrotonics IO

asym = asym_tree (intree, v, options)

At each branch point of tree intree, node values of

Nx1 vector v get summed up in each sub-tree to S
1

and S
2
. asym, an Nx1 vector, contains the ratio of S

1

/ (S
1

+ S
2
) for S

1
< S

2
at branch points (but NaN

otherwise).

By default, number of terminal child nodes are

compared in both sub-trees at a branch point: v is a

vector of 1 when termination point and 0 else (see

„T_tree“). For the example branch point on the right

(at node 3), S
1
=2 terminals are divided by S

1
+ S

2
=

2+3 terminals (= 0.4).

S
1

S
2

Example:

>> asym_tree (sample2_tree, T_tree (sample2_tree))„

[NaN, NaN, 0.4, NaN, NaN, 0.5, NaN, NaN, NaN, 0.3333, NaN, 0.5, NaN,

NaN, NaN]

See demo movie with option „-m„

the TREES toolbox - on the nature of neuronal branching 31

B_tree branch points

graphtheory edit metrics graphical construct electrotonics IO

B = B_tree (intree, options)

Returns for tree intree an Nx1 vector B which is

one if a given node is a branch point (more than

1 daughter node) and zero else.

Example:

>> B = B_tree (sample2_tree)‟

[0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0]

>> sum (B)

4

>> find (B)

[3, 6, 10, 12]

number of branch points

indices of branch points

branch

point (B)

the TREES toolbox - on the nature of neuronal branching 32

bin_tree binning nodes

graphtheory edit metrics graphical construct electrotonics IO

[bi, bins, bh] = bin_tree (intree, v, bins, options)

Subdivides nodes of tree intree into bins bins (number,

by default 10, or exact binning values) according to

Nx1 vector v. By default, v is the euclidean distance to

the root (see “eucl_tree”).

bi outputs an Nx1 vector with affiliation of each node

to used bins bins. bh counts up the number of

occurrences in each bin.

Examples:

>> [bi bins bh] = bin_tree (sample_tree, [], 4)

>> bar (bh)

plotting a histogram results in a

rudimentary sholl analysis plot

the TREES toolbox - on the nature of neuronal branching 33

BO_tree branch order values

graphtheory edit metrics graphical construct electrotonics IO

BO = BO_tree (intree, options)

Returns an Nx1 vector BO attributing a branch

order value to each node of tree intree. The

branch order starts at 0 at the root of the tree and

increases after every branch point.

Examples:

>> BO = BO_tree (sample2_tree)‟

[0, 0, 0, 1, 1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 2]

>> max (BO)

3

>> BO2 = BO_tree (sample_tree);

>> hist (BO2);

Maximum branch order

Plot a histogram of branch orders

for all nodes

the TREES toolbox - on the nature of neuronal branching 34

C_tree continuation points

graphtheory edit metrics graphical construct electrotonics IO

C = C_tree (intree, options)

Returns for tree intree an Nx1 vector C which is

one if a given node is a continuation point

(exactly 1 daughter node) and zero else.

Example:

>> C = C_tree (sample2_tree)‟

[1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]

>> sum (C)

6

>> find (C)

[1, 2, 4, 5, 7, 11]

number of continuation points

indices of continuation points

continuation

point (C)

the TREES toolbox - on the nature of neuronal branching 35

child_tree add up child node values

graphtheory edit metrics graphical construct electrotonics IO

child = child_tree (intree, v, options)

Returns for tree intree an Nx1 vector child with

accumulated values of Nx1 vector v of all child

nodes excluding the node itself.

Examples:

>> child = child_tree (sample2_tree)‟

[14, 13, 12, 5, 4, 3, 1, 0, 0, 5, 3, 2, 0, 0, 0]

or just the number of termination child nodes:

>> Tchild = child_tree (sample2_tree, T_tree (sample2_tree))‟

[5, 5, 5, 2, 2, 2, 1, 0, 0, 3, 2, 2, 0, 0, 0]

By default v is a vector of all ones: child then

simply counts up the number of child nodes.

the TREES toolbox - on the nature of neuronal branching 36

dissect_tree group nodes to branches

graphtheory edit metrics graphical construct electrotonics IO

[sect vec] = dissect_tree (intree, options)

Groups segments of tree intree together when

they belong to the same branch. Can be used as

sections in NEURON-like compartmental

modelling (see “neuron_tree”). Branches are

delimited by either branching or termination

points or region-defined borders.

Output matrix sect of size nx2 where n is the

number of branches contains starting and end

nodes of each branch. Nx2 matrix vec attributes

a branch to each node and a fractional path

length along this branch.

(Note that in the example below, nodes 14 and

15 form a separate region called “1”, which

reflects in the NEURON code below.)

Example:

>> [sect vec] = dissect_tree (sample2_tree);

>> sect‟

1 3 6 6 3 10 12 12 10

3 6 8 9 10 12 13 14 15

>> vec‟

1 1 1 2 2 2 3 3 4 5 6 6 7 8 9

0 .5 1 .35 .7 1 .47 1 1 1 .58 1 1 1 1

starting nodes

ending nodes

segment index

fractional path

length

corresponding NEURON connectivity:

connect tree_dendrite[1](0),tree_dendrite[0](1)

connect tree_dendrite[2](0),tree_dendrite1

connect tree_dendrite[3](0),tree_dendrite1

connect tree_dendrite[4](0),tree_dendrite[0](1)

connect tree_dendrite[5](0),tree_dendrite[4](1)

connect tree_dendrite[6](0),tree_dendrite[5](1)

connect tree_10,tree_dendrite[5](1)

connect tree_1[1](0),tree_dendrite[4](1)

the TREES toolbox - on the nature of neuronal branching 37

dist_tree nodes at distance from root

graphtheory edit metrics graphical construct electrotonics IO

dist = dist_tree (intree, l, options)

Returns a binary Nx1 vector dist indicating the

nodes of tree intree, whose segments cross

path distance l from the root. If l is a vector of

length n, dist becomes an Nxn matrix.

Example:

>> dist_tree (sample2_tree, [40 60])‟

[0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

nodes crossing 40mm

nodes crossing 60mm

the TREES toolbox - on the nature of neuronal branching 38

gene_tree “topological gene”

graphtheory edit metrics graphical construct electrotonics IO

genes = gene_tree (intrees, options)

Examples:

>> gene = gene_tree({{sample2_tree}}); gene{1}„

[21 29 21 8 10 17 9 11 9;

2 2 0 0 2 2 0 0 0]

>> dLPTCs = load_tree („dLPTCs.mtr‟);

>> genes = gene_tree (dLPTCs, „-s‟);

load groups of tangential cell

reconstructions

21 B 29 B 21 T 10 B8 T 17 B 9 T 11 T 9 T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Returns for a cell array of cell arrays of trees

intrees, a cell array of cell arrays of topological

genes genes (for each tree one). The two-depth of

the input/output arrays allows the comparison

between different groups of neuronal trees. The

topological gene (see introduction section

“topological gene”) returns for a sorted labelling of

a tree (see "sort_tree") for all branches (delimited by

topological points) the metric length and the

ending point type (termination or branch).

HSE cells

HSN cells

VS2 cells

VS3 cells

VS4 cells

branch length values in mm

branch ending topological point descriptor

(0: terminal, 2: branch)

(this might take some time, 1 min)

the TREES toolbox - on the nature of neuronal branching 39

idpar_tree index to direct parent node

graphtheory edit metrics graphical construct electrotonics IO

idpar = idpar_tree (intree, options)

Returns for tree intree an Nx1 vector idpar

containing the direct parent indices for each

node. Parent node of root is “1” by default. Use

„-0‟ option to set root parent to “0”.

Example:

>> idpar_tree (sample2_tree)‟

[1, 1, 2, 3, 4, 5, 6, 7, 6, 3, 10, 11, 12, 12, 10]

in black: node index

in red: parent index

the TREES toolbox - on the nature of neuronal branching 40

ipar_tree path to root: parent indices

graphtheory edit metrics graphical construct electrotonics IO

ipar = ipar_tree (intree, options)

Returns for tree intree a matrix ipar of indices to the parent of individual nodes

following the path against the direction of the adjacency matrix towards the root of

the tree. This function is crucial to many other functions based on graph theory in

the TREES package.

Examples:

>> ipar_tree (sample2_tree)

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 2 1 0 0 0 0 0 0

4 3 2 1 0 0 0 0 0

5 4 3 2 1 0 0 0 0

6 5 4 3 2 1 0 0 0

7 6 5 4 3 2 1 0 0

8 7 6 5 4 3 2 1 0

9 6 5 4 3 2 1 0 0

10 3 2 1 0 0 0 0 0

11 10 3 2 1 0 0 0 0

12 11 10 3 2 1 0 0 0

13 12 11 10 3 2 1 0 0

14 12 11 10 3 2 1 0 0

15 10 3 2 1 0 0 0 0

>> ipar_tree (sample_tree, „-s‟)

path of root

path of node #2, etc...

the TREES toolbox - on the nature of neuronal branching 41

LO_tree level order values

graphtheory edit metrics graphical construct electrotonics IO

LO = LO_tree (intree, options)

Returns for tree intree the Nx1 vector LO with

summed topological path distance (see

“PL_tree”) of all child branches to the root. We

call the function level order and it is useful to

classify rooted trees into isomorphic classes, i.e

to sort the node labels (see introduction section

“sorted and equivalent tree”).

Example:

>> LO_tree (sample2_tree)‟

[62 62 61 31 28 24 13 7 6 28 21 17 6 6 4]

the TREES toolbox - on the nature of neuronal branching 42

PL_tree topological path length

graphtheory edit metrics graphical construct electrotonics IO

PL = PL_tree (intree, options)

Returns for tree intree an Nx1 vector PL with

topological path length to the root for all nodes.

Example:

>> PL_tree (sample2_tree)‟

[0 1 2 3 4 5 6 7 6 3 4 5 6 6 4]

the TREES toolbox - on the nature of neuronal branching 43

Pvec_tree cumulative summation along paths

graphtheory edit metrics graphical construct electrotonics IO

Pvec = Pvec_tree (intree, v, options)

Returns for tree intree an Nx1 vector Pvec which

accumulates values of Nx1 vector v along the

path from each node to the root.

Examples:

>> Pvec_tree (sample2_tree)‟

[0 10.4 20.6 30.5 40.5 49.3 58.9 69.8 57.6 30.8

41 48.2 57.5 59.2 40.1]

when v contains just ones the output is 1+PL the topological path length:

>> Pvec_tree (sample2_tree, ones (N, 1))‟

[1 2 3 4 5 6 7 8 7 4 5 6 7 7 5]

when v contains the branch points the output is an alternative

formulation of the branch order which increases at the branch point

itself:

>> Pvec_tree (sample2_tree, B_tree (sample2_tree))‟

[0 0 1 1 1 2 2 2 2 2 2 3 3 3 2]

By default, „Pvec_tree“ sums up the length

values of the segments in the tree: v is then len

the vector of segment lengths (see „len_tree“).

Pvec then corresponds to the metric path length

to the root [in mm].

the TREES toolbox - on the nature of neuronal branching 44

ratio_tree parent to daughter ratio

graphtheory edit metrics graphical construct electrotonics IO

ratio = ratio_tree (intree, v, options)

Returns for tree intree an Nx1 vector ratio

which takes the ratios of values of Nx1 vector v

at the node itself and its direct parent idpar.

Example:

>> ratio_tree (sample2_tree)‟

[1 0.82 0.82 0.87 0.82 0.83 0.95 0.86 0.75 0.78

0.87 0.85 0.81 0.9 0.58]

By default, „ratio_tree“ compares diameter

values: v is then just D. However, any other

values can be chosen here. ratio is just

v/v(idpar).

the TREES toolbox - on the nature of neuronal branching 45

redirect_tree set root to new node

graphtheory edit metrics graphical construct electrotonics IO

[tree, order] = redirect_tree (intree, istart, options)

Sets the root to a different node. This changes

in tree intree the direction of the adjacency

matrix so that arrows show away from node

istart (which becomes the first element).

Example:

>> redirect_tree (sample2_tree, 5, „-s‟);

in black: old node index

in red: new node index, after redirect

the TREES toolbox - on the nature of neuronal branching 46

rindex_tree region specific indexation

graphtheory edit metrics graphical construct electrotonics IO

rindex = rindex_tree (intree, options)

Returns for tree intree an Nx1 vector rindex

attributing to each node a region specific index

increasing for each region individually in order

of appearance within that region.

Example:

>> rindex = rindex_tree (sample2_tree)‟

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2]

red: region „dendrite“

blue: region „1“

the TREES toolbox - on the nature of neuronal branching 47

sort_tree relabel nodes to BCT order

graphtheory edit metrics graphical construct electrotonics IO

[tree, order] = sort_tree (intree, options)

Sorts the labels (indices) of nodes of tree intree

to conform to BCT, an order in which elements

are arranged according to their hierarchy

keeping the sub-tree structure intact (see

introduction section “sorted and equivalent

trees”). Many isomorphic BCT order structures

exist, this one is created by switching the

location of each node one at a time to the right

neighbour position of their parent node. For a

unique sorting use '-LO' or „-LEX' options.

'-LO' orders the indices using path length and

level order. This results in a relatively unique

equivalence relation.

'-LEX„ orders the BCT elements lexicographically.

This makes less sense but results in a purely

unique equivalence relation.

"sort_tree" affects all vectors of form Nx1

attributed to the tree accordingly..

Example:

after redirecting the tree from a different root (see

“redirect_tree”) the nodes are scrambled. Try out:

>> rtree = redirect_tree (sample2_tree, 5);

>> sort_tree (rtree, „-s‟);

hierarchical sorting

BCT order after

sorting with

“sort_tree”

topological sorting

“sort_tree” with option

“-LO”

in black: old node index

in red: new node index, after sorting

the TREES toolbox - on the nature of neuronal branching 48

sub_tree child nodes forming sub-tree

graphtheory edit metrics graphical construct electrotonics IO

[sub subtree] = sub_tree (intree, inode, options)

Returns for tree intree, an Nx1 vector sub,

where the elements corresponding to a sub-tree

defined by its starting node inode are “1”, and

all other elements are “0”. An optional output

subtree is a structure containing the tree

structure corresponding to the sub-tree.

Example:

>> [sub subtree] = sub_tree (sample2_tree, 5)

[0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]‟

>> sum (sub)

5

>> find (sub)

[5, 6, 7, 8, 9]

>> subtree

dA: [5x5 double]

X: [5x1 double]

Y: [5x1 double]

etc..

>> resttree = delete_tree (sample2_tree, find(sub))

dA: [10x10 double]

X: [10x1 double]

Y: [10x1 double]

etc..

number of child nodes of node #5

indices of nodes in the sub-tree

tree structure corresponding to sub-tree

original tree structure without the sub-tree

the TREES toolbox - on the nature of neuronal branching 49

T_tree termination points

graphtheory edit metrics graphical construct electrotonics IO

T = T_tree (intree, options)

Returns for tree intree an Nx1 vector T which is

one if a given node is a termination point

(exactly 0 daughter nodes) and zero else.

Example:

>> T = T_tree (sample2_tree)‟

[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1]

>> sum (T)

5

>> find (T)

[8, 9, 13, 14, 15]

number of termination points

indices of termination points

termation

point (T)

the TREES toolbox - on the nature of neuronal branching 50

typeN_tree number of daughters (BCT)

graphtheory edit metrics graphical construct electrotonics IO

typeN = typeN_tree (intree, options)

Returns for tree intree an Nx1 vector typeN

which attributes to each node either 0:

termination, 1: continuation, 2: branch point. If

the tree is sorted (see “sort_tree”), this is the

BCT string description of the topology of the

tree (see introduction section “BCT formalism”).

This function simply takes the vertical sum over

the adjacency matrix with 2 as an upper bound.

Examples:

>> typeN = typeN_tree (sample2_tree)‟

[1, 1, 2, 1, 1, 2, 1, 0, 0, 2, 1, 2, 0, 0, 0]

>> typeN = typeN_tree (sample2_tree, „-bct‟)‟

CCBCCBCTTBCBTTT BCT string

the TREES toolbox - on the nature of neuronal branching 51

graphtheory edit metrics graphical construct electrotonics IO

edit

functions to edit the topology of a tree

cat_tree

delete_tree

elim0_tree

elimt_tree

insert_tree

insertp_tree

recon_tree

repair_tree

resample_tree

root_tree

concatenates two trees

delete a set of nodes

eliminates zero-length segments

replace multifurcations with bifurcations

insert a number of points into a tree

insert nodes along a path in a tree

reconnect sub-trees to new parent nodes

restore full BCT conformity

redistributes nodes on tree

add tiny segment at tree root

the TREES toolbox - on the nature of neuronal branching 52

cat_tree concatenates two trees

graphtheory edit metrics graphical construct electrotonics IO

tree = cat_tree (intree1, intree2, inode1, inode2, options)

Concatenates two trees intree2 onto intree1 at respective nodes inode2 and

inode1 within the branching structure. Sorts the indices topologically (see

"sort_tree" with option '-LO'). Fields are preferably taken from intree1, all vectors

(X, Y, Z, D etc...) must exist in both trees if they exist in one tree and are

concatenated as well. Region fields R and rnames are updated.

By default, intree2 is connected at its root to the closest node of intree1.

Examples:

Move the sample tree (see „tran_tree“) and concatenate it with itself

>> ttree = tran_tree (sample2_tree, [55 25 0]);

>> cattree = cat_tree (sample2_tree, ttree);

the TREES toolbox - on the nature of neuronal branching 53

delete_tree deletes a set of nodes

graphtheory edit metrics graphical construct electrotonics IO

tree = delete_tree (intree, inodes, options)

Deletes in tree intree a set of nodes defined by index inodes. Trifurcation occurs

when deleting any branch points following directly other branch points. Region

numbers are changed and region name array is trimmed.

Example:

>> delete_tree (sample2_tree, [5 10 12 13]);

the TREES toolbox - on the nature of neuronal branching 54

elim0_tree eliminates 0-length segments

graphtheory edit metrics graphical construct electrotonics IO

Deletes 0-length segments (except first segment of course) in tree intree. Updates

regions.

Example:

After setting coordinates of node 5 to those of node 4, eliminate resulting 0-length

segment.

>> tree = sample2_tree;

>> tree.X(5) = tree.X(4); tree.Y(5) = tree.Y(4); tree.Z(5) = tree.Z(4);

>> elim0_tree (tree)

zero length

segment

tree = elim0_tree (intree, options)

the TREES toolbox - on the nature of neuronal branching 55

elimt_tree reduce multi- to bifurcations

graphtheory edit metrics graphical construct electrotonics IO

tree = elimt_tree (intree, options)

Eliminates trifurcation or multifurcations present in the adjacency matrix of tree

intree by adding tiny (x-deflected) compartments.

Example:

A trifurcation occurs for example when a tree is redirected to a branch point (see

“redirect_tree”).

>> tree = redirect_tree (sample2_tree, 3);

>> elimt_tree (tree);

trifurcation

additional

small segment

the TREES toolbox - on the nature of neuronal branching 56

insert_tree insert new points

graphtheory edit metrics graphical construct electrotonics IO

tree = insert_tree (intree, swc, options)

Inserts a set of points defined by a matrix swc in SWC format ([inode R X Y Z D

idpar]) into a tree intree.

Example:

>> tree = insert_tree (sample2_tree,[1 1 45 9 0 1 5]);

>> tree = insert_tree (tree,[1 1 55 10 0 1 16]);

these two commands are equivalent to:

>> tree = insert_tree (sample2_tree,[1 1 45 9 0 1 5;2 1 55 10 0 1 16]);

node index

region index

x-coordinate

y-coordinate

z-coordinate

diameter

parent node index

the TREES toolbox - on the nature of neuronal branching 57

insertp_tree insert nodes along a path

graphtheory edit metrics graphical construct electrotonics IO

[tree indx] = insertp_tree (intree, inode, plens, options)

Inserts nodes into tree intree at path-lengths plens on the path from the root to

node inode. All Nx1 vectors are interpolated linearly but regions are taken from

child nodes.

Example:

add nodes every 10 mm along path of node #14 starting at 5 mm until path length

100 mm

>> insertp_tree (sample2_tree, 14, 5:10:100)

the TREES toolbox - on the nature of neuronal branching 58

recon_tree reconnects sub-trees

graphtheory edit metrics graphical construct electrotonics IO

tree = recon_tree (intree, ichilds, ipars, options)

Reconnects within tree intree a set of sub-trees,

given by node indices ichilds to new respective

parent nodes defined by indices ipars.

By default the sub-trees are moved directly to

their new parent nodes (option “-h”). Without

options this can be avoided (see below).

Example:

>> recon_tree (sample2_tree, [12 7], [15 9])

>> recon_tree (sample2_tree, [12 7], [15 9], ‟none‟)

the TREES toolbox - on the nature of neuronal branching 59

repair_tree restore full BCT conformity

graphtheory edit metrics graphical construct electrotonics IO

tree = repair_tree (intree, options)

Repairs tree intree. This means removing trifurcations by adding small segments

(see “elimt_tree”), removing 0-length compartments (see “elim0_tree”), and sorting

the indices topologically (see “sort_tree” with “-LO” option). Applying this function

is crucial for many other functions in this toolbox, which assume for example BCT-

conformity. Importing tree (e.g. with “load_tree”) automatically calls this function.

Example:

>> repair_tree (tree)

the TREES toolbox - on the nature of neuronal branching 60

resample_tree redistributes nodes

graphtheory edit metrics graphical construct electrotonics IO

tree = resample_tree (intree, sr, options)

Resamples a tree intree to equidistant nodes of

distance sr in mm. See introduction section

“resampling a tree” for the details on the

abstraction principles.

Example:

>> resample_tree (sample_tree, 10)

>> resample_tree (sample_tree, 20)

>> resample_tree (sample_tree, 20, „-l‟)

10 mm resampling

20 mm resampling

20 mm resampling

with length conservation

the TREES toolbox - on the nature of neuronal branching 61

root_tree add tiny segment at tree root

graphtheory edit metrics graphical construct electrotonics IO

tree = root_tree (intree, options)

Roots a tree intree by adding a tiny segment in

the root. This is rather an internal function.

Example:

>> root_tree (sample2_tree)

the TREES toolbox - on the nature of neuronal branching 62

graphtheory edit metrics graphical construct electrotonics IO

metrics

functions to obtain or alter metrics from a tree

angleB_tree

cvol_tree

cyl_tree

dstats_tree

eucl_tree

flatten_tree

flip_tree

len_tree

morph_tree

rot_tree

scale_tree

sholl_tree

stats_tree

surf_tree

tran_tree

vol_tree

zcorr_tree

angle values at branch points

continuous volume of segments

cylinder coordinates of segments

display tree statistics from “stats_tree”

Euclidean distances within a tree

flattens a tree onto XY-plane

flips a tree around one axis

length values of tree segments

alter metrics preserving angles and topology

rotate a tree

scale a tree

real sholl analysis

collects a number of tree statistics

surface values of tree segments

move a tree

volume values of tree segments

corrects neurolucida z-artifacts

the TREES toolbox - on the nature of neuronal branching 63

angleB_tree branch point angles

graphtheory edit metrics graphical construct electrotonics IO

angleB = angleB_tree (intree, options)

At each branch point of tree intree, angle values

corresponding to the branching angle within the

branching plane are returned. Nx1 vector

angleB is NaN at nodes which are not branch

points. Cone angle calculation is not yet

implemented.

Example:

>> angleB_tree (sample2_tree)„

[NaN, NaN, 1.1, NaN, NaN, 0.9, NaN, NaN, NaN, 1, NaN, 0.8, NaN, NaN,

NaN]

see demo movie with option „-m„

the TREES toolbox - on the nature of neuronal branching 64

cvol_tree segment’s continuous volume

graphtheory edit metrics graphical construct electrotonics IO

cvol = cvol_tree (intree, options)

Returns an Nx1 vector cvol of continuous

volumes for all segments [in 1/mm] in tree

intree. This is used by electrotonic calculations

in relation to the specific axial resistance [ohm

cm] (see "sse_tree“).

Example:

>> cvol_tree (sample2_tree, '-s')

)/(4 2Dl 

 )/(12 2

221

2

1 DDDDl 

cylinder-based

frustum-based

the TREES toolbox - on the nature of neuronal branching 65

cyl_tree segment cylinder coordinates

graphtheory edit metrics graphical construct electrotonics IO

[X1, X2, Y1, Y2 ,Z1, Z2] = cyl_tree (intree, options) or

M = cyl_tree (intree, options)

Uses the adjacency matrix to obtain the starting and ending points of the

individual segments of tree intree. Option “-dA” writes the coordinates at the

position of the corresponding segment in the adjacency matrix. Outputs X1,

X2, Y1, Y2, Z1 and Z2 are Nx1 vectors, M is the concatenated Nx6 matrix.

Example:

The 2D coordinates of all segments defined by the respective nodes in the tree

>> M = cyl_tree (sample2_tree, „-2d‟)

0 0 0 0

0 8 0 4

8 17 4 9

17 27 9 11

27 36 11 13

36 44 13 17

44 53 17 19

53 64 19 18

44 47 17 23

17 20 9 18

20 23 18 27

23 27 27 33

27 36 33 37

27 31 33 44

20 29 18 20

X1 X2 Y1 Y2

2D option prevents output

of z-coordinates

the TREES toolbox - on the nature of neuronal branching 66

dstats_tree display statistics

graphtheory edit metrics graphical construct electrotonics IO

HP = dstats_tree (stats, vcolor, options)

Displays some statistics of sets of trees. stats can be a structure obtained from

“stats_tree” or can be read out from an ".sts" file. vcolor is a numx3 matrix

attributing to each of all num groups of trees an RGB 3-tupel colour. Options are

showing only global statistics „-g‟, only distributions „-d‟ and smoothen the

distributions „-c‟.

Example:

>> dLPTCs = load_tree („dLPTCs.mtr‟);

>> dstats_tree (stats_tree (dLPTCs));

the TREES toolbox - on the nature of neuronal branching 67

eucl_tree euclidean distances

graphtheory edit metrics graphical construct electrotonics IO

eucl = eucl_tree (intree, inode, options)

Returns Nx1 vector eucl containing the

Euclidean (as the bird flies) distance [in mm]

between all points on the tree intree and the

root (by default) or any other node defined by its

index inode. inode can also be a 3-tupel of XYZ

coordinates.

Example:

>> eucl_tree (sample2_tree)„

[0, 10, 20, 29, 38, 47, 57, 67, 53, 27, 36, 43, 51, 54, 35]

the TREES toolbox - on the nature of neuronal branching 68

flatten_tree flattens tree onto XY plane

graphtheory edit metrics graphical construct electrotonics IO

tree = flatten_tree (intree, options)

Flattens tree intree into the XY plane by

conserving the lengths of the individual

compartments. (similar to “morph_tree” but not

similar enough to make one function)

Example:

>> flatten_tree (sample2_tree, '-s -m')

See demo movie with option „-m„

in black: original tree

in red: flattened tree

the TREES toolbox - on the nature of neuronal branching 69

flip_tree flips tree around one axis

graphtheory edit metrics graphical construct electrotonics IO

tree = flip_tree (intree, DIM, options)

Flips coordinates of tree intree around

dimension DIM (1: x-axis, 2: y-axis, 3:z-axis).

Example:

>> flip_tree (sample2_tree, 1)

in red: original tree

in black: flipped tree

the TREES toolbox - on the nature of neuronal branching 70

len_tree length values of tree segments

graphtheory edit metrics graphical construct electrotonics IO

len = len_tree (intree, options)

Returns Nx1 vector len, the lengths of all

segments [in mm] in tree intree using the X, Y

and Z coordinates and the adjacency matrix.

Example:

>> len_tree (sample2_tree)„

[0, 10, 10, 10, 10, 9, 10, 11, 8, 10, 10, 7, 9, 11, 9]

the TREES toolbox - on the nature of neuronal branching 71

morph_tree maps new length values onto segments

graphtheory edit metrics graphical construct electrotonics IO

tree = morph_tree (intree, v, options)

Morphs the metrics of tree intree without changing angles or topology (see

introduction section “morphing a tree”). Attributes length values from Nx1 vector v

to the individual segments but keeps the branching structure otherwise intact. This

can result in overlap between previously non-overlapping segments or extreme

sparseness depending on intree and v. This function provides universal application

to all possible morpho-electrotonic transforms and much more. If the original

lengths of segments are backed up in a vector len, the original tree can simply be

recovered by:

originaltree = morph_tree (morphedtree, len);

However of course, 0-length segments cannot be regrown.

Example:

map new (random) lengths on the topology, conserving the angles

>> morph_tree (sample2_tree, randn(15,1)*5+10)

see demo movie with option „-m„

in red: original tree

in black: morphed tree

the TREES toolbox - on the nature of neuronal branching 72

rot_tree rotate a tree

graphtheory edit metrics graphical construct electrotonics IO

tree = rot_tree (intree, DEG, options)

Rotates tree intree by multiplying each point in

space with a simple 3x3 (3D) or 2x2 (2D)

rotation-matrix. Rotation along principal

components is also possible (option „-pc2d‟ or „-

pc3d‟). Then first pc is in x, second pc is in y,

third pc is in z. intree should be first centred

with “tran_tree” except if rotation around a

different point is required.

Example:

>> rot_tree (sample2_tree, [x 0 0])

Example:

>> rot_tree (sample2_tree, [0 y 0])

Example:

>> rot_tree (sample2_tree, [0 0 z])

x

y

z

the TREES toolbox - on the nature of neuronal branching 73

scale_tree scales a tree

graphtheory edit metrics graphical construct electrotonics IO

tree = scale_tree (intree, fac, options)

Scales the entire tree intree by factor fac. If fac

is a 3-tupel, the scaling factor can be different

for X, Y and Z. With equal scaling, diameter is

scaled by default. Option „-d‟ can prevent this.

Example:

>> scale_tree (sample2_tree, [x 1 1])

the TREES toolbox - on the nature of neuronal branching 74

sholl_tree real Sholl analysis

graphtheory edit metrics graphical construct electrotonics IO

[s, dd, sd, XP, YP, ZP, iD] = sholl_tree (intree, dd, options)

Calculates a Sholl analysis on tree intree counting the number of intersections of

the tree with concentric spheres of increasing diameter values given by dd. dd can

also simply be a single value, the diameter increasing step, by default 50 mm.

Outputs are s, number of intersections at diameters dd. A segment can intersect a

circle or sphere twice, these double intersections are counted in sd. XP, YP and ZP

are the coordinates of the intersection points. iD is the index of these points in dd.

Diameter 0 mm is 1 intersection by definition but typically 4 points are still output

into XP.

Equations for intersection between line segments and spheres are from Paul Bourke

1992:

http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/

Example:

>> sholl_tree (sample2_tree, 20, „-s‟)

The calculation happens in 3D:

in red: concentric circles/spheres

red dots: intersections

green: Sholl intersection count

in black: tree

Calculates a Sholl analysis on tree intree counting the number of intersections of

the tree with concentric spheres of increasing diameter values given by dd. dd can

also simply be a single value, the diameter increasing step, by default 50 mm.

Outputs are s, number of intersections at diameters dd. A segment can intersect a

circle or sphere twice, these double intersections are counted in sd. XP, YP and ZP

are the coordinates of the intersection points. iD is the index of these points in dd.

Diameter 0 mm is 1 intersection by definition but typically 4 points are still output

into XP.

Equations for intersection between line segments and spheres are from Paul Bourke

1992:

http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/

http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/

the TREES toolbox - on the nature of neuronal branching 75

stats_tree collect trees statistics

graphtheory edit metrics graphical construct electrotonics IO

[stats name path] = stats_tree (intrees, s, name, options)

Collects typical statistics on trees intrees. Input trees can be organized as:

.single tree

.one group of trees: {tree
1
, tree

2
,... tree

n
}

.many groups of trees: {{tree
i1
,...,tree

in
},{tree

j1
,...,tree

jm
},...}

With s a cell array of names defining the individual groups of trees can be passed

on, option „-f‟ saves statistics to file with name name. option „-x‟ avoids time

consuming statistics (use that!!) and option „-s‟ shows the result (see

“dstats_tree”). This function will shortly be greatly enhanced.

Example:

>> dLPTCs = load_tree ('dLPTCs.mtr')

{1x15 cell} {1x10 cell} {1x10 cell} {1x10 cell} {1x10 cell}

>> stats_tree (dLPTCs,{'HSE','HSN','VS2','VS3','VS4'},[],'-w -x')

gstats: [1x5 struct]

dstats: [1x5 struct]

s: {'HSE' 'HSN' 'VS2' 'VS3' 'VS4'}

dim: 3

>> stats.gstats (global stats)

1x5 struct array with fields:

len, total cable length

max_plen, maximum path length

bpoints, number of branch points

mpeucl, mean path/Euclidean distance

maxbo, maximum branch order

mangleB, mean branch angle

mblen, mean branch length

mplen, mean path length

mbo, mean branch order

wh, field height/width

wz, field depth/width

chullx, center of mass x

chully, center of mass y

chullz, center of mass z

>> stats.dstats (distributions)

1x5 struct array with fields:

BO, branch order distribution

Plen, path length distribution

peucl, path/Euclidean distance dist.

angleB, branch angle distribution

blen, branch lengths distribution

the TREES toolbox - on the nature of neuronal branching 76

surf_tree segment surface values

graphtheory edit metrics graphical construct electrotonics IO

surf = surf_tree (intree, options)

Returns Nx1 vector surf, the surfaces [in mm
2
] of

all segments of tree intree from the X, Y, Z and

D coordinates and the adjacency matrix.

Example:

>> surf_tree (sample2_tree)‟

[0, 114, 91, 78, 64, 47, 48, 47, 33, 71, 61, 37, 39, 51, 38]

cylinder-based

frustum-based

   
42

2

21221 DD
l

DD 




Dl

the TREES toolbox - on the nature of neuronal branching 77

tran_tree move a tree

graphtheory edit metrics graphical construct electrotonics IO

tree = tran_tree (intree, DD, options)

Moves tree intree according to translation

coordinates given in XYZ 3-tupel DD. By default

centers tree by setting root to XYZ coordinates

(0,0,0).

Example:

>> tran_tree (sample2_tree, [x 0 0])

the TREES toolbox - on the nature of neuronal branching 78

vol_tree segment volume values

graphtheory edit metrics graphical construct electrotonics IO

vol = vol_tree (intree, options)

Example:

>> vol_tree (sample2_tree)‟

 
12

2

221

2

1 DDDD 

4

2lD
cylinder-based

frustum-based

Returns Nx1 vector vol, the volumes [in mm
3
] of

all segments of tree intree from the X, Y, Z and

D coordinates and the adjacency matrix.

the TREES toolbox - on the nature of neuronal branching 79

zcorr_tree corrects jumps in z

graphtheory edit metrics graphical construct electrotonics IO

[tree idZ] = zcorr_tree (intree, tZ, options)

While reconstructing neuronal trees sudden shifts in the z-axis may occur. This

function automatically corrects these effects in a given input tree intree. Any jump

in the z-axis > tZ, a threshold difference in z, is subtracted from the entire sub-

tree. Before applying this function, check that this is really the adequate way to

process these jumps in z.

Example:

After introducing a fake jump in the z values of the sub-tree of node #5, „zcorr_tree“

is applied

>> tree = sample2_tree; isub = find (sub_tree (tree, 5));

>> tree.Z(isub) = tree.Z(isub) – 20;

>> zcorr_tree (sample2_tree, 15)

the TREES toolbox - on the nature of neuronal branching 80

graphtheory edit metrics graphical construct electrotonics IO

graphical

function for visual output and various hulls

chull_tree

dA_tree

dendrogram_tree

gdens_tree

hull_tree

lego_tree

plot_tree

plotsect_tree

pointer_tree

spread_tree

vhull_tree

vtext_tree

xdend_tree

xplore_tree

convex hull around whole or part of tree

plots the adjacency matrix

plots a dendrogram

density matrix of nodes in tree

iso-distance surface or line around tree

density plot as lego pieces

plot a tree

plot a selected path

spheres or electrodes at selected nodes

display trees separately

voronoi based subdivision

write text at node locations

x-coordinates of dendrogram

exploration plots

the TREES toolbox - on the nature of neuronal branching 81

chull_tree convex hulls

graphtheory edit metrics graphical construct electrotonics IO

[HP hull] = chull_tree (intree, ipart, color, DD, alpha, options)

Plots a convex hull around nodes with index ipart of tree intree (intree can also

simply be an Nx3 matrix of XYZ points). Hull patch is offset by XYZ 3-tupel DD and

coloured with RGB 3-tupel color. alpha sets the transparency of the patch (by

default .2). Option „-2d‟ restricts the hull patch to two dimensions. HP is the handle

to the graphical object. Set options to „none‟ to avoid graphical output. Output hull

is a structure containing in hull.XY(Z) the coordinates and in hull.ch the indices to

the convex hull (see Matlab function “convhull”).

If the tree is 100% flat 3D convex hull doesn't work. If selected nodes are two

draws a straight line. If selected nodes are one plots a point.

Example 1:

convex hull around sub-tree of node #11

>> chull_tree (sample_tree, find (sub_tree (sample_tree,11)),...

[0 1 0])

Example 2:

2D convex hull around entire tree

>> chull_tree (sample2_tree, [], [], [], 1, „-2d‟)

color : green

opaque

the TREES toolbox - on the nature of neuronal branching 82

dA_tree plots adjacency matrix

graphtheory edit metrics graphical construct electrotonics IO

HP = dA_tree (intree, color, DD, xyscale, options)

Displays the adjacency matrix of tree intree in the colour defined by RGB 3-tupel

color, displaced by XY/Z 2/3-tupel DD and scaled by scaling factor xyscale. Fills in

an NxN square with 1s (where there is a connection between two nodes, against 0s

elsewhere) if N<50 and with black dots if tree is bigger. HP is the handle to the

graphical object.

Example 1:

adjacency plot of a small tree

>> dA_tree (sample2_tree)

Example 2:

adjacency plot of a larger tree

>> dA_tree (sample_tree)

the TREES toolbox - on the nature of neuronal branching 83

dendrogram_tree plots a dendrogram

graphtheory edit metrics graphical construct electrotonics IO

HP = dendrogram_tree (intree, diam, yvec, color, DD, wscale, options)

Plots a dendrogram of the tree intree (must

conform to BCT). HP is the handle to the

graphical object. Nx1 vector yvec simply assigns

a y-value to each node (metric path length by

default, see “Pvec_tree”), while Nx1 vector diam

attributes a diameter (single value = constant

diameter). The dendrogram is offset by XYZ 3-

tupel DD and coloured with RGB 3-tupel color.

Single value wscale determines the spacing

between two terminals.

Example 1:

simple line dendrogram

>> dendrogram_tree (sample_tree)

Example 2:

“topological” dendrogram, plotting topological path length on the y-axis

>> PL = PL_tree (sample2_tree);

>> dendrogram_tree (sample2_tree, PL/20, 10*PL, PL, [], [], '-p -v')

diameter

y-axis

color

all depend on the

topological path

length

plot as

patches but

without

horizontal

lines

the TREES toolbox - on the nature of neuronal branching 84

gdens_tree density matrix of tree

graphtheory edit metrics graphical construct electrotonics IO

[M dX dY dZ HP] = gdens_tree (intree, sr, ipart, options)

Calculates a density matrix of the nodes in the tree intree. Uses Matlab function

“isosurface” to display the resulting gradient and increases opacity with density. sr

determines the bin size for the matrix. ipart, a set of indices into intree, allows to

use only a subset of nodes, for example only the topological points. Outputs are

the density matrix M and dX, dY and dZ are the X-, Y- and Z-dimension labels of M.

HP is the handle to the graphical object. Set options to „none‟ to avoid graphical

output.

Example:

Density of topological points (only termination and branch points)

>> iBT = B_tree(sample_tree)|T_tree(sample_tree)

>> gdens_tree (sample_tree, 20, iBT)

20 mm bins

the TREES toolbox - on the nature of neuronal branching 85

hull_tree isodistance surfaces/lines

graphtheory edit metrics graphical construct electrotonics IO

[c M HP] = hull_tree (intree, thr, bx, by, bz, options)

Calculates a space-filling 3D isosurface around the tree intree with a threshold

distance of thr [in mm]. In order to do this it creates a grid defined by the vectors

bx, by and bz and calculates the closest point of the tree to any of the points on

the grid. Higher resolution requires more computer power but results in higher

accuracy of contour. Note that for smaller threshold distances thr, a better spatial

resolution is required! Outputs are c, a structure containing the polygon point

coordinates, and the distance matrix M. In the 2D case (with option „-2d‟), c is a

contour (see Matlab function “contourc”). HP is the handle to the graphical output

object. Reduce the resulting patch resolution if necessary with:

reducepatch (HP, ratio)

Example:

>> hull_tree (sample2_tree, 5)

or in 2D:

>> hull_tree (sample2_tree, 5, [], [], [], „-s -2d‟)

5 mm

isodistance

the TREES toolbox - on the nature of neuronal branching 86

lego_tree lego density plot

graphtheory edit metrics graphical construct electrotonics IO

[HP, M] = lego_tree (intree, sr, thr, options)

Uses "gdens_tree" to plot the bins of a density matrix M of points in a tree intree.

sr sets the resolution (size of the bins) and thr a threshold for the transparency.

Opacity and colours increase with density. The individual bins are shaped like lego

pieces.

Example:

>> tree = resample_tree (sample_tree, 1);

>> lego_tree (tree, 5)

without the resampling, most bins

along the tree will be empty since

no nodes exist there

the TREES toolbox - on the nature of neuronal branching 87

plot_tree plots a tree

graphtheory edit metrics graphical construct electrotonics IO

HP = plot_tree (intree, color, DD, ipart, res, options)

Plots a directed graph contained in tree structure intree. Many settings allow to play

with the output results. Colour handling is different on line plots than on patchy '-b'

or '-p'. Even if metrics are nonexistent “plot_tree” will plot its best guess for a

reasonable tree (see "xdend_tree"). Line plots are always slower than any patch

display. Plot is offset by XYZ 3-tupel DD and coloured with RGB 3-tupel (or Nx1

vector, a colour value per node) color. ipart is an optional index for a sub-set of

nodes whose segements are to be plotted. res determines the resolution of the

cylinders, with 8 points as a default. options are „-2l‟ or „-3l‟ for 2D or 3D line plots,

„-2q‟ or „-3q‟ for 2D or 3D arrow plots (quiver); see comments in “plot_tree” for more

details. HP is the handle to the graphical object.

Example 1 (map branch order to colour):

>> plot_tree (sample2_tree,

BO_tree (sample2_tree))

Example 2 (as a line):

>> HP = plot_tree (sample2_tree,

[], [], [], [], ‟-3l‟);

>> set (HP, „marker‟, „.‟);

Example 3 (quiver plot of sub-tree of node #10):

>> plot_tree (sample2_tree, [], [],

find (sub_tree (sample2_tree, 10)), [], ‟-3q‟);

written partly by Friedrich Forstner 2008

the TREES toolbox - on the nature of neuronal branching 88

plotsect_tree plots selected path

graphtheory edit metrics graphical construct electrotonics IO

[HP, indy] = plotsect_tree (intree, sect, color, DD, options, ipar)

Draws a line through a section (or path) out of a tree intree. The section must be

a directed path away from the root as obtained by “dissect_tree” for example (or

“ipar_tree”). Plot is offset by XYZ 3-tupel DD and coloured with RGB 3-tupel color.

Providing parental paths matrix ipar (see “ipar_tree”) speeds up the plotting

significantly. HP is the handle to the graphical object. indy outputs the nodes on

the path.

Example:

>> [HP indy] = plotsect_tree (sample2_tree, [1 13], [1 0 0]);

>> indy

[13, 12, 11, 10, 3, 2, 1]

>> set (HP, „marker‟, „.‟);

start node

end node
color : red

the TREES toolbox - on the nature of neuronal branching 89

pointer_tree draws pointers (electrodes)

graphtheory edit metrics graphical construct electrotonics IO

HP = pointer_tree (intree, inodes, llen, color, DD, options)

Draws pointers away at random positive deflections of length ~llen from nodes

inodes in tree intree. Pointer are offset by XYZ 3-tupel DD and coloured with

RGB 3-tupel color. By default these are simple spheres. With options „-l‟ or „-v‟

the pointers look a bit like thin or thick electrodes respectively. HP is the handle

to the graphical object.

Example:

green spheres around nodes #8, #5 and #2:

>> HP = pointer_tree (tree, [8 5 2], [], [0,1,0]);

red “patch” electrode on node #4

>> HP = pointer_tree (tree, 14, 100, [1 0 0], [], '-v');

blue transparent “sharp” electrode on node #15

>> HP = pointer_tree (tree, 15, 50, [0 0 1], [], '-l');

>> set (HP, 'facealpha',.1);

the TREES toolbox - on the nature of neuronal branching 90

spread_tree spreads out trees

graphtheory edit metrics graphical construct electrotonics IO

[DD trees] = spread_tree (intrees, dX, dY, options)

Creates a cell array DD of same organization as 2(or 1)-depth cell array intrees

with X-, Y- and Z-coordinates to display trees spread over the XY-surface of a

figure. DD is then an input to most functions in the "graphical" folder of the

TREES toolbox (see "plot_tree" for example). If nesting level is 2 deep, trees are

separated in groups additionally. dX and dY determine the minimal distance in X

and Y respectively between two trees. trees output contains all trees in intrees

translated according to DD.

Example:

>> dLPTCs = load_tree („dLPTCs.mtr‟);

>> spread_tree (dLPTCs{1})

the TREES toolbox - on the nature of neuronal branching 91

vhull_tree voronoi based subdivision

graphtheory edit metrics graphical construct electrotonics IO

[HP VO KK vol] = vhull_tree (intree, v, points, ipart, DD, options)

Subdivides a tree intree in convex polygons using the voronoi-algorithm. Returns

one patch around each node. Patches can be coloured with Nx1 vector v.

Boundary voronoi patches would go ad infinitum. Therefore a set of boundary

points prevents this, by default these are calculated according to the isosurface

from “hull_tree”. vhull plot is offset by XYZ 3-tupel DD and ipart is an optional

index for using a sub-set of nodes only. HP is the handle to the graphical object.

VO and KK are coordinates and convex hull indices of each individual polygon.

vol outputs an Nx1 vector of volume values (or surface values if 2D) for the output

polygons.

Example 1:

>> vhull_tree (sample2_tree, BO_tree (sample2_tree))

Example 2:

First get the points for the 2D boundary at 15 mm isodistance then 2D vhull

>> c = hull_tree (sample2_tree, 15, [], [], [], '-2d');

>> [Xt Yt] = cpoints (c);

>> HP = vhull_tree (tree, [], [Xt Yt], [], [], '-2d -s');

the TREES toolbox - on the nature of neuronal branching 92

vtext_tree write text at node locations

graphtheory edit metrics graphical construct electrotonics IO

HP = vtext_tree (intree, v, color, DD, crange, ipart, options)

Displays text numbers or text in the Nx1 vector v at the coordinates of the

nodes of tree intree. By default v contains the numbers 1 to N, a way to display

node indices. Plot is offset by XYZ 3-tupel DD and coloured with RGB 3-tupel (or

Nx1 vector, a colour value per node) color. ipart is an optional index for a sub-

set of nodes to be plotted. crange restricts the colour limits. HP is the handle

to the text object.

Example:

>> HP = vtext_tree (sample2_tree, ('hello!!!!')', eucl_tree

(sample2_tree), [], [], 1:9)

>> set (HP, „fontname‟, „times new roman‟);

selected

nodes colour

according to

Euclidean

distance

each new line is attributed

to a new node

output can be

modified as any other

text handle

the TREES toolbox - on the nature of neuronal branching 93

xdend_tree dendrogram x-coordinates

graphtheory edit metrics graphical construct electrotonics IO

[xdend tree] = xdend_tree (intree, options)

Returns an Nx1 vector xdend of x-values useful for constructing the dendrogram

of tree intree. Each element's x-value is set in the middle of the labelled terminal

children (maximum index + minimum index)/2. Optional output is a correlate

(equivalent) tree to intree with same branch lengths and topology but with

standard and sorted metrics. Branch overlap is also avoided if possible. intree

must be conform to BCT format. If unsure just apply “repair_tree” beforehand.

Example:

>> xdend_tree (sample2_tree)‟

[3, 3, 3, 1.5, 1.5, 1.5, 1, 1, 2, 4, 3.5, 3.5, 3, 4, 5]

the TREES toolbox - on the nature of neuronal branching 94

xplore_tree tree exploration plots

graphtheory edit metrics graphical construct electrotonics IO

[HT HP] = xplore_tree (intree, options, color, DD)

Plots different representative exploration plots for a tree intree. Three options

exist (see below). When it makes sense, plot is offset by XYZ 3-tupel DD and

coloured with RGB 3-tupel (or Nx1 vector, a colour value per node) color as in

“plot_tree”. HT contains handles to font objects while HP contains the handles to

the graphical objects.

Example 1:

graph representation of the tree

>> xplore_tree (sample2_tree)

Example 2:

regions of a tree are highlighted

>> xplore_tree (sample2_tree, „-2‟)

Example 3:

tree plotted in the three planes xy yz xz

>> xplore_tree (sample2_tree, „-3‟)

the TREES toolbox - on the nature of neuronal branching 95

graphtheory edit metrics graphical construct electrotonics IO

construct

functions to generate artificial trees

allBCTs_tree

BCT_tree

clean_tree

clone_tree

cplotter

cpoints

gscale_tree

in_c

isBCT_tree

jitter_tree

MST_tree

quaddiameter_tree

quadfit_tree

rpoints_tree

smooth_tree

smoothbranch

soma_tree

spines_tree

outputs all possible trees with N nodes

creates a tree from BCT string

deletes improbable nodes

clones a tree type using the MST constructor

plots a contour

returns points on a contour

trees spanning field scaling

applies inpolygon on contour

checks if tree is conform to BCT

adds noise to node coordinates

minimum spanning tree based constructor

maps quadratic diameter tapering on tree

fits quadratic diameter taper to tree

weighted rand distribution of points in hull

smoothens node coordinates on long paths

smoothens node coordinates on branch

adds thick diameters around root

add spines

the TREES toolbox - on the nature of neuronal branching 96

allBCTs_tree all trees with N nodes

graphtheory edit metrics graphical construct electrotonics IO

[BCTs BCTtrees] = allBCTs_tree (N, options)

Outputs in BCTs all possible non-isomorphic BCT strings with N nodes (see

introduction section “BCT formalism”). On demand, cell array of trees BCTtrees is

calculated whose trees correspond to the BCT strings using sensible metrics.

This uses the equivalent tree method from “BCT_tree”.

Example:

>> allBCTs_tree (6, „-s –w‟)

[1 1 1 1 1 0

1 1 1 2 0 0

1 1 2 1 0 0

1 2 1 0 1 0

1 2 1 1 0 0

1 2 2 0 0 0

2 1 1 0 1 0

2 1 1 1 0 0

2 1 2 0 0 0

2 2 0 0 1 0

2 2 1 0 0 0]

all trees with

6 nodes

the TREES toolbox - on the nature of neuronal branching 97

BCT_tree tree from BCT string

graphtheory edit metrics graphical construct electrotonics IO

tree = BCT_tree (BCT, options)

Finds the directed adjacency matrix from BCT a horizontal vector (0: terminal, 1:

continuation, 2: branch). The algorithm uses a stack (see introduction section on

“BCT formalism”). Proposes artificial metrics according to a circular dendrogram

(see "xdend_tree“, but used as angles). This can be seen as an equivalent tree

(electrotonically) to any real tree whose BCT string is known.

Examples:

>> BCT_tree ([1 2 1 0 2 0 0])

>> dA = BCT_tree ([1 2 1 0 2 0 0], „-dA')

if options string contains „dA‟ only the

adjacency matrix is calculated.

the TREES toolbox - on the nature of neuronal branching 98

clean_tree deletes improbable nodes

graphtheory edit metrics graphical construct electrotonics IO

tree = clean_tree (intree, radius, options)

Cleans tree intree of improbable nodes (after e.g. automated reconstruction or

artificial generation of a tree structure). Termination points in close vicinity of

other nodes on a different branch will be deleted and very short terminal

branches as well. The "close vicinity" depends on the radius of the "other node“

and on the input parameter radius. Consecutive calls of this function can be

useful.

Example:

>> clean_tree (sample2_tree, 20);

in gray: original tree

in black: cleaned tree

the TREES toolbox - on the nature of neuronal branching 99

clone_tree MST-based cloning

graphtheory edit metrics graphical construct electrotonics IO

trees = clone_tree (intrees, num, bf, options)

Creates as set of num trees trees similar to an input set of trees intrees by

distributing points randomly in the spanning fields of the average intrees,

scaling them within the variance of intrees and connecting them with “MST_tree”,

the minimum spanning tree constructor. “MST_tree” requires the balancing factor

bf between minimization of path length and total wire length.

Cloning VS4 cells

Examples:

>> dLPTCs = load_tree ('dLPTCs.mtr');

>> trees = clone_tree (dLPTCs{5})

This is a good opportunity to mention that specific cloning should be adapted to the

individual properties of the trees to be cloned. In this case much better results can

be obtained (just out of reasons of computation) by using the fact that the trees are

flat or by fitting the amount of jitter or taper in more sophisticated ways (not

implemented in clone_tree for speed reasons). clone_tree uses „gscale_tree“ to fit

these parameters, a very primitive but computationally efficient way to obtain them.

the TREES toolbox - on the nature of neuronal branching 100

cplotter plots a contour

graphtheory edit metrics graphical construct electrotonics IO

HP = cplotter (c, color, DD)

Plots a 2D contour c obtained e.g. from “contourc” (see Matlab function). A contour

c is defined by:

c = [contour1 x1 x2 x3 ... contour2 x1 x2 x3 ...;

#number_of_pairs y1 y2 y3 ... #number_of_pairs y1 y2 y3 ...]‘

“hull_tree” can for example produce such a contour and this can be used to describe

the spanning field of a neuronal tree in the construction process. The contour plot

is offset by XYZ 3-tupel DD and coloured with RGB 3-tupel color. HP is the handle to

the graphical object.

Examples:

>> for ward = 1:10,

>> c = hull_tree (sample2_tree, ward, [], [], [], '-2d');

>> HP = cplotter (c, rand (1, 3), 2*[ward ward ward])

>> end

the TREES toolbox - on the nature of neuronal branching 101

cpoints returns points on a contour

graphtheory edit metrics graphical construct electrotonics IO

[X, Y] = cpoints (c)

Returns the point coordinates x and y from a contour c (see Matlab function

"contourc") into vectors X and Y. A contour is defined by:

c = [contour1 x1 x2 x3 ... contour2 x1 x2 x3 ...;

#number_of_pairs y1 y2 y3 ... #number_of_pairs y1 y2 y3 ...]‘

“hull_tree” can for example produce such a contour and this can be used to describe

the spanning field of a neuronal tree in the construction process.

Example:

>> [X, Y] = cpoints (c); plot (X, Y, ‟k.‟);

the TREES toolbox - on the nature of neuronal branching 102

gscale_tree spanning field scaling

graphtheory edit metrics graphical construct electrotonics IO

[spanning ctrees] = gscale_tree (intrees, options)

Extracts region by region features from a group of trees intrees which are

sufficient to constrain the artificial generation of trees similar to the original

group. Is based on the assumption that the density of topological points on the

trees are more or less scalable. The result is a structure spanning with some info

about the spanning fields of the individual regions throughout the trees. ctrees

contains the scaled trees.

Example:

>> dLPTCs = load_tree ('dLPTCs.mtr');

>> [spanning ctrees] = gscale_tree (dLPTCs{1})

regions: {'axon' 'dendrite'}

xlims: {[15x2 double] [15x2 double]}

ylims: {[15x2 double] [15x2 double]}

zlims: {[15x2 double] [15x2 double]}

xmass: {[15x1 double] [15x1 double]}

ymass: {[15x1 double] [15x1 double]}

zmass: {[15x1 double] [15x1 double]}

iR: {{1x15 cell} {1x15 cell}}

nBT: {{1x15 cell} {1x15 cell}}

wrigles: [15x2 double]

mxdiff: [2x1 double]

stdxdiff: [2x1 double]

mydiff: [2x1 double]

stdydiff: [2x1 double]

mzdiff: [2x1 double]

stdzdiff: [2x1 double]

X: {{1x15 cell} {1x15 cell}}

Y: {{1x15 cell} {1x15 cell}}

Z: {{1x15 cell} {1x15 cell}}

qdiam: {[15x2 double] [15x2 double]}

mnBT: [2x1 double]

stdnBT: [2x1 double]

branch and

termination

points

region limits

center of mass

each info per region

and tree

all node locations

Mean and standard

deviation of region range

Index to nodes

belonging to each

region

mean and standard

deviation of # branch

and termination

points

Quadratic tapering

parameters

parameters

for jittering

the TREES toolbox - on the nature of neuronal branching 103

in_c checks if points are in contour

graphtheory edit metrics graphical construct electrotonics IO

[IN ON] = in_c (X, Y, c, dx, dy)

If c is a contour obtained from a single isoline contourc (see Matlab function

"contourc"), this checks if points with coordinates X and Y are located IN the largest

contour or ON the outer boundaries of the largest contour. A contour is defined by:

c = [contour1 x1 x2 x3 ... contour2 x1 x2 x3 ...;

#number_of_pairs y1 y2 y3 ... #number_of_pairs y1 y2 y3 ...]‘

“hull_tree” can for example produce such a contour and this can be used to describe

the spanning field of a neuronal tree in the construction process.

note that

contours within

are correctly left

empty

Example:

>> X = rand (10000,1)*150-20; Y = rand (10000,1)*150-30;

>> inc = in_c (X, Y, c); cplotter (c, [1 0 0]);

>> plot (X(inc), Y(inc), „k.‟); plot (X(~inc), Y(~inc), „r.‟);

the TREES toolbox - on the nature of neuronal branching 104

isBCT_tree check if tree conforms to BCT

graphtheory edit metrics graphical construct electrotonics IO

isBCT = isBCT_tree (intree)

Checks if tree intree (or a BCT vector of terminals (0), continuations (1) and

branches (2)) is conform to BCT order (see introduction section “BCT formalism”).

Examples:

>> isBCT_tree ([1 2 1 0 2 0 0])

1

>> isBCT_tree ([1 1 1 1])

0

>> isBCT_tree (sample2_tree)

1

this branch does

not terminate

the TREES toolbox - on the nature of neuronal branching 105

jitter_tree jitters node coordinates

graphtheory edit metrics graphical construct electrotonics IO

tree = jitter_tree (intree, stde, lambda, options)

Adds spatial noise to the coordinates of the nodes of tree intree. The amplitude

of the spatial noise is such that its standard deviation is stde and it is filtered

with length constant lambda (not in mm but in nodes on the path...).

Examples:

change the amplitude of the spatial noise (stde)

>> rtree = resample_tree (sample2_tree, 1);

>> jitter_tree (rtree), stde, 10);

change the length constant of the spatial noise (lambda)

>> jitter_tree (rtree, .35, lambda);

resampling is absolutely

required for a

homogeneous spatial

noise distribution

the TREES toolbox - on the nature of neuronal branching 106

MST_tree minimum spanning tree based constructor

graphtheory edit metrics graphical construct electrotonics IO

[tree indx] = MST_tree (msttrees, X, Y, Z, bf, thr, mplen, DIST, options)

Connects points defined by coordinates X, Y and Z in a competitive manner to

starting trees msttrees (alternatively: starting positions as index into X, Y and Z)

using a greedy algorithm which minimizes locally the total amount of wiring and

the path length to the root (with balancing factor bf). A threshold connection

distance thr and a maximal path length in the tree mplen constrain the resulting

tree size. A sparse distance matrix DIST between nodes is added to the cost

function. Don't forget to include input tree nodes into the distance matrix DIST!

Option „-b‟ forbids trifurcations during the process, option „-t‟ outputs timelapse

trees, see option „-s‟ for a movie.

For speed and memory considerations an area of close vicinity is drawn around

each tree as it grows.

Example:

Connect hundred randomly distributed points

>> X = rand(100,1)*100; Y = rand(100,1)*100; Z = zeros(100,1);

>> tree = MST_tree (1, [50;X], [50;Y], [0;Z], .5, 50, [], [], 'none');

first XYZ value is starting

node of tree

first point is (50,50,0)

Examples:

change the scaling of the quadratic tapering (scale)

>> rtree = resample_tree (sample2_tree, 1);

>> quaddiameter_tree (rtree, scale, 1)

add an offset diameter value to the quadratically tapering diameter (offset)

>> quaddiameter_tree (rtree, .4, offset)

the TREES toolbox - on the nature of neuronal branching 107

quaddiameter_tree quadratic diameter tapering

graphtheory edit metrics graphical construct electrotonics IO

tree = quaddiameter_tree (intree, scale, offset, options, P, ldend)

Maps quadratic diameter tapering on a given tree structure intree. P and ldend

are derived in (Cuntz, Borst and Segev 2007, Theor Biol Med Model, 4:21). P is an

numx3 matrix containing the parameters to put in the quadratic equation y =

P(1)x
2

+ P(2)x + P(3). Each single triplet corresponds to the best fit to a segment

of length ldend (numx1) vector. When the quadratic diameter is added, the path

from each terminal to the root is compared to its closest in ldend. Then the

quadratic equation is chosen according to the index in ldend. This is done for all

paths from root to terminal point and for each node the diameter is an average

of all local diameters of all paths leading through that node. Choosing

parameters (P and ldend) by hand here is tempting but very hard. P and ldend

depend on the total leak and the minimal diameter: these have to be adjust by

the parameters scale and offset respectively (see “quadfit_tree”).

resampling is better for a

homogeneous quadratic

diameter tapering

the TREES toolbox - on the nature of neuronal branching 108

quadfit_tree fit quadratic diameter taper

graphtheory edit metrics graphical construct electrotonics IO

[P0 tree] = quadfit_tree (intree, options)

To a given tree intree with diameter values, this fits a quadratic tapering using

"quaddiameter_tree“ to best fit the original diameters. The output is a scaling and

an offset value in P0 for direct input to "quaddiameter_tree". See below how well

two parameters simply describe the dendritic quadratic tapering nearly perfectly.

Examples:

>> tree = resample_tree (sample2_tree, 1, '-d');

>> [P0 qtree] = quadfit_tree (tree); P1

0.3250 1.2880

>> tree = resample_tree (sample_tree, 1, '-d');

>> [P0 qtree] = quadfit_tree (tree); P1

0.2736 1.0336

in black: original tree

in red: quadfit diameters

in black: original tree

in red: quadfit diameters

the TREES toolbox - on the nature of neuronal branching 109

rpoints_tree distribute points within hull

graphtheory edit metrics graphical construct electrotonics IO

[X, Y, Z, HP] = rpoints_tree (M, N, c, x, y, z, thr, options)

Distributes N random points in accordance with the density matrix M. Only

points within the sharp boundaries of a 2d contour c are selected (see below).

Note that the number of resulting points is therefore typically smaller than N.

The boundary can be further reduced by a distance thr, minimal distance that a

point needs to be away from any point on the contour. This makes particularly

sense if the contour was obtained using "hull_tree" in 2D. The contour (see

"contourc") is defined by:

c = [contour1 x1 x2 x3 ... contour2 x1 x2 x3 ...;

#number_of_pairs y1 y2 y3 ... #number_of_pairs y1 y2 y3

...]‘

see “hull_tree” to check out how such a contour can be produced.

Examples:

As an example, let„s get some points which are similarly distributed as an underlying

hsn cell:

>> tree = hsn_tree;

>> [M dX dY dZ] = gdens_tree (tree, 20, find(B_tree (tree) | T_tree

(tree)),'-s');

>> c = hull_tree (tree, 20, [], [], [], '-2d');

>>[X Y Z] = rpoints_tree (M, 1290, [], dX, dY, dZ, 5);

the TREES toolbox - on the nature of neuronal branching 110

smooth_tree smoothens long branches

graphtheory edit metrics graphical construct electrotonics IO

tree = smooth_tree (intree, pwchild, p, n, options)

Smoothens a tree intree along its longest paths. This changes (shortens) the

total length of the branch significantly. First finds the heavier sub-branches

(thresholded by .5 to 1 value pwchild) and puts them together to longest paths.

Then a smoothing step is applied on the branches individually using p,

proportion smoothing (0 to 1, default .9), and n, number of iterations (default

10). “smooth_tree” calls “smoothbranch” but this sub-function can be replaced by

any other one of a similar type.

Examples:

change proportion of smoothing (p)

>> rtree = resample_tree (sample2_tree, 1);

>> smooth_tree (rtree, .5, p, 5)

change number of iterations (n)

>> smooth_tree (rtree, .5, .9, n)

resampling is better for a

homogeneous smoothing

the TREES toolbox - on the nature of neuronal branching 111

smoothbranch smoothens points along one path

graphtheory edit metrics graphical construct electrotonics IO

[Xs, Ys, Zs] = smoothbranch (X, Y, Z, p, n)

Smoothens a branch given by consecutive 3D coordinates X, Y and Z, in usage by

“smooth_tree”. This changes (shortens) the total length of the branch

significantly. The amount of smoothing is parameterized by p, proportion

smoothing (0 to 1, default .9), and n, number of iterations (default 10). Method:

in each triplet of consecutive points, approach the middle point toward the center

of the triangle formed by the three points. (this is rather arbitrary and can be

improved)

Example:

increased smoothing (x: black  white) on nine different sample branches

>> smoothbranch (X, Y, Z, (x-1)/10, x)

the TREES toolbox - on the nature of neuronal branching 112

Examples:

change the maximum diameter (mD); by default l is just 1.5x mD

>> rtree = resample_tree (sample2_tree, 1);

>> soma_tree (rtree, mD)

change the maximum path length value (l)

>> soma_tree (rtree, 20, l)

soma_tree adds a soma

graphtheory edit metrics graphical construct electrotonics IO

tree = soma_tree (intree, mD, l, options)

Changes the diameter in tree intree in all locations smaller than path length

x=l/2 [in mm] away from the root. Diameters become a sort of circular (cosine)

soma shape of maximal diameter mD:

If the original diameter at that location in the tree is larger, it remains

unchanged!

resampling is better for a

homogeneous result


















 1

2
cos

4
)(

l

xmD
xD



the TREES toolbox - on the nature of neuronal branching 113

spines_tree add spines

graphtheory edit metrics graphical construct electrotonics IO

tree = spines_tree (intree, XYZ, dneck, dhead, mlneck, stdlneck, ipart,

options)

Attaches cylinders with diameter dhead to closest node on an existing tree

intree, introducing a neck with diameter dneck. If XYZ coordinates XYZ are not

defined, the spines are attached to a randomly picked node with distance

mlneck+-stdlneck. XYZ parameter becomes the number of spines (default: 100).

If region with name "spines" exists then nodes are appended to that region

otherwise new nodes are attributed to new region named "spines“. ipart is an

optional index for attaching spines only to a sub-set of nodes.

Example:

>> rtree = resample_tree (sample2_tree, .2);

>> spines_tree (rtree, 200, [], [], [], [], find(rtree.D<3))

resampling allows for

more “attaching” points

on the tree

200 random

spines

only attached to nodes

where diameter is

smaller than three

the TREES toolbox - on the nature of neuronal branching 114

graphtheory edit metrics graphical construct electrotonics IO

electrotonics

functions to calculate current flow in a tree

elen_tree

gi_tree

gm_tree

lambda_tree

loop_tree

M_tree

sse_tree

ssecat_tree

syn_tree

syncat_tree

local electrotonic lengths

local axial conductances

local membrane conductances

local length constants

conductance matrix including loops

conductance matrix of tree equivalent circuit

steady-state electrotonic signature

sse signature including gap junctions

sse signature including synapses

sse signature incl. electrical and input

synapses

For these functions, the tree structure must contain passive electrotonic properties:

tree.Ri

tree.Gm

tree.Cm

axial resistance [in ohm cm]

membrane conductance [in S/cm
2
]

membrane capacitance (unused)

the TREES toolbox - on the nature of neuronal branching 115

elen_tree local electrotonic lengths

graphtheory edit metrics graphical construct electrotonics IO

elen = elen_tree (intree, options)

Returns for tree intree, Nx1 vector elen the electrotonic length of all segments

(length/lambda, see “lambda_tree”).

Example:

>> elen_tree (sample2_tree)

the TREES toolbox - on the nature of neuronal branching 116

gi_tree local axial conductances

graphtheory edit metrics graphical construct electrotonics IO

gi = gi_tree (intree, options)

Returns for tree intree, Nx1 vector gi the local axial conductances of all

segments [in Siemens].

Example:

>> gi_tree (sample2_tree)

values are

x1,000,000,000

the TREES toolbox - on the nature of neuronal branching 117

gm_tree local membrane conductances

graphtheory edit metrics graphical construct electrotonics IO

gm = gm_tree (intree, options)

Returns for tree intree , Nx1 vector gm the local membrane conductance of all

segments [in Siemens].

Example:

>> gm_tree (sample2_tree)

values are

x1,000,000,000,000

the TREES toolbox - on the nature of neuronal branching 118

lambda_tree local length constants

graphtheory edit metrics graphical construct electrotonics IO

lambda = lambda_tree (intree, options)

Returns Nx1 vector lambda the local length constant [in cm] of all segments in

tree intree.

Example:

>> lambda_tree (sample2_tree)

the TREES toolbox - on the nature of neuronal branching 119

loop_tree conductance matrix incl. loops

graphtheory edit metrics graphical construct electrotonics IO

M = loop_tree (intree, inodes1, inodes2, gelsyn, options)

Creates loops in the neuronal conductance matrix of tree intree. Since

conventional trees cannot be used (they are not supposed to have loops), a

conductance matrix M is calculated directly extending on M from “M_tree”. Set of

num nodes inodes1 are connected to the set of num nodes inodes2 with gap

junction conductances given by numx1 vector gelsyn.

Examples:

connect node #1 with node #13

>> M = loop_tree (sample2_tree, 1, 13, [],'-s')

inverse of the loop conductance matrix gives the electrotonic signature (just as

“sse_tree”):

>> inv (M)

the TREES toolbox - on the nature of neuronal branching 120

M_tree conductance matrix

graphtheory edit metrics graphical construct electrotonics IO

M = M_tree (intree, options)

Calculates the matrix containing the conductances in the equivalent circuit of the

neuron in the tree structure intree. To be used in "sse_tree" and other

electrotonic analysis of trees. See introduction section “electrotonic signature”

for more details:

Example:

>> M = M_tree (sample2_tree, '-s');

M = G
m

D
S

+ G
a
{ diag [sum (AD

l
+ D

l
A

T
)] - (AD

l
+ D

l
A

T
) }

Gm, Ga: spec. membrane and axial conductances (inverse of Ri)
Ds, Dl: diag. matrices with compartment surfaces and

inverse volumes
A: non-directed adjacency matrix (= dA + dA‟)

the TREES toolbox - on the nature of neuronal branching 121

sse_tree electrotonic signature

graphtheory edit metrics graphical construct electrotonics IO

sse = sse_tree (intree, I, options)

Calculates the steady state electrotonic (sse) matrix describing the electrotonic

properties of the neuron in the tree structure intree. Each column j is the

potential distribution in all nodes during injection of current into node j. The

diagonal contains therefore the local input resistances of each node. sse, NxN

matrix, is therefore symmetric. If input current I is not identity matrix then

columns in sse correspond to potential distributions in separate experiments

corresponding to the input current distribution in that column. Note that NxN

sse is obtained by inverse matrix calculation and therefore goes very quickly but

takes memory. In special cases it is advisable to split calls in several input

matrices I.

Example 1:

calculate the full NxN sse matrix

>> sse = sse_tree (sample2_tree)

Example 2:

inject current only in node #13

>> sse = sse_tree (sample_tree, 13)

the TREES toolbox - on the nature of neuronal branching 122

ssecat_tree sse signature incl. gap junctions

graphtheory edit metrics graphical construct electrotonics IO

sse = ssecat_tree (intrees, inodes1, inodes2, gelsyn, I, options)

Concatenates trees in cell array of trees intrees with electrical synapses and

calculates the steady state electrotonic matrix (sse, see “sse_tree”). Indices of

connected nodes (inodes1 to inodes2) accumulative along trees. gelsyn assigns

conductance values to each gap junction. I is as in “sse_tree”.

Example:

we reproduce a simplified dendritic network similar as in (Cuntz H, Haag J, Borst A

2003 PNAS 100(19):11082-5). Connect all nodes from one tree to another one and

inject a current in the dendrite of one tree:

>> tree = hsn_tree;

>> sse = ssecat_tree ({tree tree}, (1:1290)', (1291:2580)', .01, 15,

'none');

The resulting potential spread is smaller in the tree where the current was injected,

than in the neighbour: the dendritic network leads to spatial blurring, as is used in

some fly interneurons to process motion-based images:

2. cell1. cell

the TREES toolbox - on the nature of neuronal branching 123

syn_tree synaptic electrotonic signature

graphtheory edit metrics graphical construct electrotonics IO

syn = syn_tree (intree, ge, Ee, gi, Ei, I, options)

Calculates the steady state potentials matrix syn resulting from a current

injection I (see “sse_tree”) and synaptic inputs defined by Nx1 vectors ge and gi,

conductance values for each node (or alternatively: node location of unit

conductances), and reversal potential values Ee and Ei into tree intree.

Examples:

Impact of on-path location of inhibition, compare:

>> sse = syn_tree (sample_tree, 100, 95, [], [])

>> sse = syn_tree (tree, 100, 105, [], [])

inhibition (blue) on the

path between excitation

(red) and root

inhibition (blue) just on

the wrong side

the TREES toolbox - on the nature of neuronal branching 124

syncat_tree synaptic sse incl. gap junctions

graphtheory edit metrics graphical construct electrotonics IO

syn = syncat_tree (intrees, inodes1, inodes2, gelsyn, ge, Ee, gi, Ei, ...

I, options)

Concatenates trees in cell array of trees intrees with electrical synapses and

calculates the steady state electrotonic matrix just as does “ssecat_tree”.

Additionally, synaptic inputs (as in “syn_tree”) can be defined by conductance

values ge and gi and by reversal potentials Ee and Ei.

Examples:

be creative...

the TREES toolbox - on the nature of neuronal branching 125

graphtheory edit metrics graphical construct electrotonics IO

IO functions

input and output functions

load_tree

neurolucida_tree

neuron_tree

pov_tree

save_tree

swc_tree

ver_tree

x3d_tree

neu_tree

loads a tree from swc/neu/TREES formats

loads a tree from neurolucida ASCII format

export tree as NEURON file

POV-Ray rendering

save tree or many trees in TREES format

export tree as SWC file

verifies integrity of a tree

export tree as X3D format

export tree in NEURON to read in TREES

the TREES toolbox - on the nature of neuronal branching 126

load_tree loads a tree from swc/neu/mtr formats

graphtheory edit metrics graphical construct electrotonics IO

[tree, name, path] = load_tree (name, options)

Loads the metrics and the corresponding directed adjacency matrix of tree from

file name to create the tree structure. Input files can be in TREES internal .mtr

format (which is just a matlab workspace file), in .swc format (see “swc_tree”) or

in an export format .neu for trees created in the software NEURON package

(http://www.neuron.yale.edu/neuron/) with the function “neu_tree” provided in

the TREES toolbox. Make sure to realize that most imported trees are originally

encoded as connected frusta instead of cylinders whereas the TREES toolbox

assumes that they are cylinders. This can be changed by adding the field

“frustum=1” to the tree structure.

Examples:

>> load_tree

trees{1}

ans =

dA: [15x15 double]

X: [15x1 double]

Y: [15x1 double]

Z: [15x1 double]

R: [15x1 double]

D: [15x1 double]

rnames: {'1' 'dendrite'}

Ri: 100

Gm: 5.0000e-004

Cm: 1

name: 'tree1'

http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/

the TREES toolbox - on the nature of neuronal branching 127

neurolucida_tree loads a tree ASCII format

graphtheory edit metrics graphical construct electrotonics IO

[tree, coords, contours, name, path] = neurolucida_tree (name, options)

Loads the metrics and the corresponding directed adjacency matrix to create a

tree directly from an ASCII neurolucida description file called name. NOTE! For

example to infer the cylinder-representation of the soma we chose arbitrary

algorithms similar but not equal to the NEURON neurolucida import. Sub-trees

are attributed to somata by who-is-closest. This function can be much further

optimized or just rewritten. The TREES toolbox function however has additional

features to the NEURON neurolucida import. For example spines are imported (as

cylinders with region named "spines"). Furthermore, imported markers can be

added as spines via "spines_tree".

Examples:

>> neurolucida_tree

the TREES toolbox - on the nature of neuronal branching 128

neuron_tree export tree as NEURON file

graphtheory edit metrics graphical construct electrotonics IO

[name path] = neuron_tree (intree, name, res, options)

Saves a complete tree intree into the file called name in the section based

NEURON (http://www.neuron.yale.edu/neuron/) .hoc format. res determines the

resolution at which NEURON samples a segment (nseg). Alternatively, the tree

can also be stored as .nrn file in which each segment from the tree graph

becomes an independent section in NEURON. Option „-e‟ incorporates

electrotonic properties if existent, „->‟ starts NEURON immediately if it is installed

and the TREES toolbox runs in windows.

Examples:

Current injection in section dendrite[5] and spatial potential distribution.

>> neuron_tree (sample2_tree, [], [], '-s -e ->')

http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/
http://www.neuron.yale.edu/neuron/

the TREES toolbox - on the nature of neuronal branching 129

pov_tree POV-Ray rendering

graphtheory edit metrics graphical construct electrotonics IO

[name path] = pov_tree (intree, name, v, options)

Writes POV-ray (http://www.povray.org/) files using the anatomy-data contained in

intree. intree can be a single tree structure or a cell array of trees or just XYZD

coordinates of points (plotted as spheres). With v, an Nx1 vector or cell array of

vectors (corresponding to intree), values for each node can be mapped to the

colours of the segments. options involve different styles and for example option „-c‟

for brainbow random colours and „-v‟ option which conserves the viewpoint of the

active Matlab figure. „->‟ starts POV-Ray immediately if it is installed and the TREES

toolbox runs in windows.

>> pov_tree (sample2_tree, [], [], '-b -s1 -w ->')

option '-s2' option '-s3'

option '-s4' option '-s5' option '-s6'

mapping of colors works

as in „plot_tree“:

>> pov_tree (sample2_tree, [],

eucl_tree (sample2_tree),

'-b -s1 -w ->')

option '-s1'

brainbow colour mapping on a group of

trees:

>> dLPTCs = load_tree („dLPTCs.mtr‟)

>> pov_tree (dLPTCs,[],[],‟-b –c –s1

->‟)

http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/

the TREES toolbox - on the nature of neuronal branching 130

save_tree save tree/trees into a file

graphtheory edit metrics graphical construct electrotonics IO

[name path] = save_tree (intree, name)

Saves tree intree into a TREES internal .mtr format using a Matlab type

workspace file. intree can be a structured tree or a cell array of structured tree

or a cell array of cell array of structured trees (2-depth). This type of file can be

read directly by the GUI (see below) and the 2-depth in that case allows to

arrange in groups of trees.

Examples:

>> save_tree (sample2_tree)

the TREES toolbox - on the nature of neuronal branching 131

swc_tree export to “.swc” format

graphtheory edit metrics graphical construct electrotonics IO

[name path] = swc_tree (intree, name)

Exports tree intree to the .swc format, a matrix with 7 columns:

[inode R X Y Z D/2 idpar]

node index inode is usually from 1..N and idpar is the direct parent index. The

root has an idpar of -1. Fills in region index R if R is missing.

Examples:

>> swc_tree (sample2_tree)

produces:

TREES toolbox tree - tree

written by an automatic procedure "swc_tree" part of

the TREES package in MATLAB

copyright 2009 Hermann Cuntz

#

inode R X Y Z D/2 idpar

1 2 0.00000000 0.00000000 0.00000000 2.12528117 -1

2 2 8.29304961 4.44755127 -4.46045613 1.74844749 1

3 2 17.40876415 8.80206655 -3.39415938 1.42701764 2

4 2 26.90050540 10.54155965 -0.95626440 1.24193528 3

5 2 36.06519913 13.03275911 1.94061621 1.02025571 4

6 2 43.93899105 16.79337615 3.22598031 0.84536559 5

7 2 53.10549509 18.73244431 5.26125456 0.80092718 6

8 2 63.62347087 17.73353041 8.25362875 0.68685660 7

9 2 46.75945383 23.43321561 7.46333851 0.63360263 6

10 2 19.55373994 18.37988646 -0.46949875 1.10702919 3

11 2 22.96179913 27.48763086 2.41729942 0.96010238 10

12 2 27.01621437 33.48111427 2.79183599 0.81713800 11

13 2 35.71264128 36.71289453 2.66823593 0.66393903 12

14 1 31.24690854 43.64653220 2.81017550 0.73654865 12

15 1 28.66148433 20.14267570 -0.28834723 0.64516327 10

the TREES toolbox - on the nature of neuronal branching 132

ver_tree verifies the integrity of a tree

graphtheory edit metrics graphical construct electrotonics IO

ver_tree (intree)

Verifies the integrity of a tree intree and creates warnings that precede common

errors. Is called by basically every single TREES package function. Could therefore

be used for something else. This is rather an internal function.

Examples:

>> ver_tree (sample2_tree)

no output, tree is ok...

the TREES toolbox - on the nature of neuronal branching 133

x3d_tree exports tree as .x3d

graphtheory edit metrics graphical construct electrotonics IO

[name path] = x3d_tree (intree, name, color, DD, ipart, options)

Exports a tree intree as a set of cylinders in the .x3d html format. A viewer is

necessary to use these files. Blender (http://www.blender.org/) and BS Contact

(http://www.bitmanagement.com/) can for example load .x3d files. As opposed

to POV-Ray (see “pov_tree”, http://www.povray.org/), these programs can only

deal with polygons. As such, the output trees are sets of polygons. Object is

offset by XYZ 3-tupel DD and coloured with RGB 3-tupel color (or Nx1 vector,

attributing one value per node). ipart, a set of indices into intree, allows to use

only a subset of nodes, for example only a sub-tree. If a viewer is installed and

TREES runs on windows Matlab can call the viewer directly with the option „->‟.

Examples:

>> x3d_tree (sample_tree, [], [1 0 0],[],[],'-o ->')

red add spheres at node

locations

written by Friedrich Forstner 2008

http://www.blender.org/
http://www.blender.org/
http://www.blender.org/
http://www.blender.org/
http://www.blender.org/
http://www.blender.org/
http://www.blender.org/
http://www.bitmanagement.com/
http://www.bitmanagement.com/
http://www.bitmanagement.com/
http://www.bitmanagement.com/
http://www.bitmanagement.com/
http://www.bitmanagement.com/
http://www.bitmanagement.com/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/

the TREES toolbox - on the nature of neuronal branching 134

neu_tree export from NEURON to TREES

graphtheory edit metrics graphical construct electrotonics IO

neu_tree (name)

This is a NEURON .hoc file which exports a tree into a .neu format which the

TREES toolbox can read using “load_tree”. Works only for basic trees and

sometimes scrambles the graph (use “cgui_tree” for editing). Make sure to realize

that most imported trees are originally encoded as connected frusta instead of

cylinders whereas the TREES toolbox assumes that they are cylinders. This can be

changed by adding the field “frustum=1” to the tree structure.

code in NEURON hoc

After having loaded one single cell in the NEURON environment (make sure that the

file neu_tree.hoc is in the current directory).

Examples:

>> load_file("neu_tree.hoc")

>> neu_tree(“tree.neu”)

„load_tree“ in the Matlab environment is then able to load the .neu file.

the TREES toolbox - on the nature of neuronal branching 135

scheme stacks sample GUI

scheme

non-TREES related dependencies

deg2rad (x)

eucdist (X1,X2,Y1,Y2)

gauss (x,mu,sigma)

rad2deg (x)

rotation_matrix

(degx,degy,degz,hand)

roundshow

scalebar (unit,pos)

shine

tprint

gifmaker

transposes from degrees to radians

result = mod((x/360)*2*pi,2*pi)

2D Euclidean distances btw. 2 sets of points

Calculates a distance matrix M between two sets of points

described by their x and y coordinates.

gauss function output

(1/(sigma*(sqrt(2*pi))))*exp(-((x-mu).^2)./(2*sigma*sigma))

transposes from radians to degrees

result = mod((x/(2*pi))*360,360)

calculates rotation matrix for given angles

treats the different rotations in order x then y then z. In other

words it's the rotation_matrix R = Rz*Ry*Rx. Degrees of

rotation are given in radians.

a 3D round show of a plot

a 3D round show, simply changes the view in regular

intervals.

add a scalebar to a plot

add some effects on current axis

polishes the graphical output. By default simply adds a

camera light (therefore the name "shine"), which typically sets

the figure renderer to opengl as a side effect.

simplified printing

prints the current figure to a file.

make a movie with transparent background

appends frames one by one to a movie.

the TREES toolbox - on the nature of neuronal branching 136

scheme stacks sample GUI

stacks

functions to deal with image stacks

fitD_stack

imload_stack

load_stack

loaddir_stack

loadtifs_stack

save_stack

show_stack

skel_stack

get cylinder diameter values from stack

load single image into a 3D matrix

load TREES .stk file into stack structure

load image sequence into stack structure

load multi-image .tif into stack structure

save TREES .stk file

show maximum intensity projections

skeletonize image stack

a data stack is a structure as follows:

stack.M

stack.sM

stack.coord

stack.voxel

cell-array of

3D-matrices

cell-array

of strings, 1xn

matrix nx3

vector 1x3

n tiled image stacks containing

fluorescent image

names of individual stacks

x,y,z coordinates of starting points of

each

xyz size of a voxel

the TREES toolbox - on the nature of neuronal branching 137

fitD_stack get cylinder diameter values

scheme stacks sample GUI

D = fitD_stack (intree, stack, maxR, options)

Tries to derive diameter values for tree intree based on the underlying image

stack stack. maxR determines a threshold maximum radius for a segment in the

tree (should be much larger than the maximum radius, but of course not too

large...).

Examples:

Here applied on a sample tree reconstructed from a sample stack:

>> D = fitD_stack (tree, stack, 50)

written by Friedrich Forstner 2008

the TREES toolbox - on the nature of neuronal branching 138

imload_stack load single image

scheme stacks sample GUI

[stack name path] = imload_stack (name, options)

Loads a single image from file with filename name into stack stack. If name is

omitted a user interface for file selection is opened.

Examples:

>> imload_stack ([], '-s');

the TREES toolbox - on the nature of neuronal branching 139

load_stack load TREES .stk file

scheme stacks sample GUI

[stack name path] = load_stack (name, options)

Loads a stack structure stack from a file with filename name. If name is omitted

a user interface for file selection is opened.

Examples:

>> stack = load_stack

stack =

M: {[100x100x19 uint8] [100x100x19 uint8]}

sM: {'HSN_2006-09-28-1'}

coord: [2x3 double]

voxel: [1 1 1]

the TREES toolbox - on the nature of neuronal branching 140

loaddir_stack load image sequence from folder

scheme stacks sample GUI

[stack path] = loaddir_stack (path, options)

Loads all images from a directory defined by path to an image stack stack.

Images must have the same size but there is no error handling.

Examples:

>> loaddir_stack

the TREES toolbox - on the nature of neuronal branching 141

loadtifs_stack load multi-image .tif

scheme stacks sample GUI

[stack name path] = loadtifs_stack (name, options)

Loads an image stack from a .tif file with filename name into a stack structure

stack.

Examples:

>> loadtifs_stack

the TREES toolbox - on the nature of neuronal branching 142

save_stack save image stack into file

scheme stacks sample GUI

name = save_stack (stack, name, options)

Save images from a stack stack into a matlab type file of name name with

extension .stk.

Examples:

>> save_stack

the TREES toolbox - on the nature of neuronal branching 143

show_stack show stack max intensity projections

scheme stacks sample GUI

HP = show_stack (stack, options)

Show the maximum intensity projection of a stack stack on a 3D patch.

Examples:

>> stack = load_stack („sample.stk‟); show_stack (stack)

the TREES toolbox - on the nature of neuronal branching 144

skel_stack skeletonize a 3D matrix

scheme stacks sample GUI

[i1 i2 i3] = skel_stack (iM, thr, options)

Extracts carrier points from a brightness level containing matrix iM. thr sets a

threshold to binarize iM. i1, i2 and i3 output the Y, X and Z values respectively.

See the algorithm described by Palagyi and Kuba. Very nice piece of code,

hopefully correctly interpreted from their paper. It involves numerous

permutation of indices and logical operators on a 26-neighbourhood.

Examples:

skeletonize first matrix in stack:

>> [X Y Z] = skel_stack (stack.M{1}, 100);

>> hold on; show_stack (stack); plot3 (Y, X, Z, „r.‟);

the TREES toolbox - on the nature of neuronal branching 145

scheme stacks sample GUI

sample

sample data structures to test TREES toolbox

dLPTCs.mtr

hsn.mtr

hss.mtr

sample.mtr

sample2.mtr

sample.stk

25HSS.swc

twop9purks.asc

sample.tw1

set of flattened dendritic trees of Lobula Plate

Tangential Cells (LPTCs) of the fly

from Cuntz, Forstner, Haag, Borst 2008, PLoS Comp Biol 4:

e1000251.

one sample LPTC of the fly (HSN cell)

from Cuntz, Forstner, Haag, Borst 2008, PLoS Comp Biol 4:

e1000251.

one sample LPTC of the fly (HSS cell)

from Borst and Haag 1996, J Comput Neurosci 3(4):313-36.

large sample sub-tree of an LPTC

small arbitrary sub-tree

small arbitrary stack

SWC file of HSS cell above

from Borst and Haag 1996, J Comput Neurosci 3(4):313-36.

sample GUI workspace corresponding to the

reconstruction of sample.stk

two Purkinje cells in neurolucida format

From Watt , Cuntz, Mori, Nusser, Sjöström, Häusser 2009,

Nat Neurosci 12: 463-473.

the TREES toolbox - on the nature of neuronal branching 146

The GUI starting the GUI

Calling:

>> cgui_tree

opens up a user interface window. With it the user can browse through directories of trees, edit
them, explore their properties. The individual buttons typically link to one function of the
TREES toolbox. The GUI is therefore practical to explore the possibilities of the toolbox before
starting a research project with the more flexible command line interaction. Aside of that, the
user interface allows the automated reconstruction of neuronal branching structures directly
from image stacks. The following passages will attempt to familiarize the user with the axis, the
multiple panels, the menu etc.. of the GUI.

All the GUI is divided into three parts, one common axis, a menu and a number of control
panels. The control panels on the right are there to control the axis, the graphical output and to
browse through trees or individual nodes or properties of a tree. The control panels to the left
are associated with the process of reconstruction, artificial generation and editing of tree
structures. To each of the panels on the left special “edit” modes are associated.

axis

menu editor panels

graphical and

selector panels

the TREES toolbox - on the nature of neuronal branching 147

The GUI the vis_ panel

2D views

The vis_ panel (visualization) controls the one common axis. To each control panel a prefix is
attributed (here „vis_“) and all computer code related to this control panel uses this prefix in the
core program of the GUI, „cgui_tree“.

info about last action

info about image stack,

thresholding,

skeletonization and

active tree

main axis controls

main editor toggles

secondary axis controls

colorbar controls

grid controls

axis tight

redraw everything

Turn wheel:

zoom
Right button:

rotate

A good way to start is to get
familiar with the controls of the
axis by keeping one hand on the
mouse and one hand on the
keyboard. It is important to
practice the axis control using the
„vis_“ panel.

Keyboard shortcuts are crucial in the process
of reconstruction from image stacks and
manual editing of trees. Here are some
keyboard controls for the axis. The keys [1],
[2] and [3] are absolutely crucial to switch
between different view and editing planes. [q]
and [e] control the zoom and [a], [w], [d] and
[s] pan the axis.

Press wheel:

pan

The axis is controled by the wheel and the
right button of the mouse. This keeps the
left mouse button free for editing.

holding the mouse over GUI control

elements reveals a short string explaining

their function

the vis_ panel: control the common axis

the TREES toolbox - on the nature of neuronal branching 148

The GUI the vis_ panel

The 2D views are essential for editing trees and image stacks. When one of the three 2D views is
selected (by either one of the radio buttons shown on top, by toggling with the „2D“ control or by
using the [1], [2], [3] or [4] keys) this becomes the editing plane and all actions are performed
accordingly. For example, manual editing of node positions in a tree or the manual rotation of an
entire tree happen in that plane. Further axis changes can be made on the secondary view controls:

scale bar

switch on opengl and

add light source

toggle axis

on/off

toggle views (see

above)

toggle perspective

view

round show

X versus Y

Y versus Z

X versus Z

the TREES toolbox - on the nature of neuronal branching 149

The GUI the vis_ panel

The grid button toggles on/off the grid. It settles in the plane corresponding to the active view at
the coordinate given by the slicer field. Grid field coordinates are set according to the two
dimensions of the active plane. The slicer coordinate becomes important later for image stack
representation and manual editing of a tree.

If the plotted image contains color-coded values (e.g. the
brightness values in an image stack or in this case the
mapping of branch orders on the sample tree), a colorbar
can be summoned up using the colorbar controls. By
default the limits are set automatically. However, these
can be manually adjusted using the two edit fields.

The colormap can be chosen
in the menu. Also, by default,
the colormap is transparent
but it can be switched back
to opaque in the same menu.
This also affects the image
stack representations (but
not the trees).

lower limit

toggle colorbar

on/off

upper limit

auto limits

start coord

dim 1

toggle grid

on/off
start coord

dim 2

of fields

dim 1

of fields

dim 2

spacing in mm

slicer coordinate in mm

increase slicer dim by 1 mm

decrease

slicer dim

by 1 mm

the TREES toolbox - on the nature of neuronal branching 150

This is a good place to mention that „cgui_tree“ stores all information in a global structure called

„cgui“. To access the data relating to a specific panel (here the stk_ panel) first „cgui“ is required to

be global in the general workspace. The field name in the structure corresponds to the panel

prefix. For example the 2 matrices containing the image stacks can be read out as:

>> global cgui

>> cgui.stk.M

ans =

[100x100x19 uint8] [100x100x19 uint8]

The GUI the stk_ panel

For reconstruction purposes or just to compare a tree with its
underlying image stack, load image stacks or single images using
the menu. The TREES internal .stk format stacks are just binary
Matlab workspaces and can be read out in comand line using the
matlab „load“ function (but see also „load_stack“). In the following
we will assume that the first goal is a reconstruction of a tree
present in tiled image stacks. The stk_ panel is then the first
editing panel required. The image stacks are loaded sequentially
and the last stack in the popup control is the active stack.

x, y and z coordinates of active stack [mm]

x, y and z voxel resolution [mm]

move active stack in x, y and z

popup containing names of loaded stacks

different

representations downsampling

50% in XY
delete active

stack

the stk_ panel: sorting the image stacks

the TREES toolbox - on the nature of neuronal branching 151

The GUI the stk_ panel

Two visual representations are offered by the stk_ panel. One in which for each image stack all
three maximum intensity projections are shown. The other one (the slicer) shows for each image
stack the slice (according to the viewing plane illustrated below using the grid) which is closest to
the vis_ panel slicer values (see „the vis_ panel“).

The active stack (the last one in the popup)
can be automatically aligned in 3D to the stack
preceding it, if sufficient image overlap allows
it. A stack„s coordinates can also be set back to
zero with the „0“ control.

The stack coordinates can be set directly in the
edit fields. There, the voxel size can also be set
(here the z-dimension is set to 2µm while x
and y are 1 µm each):

maximum intensity projections slicer image

align two image stacks change voxel size

the TREES toolbox - on the nature of neuronal branching 152

The GUI the stk_ panel

One of the most sophisticated features of the GUI is that each of the 5 edit panels (stk_, thr_, skl_,
mtr_ and ged_) has individual edit modes; some of them even have an alternative edit2 mode and
several corresponding submodes. The selected active panel for editing is chosen by using the up
and down arrows on the keyboard. Alternatively, press ctrl [q], [w], [e], [r] or [t] depending on which
of the five panels is needed. The selected active panel has an increased frame size. To enter the
edit mode press the edit control in the vis_ panel, press the left arrow key, or press shift [1] (i.e. [!]).

When entering the edit mode the
mouse cursor becomes a circle
and an edit line appears. The
alternative edit2 mode turns on
when the edit mode is on and
additionally the vis_ panel edit2
control is pressed or the right
cursor key is pressed or shift [4]
(so [$]). Typically, the edit lines
then become yellow.

The keyboard layout can now be extended from
the simple axis control to the full edit control. In
red are keys with additional „ctrl.“ press. ctrl [z] is
an undo function in the tree edit mode. ctrl [a] and
ctrl [s] switch between two trees of the same group
(see later). [z], [Z], [x] and [X] decrease and increase
the slicer coordinate respectively. [c] and [C] are
general overloaded cutting keys. [v] is a preview for
a reordering and [V] performs the reordering of
nodes in the skeletonization and tree panel. [r], [R],
[f] and [F] increase and decrease the diameter of
tree nodes or editing elements depending on the
active editing panel.

entering the edit mode

the TREES toolbox - on the nature of neuronal branching 153

The GUI the stk_ panel

stk_ edit mode
In the stk_ panel edit mode the starting
coordinates of image stacks can be set. The
editing depends on the selected view mode,
so at any given point in time it happens only
in one plane. The green edit line indicates
which stack is closest. A double-click
activates that stack if it is not active yet.

stk_ edit2 mode
In the stk_ panel edit2 mode, image stack
pieces can be cut out according to a region of
interest (ROI). The ROI is planar and is drawn
according to the actual viewing plane. With
key-press [c] the brightness values inside of
the ROI throughout the slicer dimension are
set to 0. With [C] the outside of the ROI is
treated correspondingly. The yellow edit line
indicates in which image stack the procedure
is done: in this way the same ROI can be used
to edit different image stacks separately. For
speed reasons the borders are not kept
sharply. After cutting, the image stacks are
cropped rectangularly off of all zero rows or
columns.

the TREES toolbox - on the nature of neuronal branching 154

The GUI the thr_ panel

binary thresholding

morphological cleaning

different representations

the thr_ panel: binary images through thresholding

With the thr_ panel a set of binary matrices is constructed by
thresholding the original image stacks. If the „dyn.“ toggle is
pressed down a local (or dynamic) threshold is taken. This is
particularly advantageous to capture small branches. The edit
value is an offset to the local mean brightness necessary to be
part of the binary matrix. Without dyn. thresholding the edit
value indicates the actual absolute threshold value. The vis_
panel displays the percentage of voxels which fall in the
binary matrix. That should typically not exceed 2-3%. When
the third radio button is switched on, the maximum intensity
projections of the stk_ panel show the index of thresholded
maximum values, which in the XY view for example
corresponds to the z values (between 0 and 1), at which the
brightness is maximal in the original image stack.

With the first radio button
switched on, little blue transparent
tiles are drawn on the maximum
intensity projections to show
which voxels will be kept in the
binary matrices.

Cleaning the binary matrix involves linking
voxels by neighborhood relationships. When a
set of linked voxels is smaller than the cleaning
size in the edit field, it is removed. This is an
efficient way to remove noisy bits off of the
thresholded image (see Matlab function
„bwareaopen“).

suggested threshold

the TREES toolbox - on the nature of neuronal branching 155

The GUI the thr_ panel

thr_ edit mode
In the thr_ panel edit mode the binary matrices can be manually edited by setting an
individual threshold in a marked area. This method allows to change the threshold value in
the edit field and then clean the binary matrix locally. The size of the local areas can be
altered with the keys [r], [R], [f], and [F]. To switch to a different image stack it is necessary to
switch back to the stk_ panel.

Finally, in order to check the integrity of the binary matrix and its flow between the tiled
image stacks, the second radio button can be activated (this can be very slow). This shows a
3D box representation of the binary matrices at a reduced resolution (2x2 voxels in the XY
plane).

the TREES toolbox - on the nature of neuronal branching 156

The GUI the skl_ panel

somata/starting points

skeletonization and cleaningshow skel points

connectivity matrixshow connectivity

show starting points

the skl_ panel: skeletonization

The skl_ panel is there to reduce the binary matrices to a
set of individual carrier points and some starting nodes to
be subsequently connected to trees. The 3D skeletonization
is a process which carves off binary voxels one by one in
dependence of their neighborhood (a method introduced by
Palagyi and Kuba), ideally leaving only the carrier nodes of
the branched structure (see „skel_stack“). Pressing the
„skel“ button performs the morphological operation. If
toggle „D“ is pressed, a diameter value is obtained for each
node from the neighborhood relationships of the binary
matrix: D is the distance of the closest zero value in the
binary matrix (see „bwdist“ from the image processing
toolbox in Matlab). If toggle „L“ is pressed, a labeling is
performed on the binary matrix: two nodes are connected if
walking on non-zero voxels from one to the other without
gaps is possible. This is helpful for calculating the
connnectivity matrix later. Also it helps to chose starting
points: two starting points should never show up on the
same „label“ (see „bwlabeln“ from the image processing
toolbox in matlab).

The skl_panel is equipped with a very basic soma
finding function. This takes the threshold value
(thr) in the edit field and finds either all nodes
whose diameters were calculated to be higher than
thr. If none falls in that category the node with the
highest diameter is chosen (as in this case). If more
than one node falls in that category then smaller
starting nodes which appear in distance smaller
than thr of larger starting nodes are cleaned away.
Starting nodes which appear on the same label are
also deleted.

the TREES toolbox - on the nature of neuronal branching 157

The GUI the skl_ panel

skl_ edit and edit2 mode
The skl_panel allows alteration of starting node locations in the edit
mode and of skeletonization carrier point locations in the edit2 mode.
Points are moved in the current viewing plane and can be deleted with
the key [c]. A line shows to the closest point. In edit2 mode key [C] cuts
out all carrier points in close vicinity.

Pressing [v] in the edit2 mode previews the result of cleaning. This
process reduces the number of nodes by preventing neighboring nodes

within a distance limit in mm indicated in the edit field. Pressing [V] or
the “clean” key finalizes the sparsening of the nodes.

The nodes and starting nodes are then ready for the
tree constructor. However to improve the result
further the MST tree constructor with “RST” option
accepts a distance matrix between the nodes to
increase the probability of connection. Threshold-
linking is a standard way to do this. The resulting
connectivity graph of increased connection probability
is shown when the third radio button is active.

the TREES toolbox - on the nature of neuronal branching 158

The GUI the mtr_ panel

different representations

graph remodelling

MST constructor

add somata and cloning

morphing metrics and disconnect

node adding edit

node moving edit

node remodelling

metric smooth & noise

diameter mapping

adding spines

manual edit

the mtr_ panel: constructing a tree

The mtr_ panel is the most intricate panel and also the core panel in the TREES toolbox GUI.
Artificial trees can be constructed using different methods such as automated reconstruction,
cloning or fully manually. The trees can be remodelled in many different ways including
smoothing, introducing jitter, resampling, diameter tapering, addition of spines and somata or
manual remodelling. Equivalent trees can be obtained, trees can be morphed or flattened or cut
to pieces, etc.. The edit modes in this panel have multiple sub-modes allowing the editing of
single nodes, selected nodes, sub-trees etc...

balancing

factor bf
maximum jump in mm

maximal path length in mm

consider input graph (see skl_ panel)

as additional cost (Reconstruction

spanning tree)

In the automated reconstruction process the first step is to connect the skeletonized points
obtained by the skl_ panel to a graph. This is done in the TREES toolbox using the MST
constructor (see „MST rule“ in the introductary part) following a greedy algorithm to obtain an
extended minimum spanning tree. The constructor is launched with the „MST“ button in the
mtr_ panel.

the TREES toolbox - on the nature of neuronal branching 159

The GUI the mtr_ panel

Because of the central role of the mtr_ panel a number of different
representations exist. By default (first radio button), a tree is
represented as rectangular pieces between two connected nodes
corresponding to the cylinder or frustum. The rectangular pieces are
mapped to the active vis_ plane, in this case in the XY-plane. A green
circle indicates the last activated node (here the root).

Additionally, the second radio button allows
a 3D visualization of the tree. The last radio
button toggles transparency. In order to set
higher or lower cylinder resolution go to the
“Visualize” menu.

As an alternative to the second option a
graph representing the edges between
nodes as arrows can be selected using the
third radio buttion.

If an Nx1 vector has been selected with the
slt_ panel (see later), this can be mapped on
the colour values of the tree again as an
alternative to the second option. This
happens when toggling ON the fourth radio
button.

the TREES toolbox - on the nature of neuronal branching 160

The GUI the mtr_ panel

target internode

distance in mm

radius determining the close

vicinity in mm

smoothing strength

length conservation

(stretches tree)

number of iterations

Clean a tree

Cleaning a tree (see “clean_tree”) is a

process in which improbable nodes are

eliminated. Termination points in close

vicinity of other nodes on a different

branch and very short terminal

branches are deleted. Consecutive calls

of this function can be useful.

Resample a tree

Resampling a tree (see “resample_tree”)

redistributes nodes such that segments

are constant length. This is required to

get a unique graph representation, and

to apply functions such as adding a

spatial jitter or a number of spines

homogeneously.

The resulting tree from the reconstruction
process is ready for manual editing (see
later) but can also simply be cleaned up
with different cleaning algorithms

Smoothing a tree

Smoothing a tree (see “smooth_tree”)

along its longest paths.

Add spatial jitter

If additional jitter is desired it can be

applied here (see “jitter_tree”).

jitter amplitude

length constant of noise

filtering in mm

the TREES toolbox - on the nature of neuronal branching 161

The GUI the mtr_ panel

scaling factor

Fit quadratic taper (see „quadfit_tree“)

Fitting scaling and offset parameters for the

quadratic taper. In this case it results in an

almost constant diameter throughout.

offset

Quadratic taper (see „quaddiameter_tree“)

Scaling and offset parameters can also be set

by hand.

constant diameter (uses

only offset parameter)
alternative

diameter guess

from image stack

Add spines (see „spines_tree“)

Distributes a number of spines either attached

to nodes randomly (among selection if exists)

or on skl_ panel carrier point locations.

distribute spines on carrier

points instead of randomly

neck diameter in mm

number of spines

head diameter in mm

neck length in mm

soma diameter

soma length

Add soma (see „soma_tree“)

Increases diameter in the vicinity of the root

of the tree.

the TREES toolbox - on the nature of neuronal branching 162

The GUI the mtr_ panel

mtr_ edit submodes for altering the node locations
In the mtr_ edit mode clicking near an existing node (edit line becomes green) allows the user to
move the node around with the active plane. Different submodes allow the movement of a single
node (single), all selected nodes (sel.), an entire sub-tree (subtree) or nodes in the close vicinity
where the amount of displacement depends on the distance to the originally selected node (goo)

mtr_ edit mode
When the edit mode is turned on and the mtr_ panel is active, the active tree is drawn in thick red
lines. The red dashed edit line indicates which node is closest. With simple mouse clicks and
holding, new branches can be drawn.

snap to points in the thr_

binary imge stacks only

third dimension of new points according to

maximum intensity instead of slicer

snap to skl_ carrier points

third dimension according to

parent node instead of slicer

start new tree

the TREES toolbox - on the nature of neuronal branching 163

The GUI the mtr_ panel

mtr_ edit-select mode
When the edit mode is turned on and the mtr_ panel is active, the active tree is draw in thick red
lines. The red dashed edit line indicates which node is closest. With simple mouse clicks and
holding, new branches can be drawn. As can be seen here clearly and in the previous example the
green circle demarcating the last activated node moves while clicking on the tree for editing.

toggle add to/replace selection

redirect and repair
Finally, the root can be moved to another location by redirecting the underlying graph of the tree
(see “redirect_tree”) and the adjacency matrix can be sorted (see “repair_tree”) in order to correctly
perform operations such as the dendrogram plotting and to obtain a unique representation of the
tree.

sorts the node labels and eliminates 0-length

segments and trifurcations

notes on redirect

When a tree is redirected, its root is newly set

to the last activated node shown by the green

circle. Note that the root diameter is never

visible but becomes concrete on moving the

root in the cylinder representation (use

frustum representation to avoid this).

the TREES toolbox - on the nature of neuronal branching 164

The GUI the mtr_ panel

equivalent tree (see „BCT_tree“)

Attributes a set of new unique metrics to a

tree according to a dendrogram-type of

organization. Electrotonically this tree is

equivalent to the original.

disconnect a sub-tree

Unconnect a sub-tree from the main tree at

the last activated node (green circle, is set

in the edit mode). The ged_ and cat_ panels

allow rearrangement of the resulting trees

and a possible reconnection.

morphing (see „morph_tree“)

Attribute Nx1 vector values to the lengths

of the indidual segments selected by the

slt_ panel (see later). Here for example

diameter values are mapped to the length

(doesn‟t make much sense...).

correct tree in z (see „zcorr_tree“)

Sometimes trees might contain unexpected

jumps in the z-dimension, this can be

corrected here.

flatten a tree (see

„flatten_tree“)

threshold for z-

correction in mm

the TREES toolbox - on the nature of neuronal branching 165

The GUI the mtr_ panel

the TREES toolbox - on the nature of neuronal branching 166

The GUI the cat_ panel

the cat_ panel: browse trees

The cat_ panel allows to browse through the two levels of depth of tree structures. The
numbered list on the left indicates the different sets. One set can contain just one tree or more
than one. The two „up“ and „down“ buttons reorganize the active tree location within the
different sets. This is not yet very practical but allows in principal the rearrangement of any set
of trees into new groups. In general it will be better to sort trees in different groups using short
bits of code in matlab.

tree ordering tree name edit

undo tree alteration

clear tree from list

tree selector,

lists the trees

in currently

active tree set

set selector,

lists all sets of

trees

When new trees are loaded or are generated newly, they are
automatically appended to the sets of trees in the cat_ panel.

the TREES toolbox - on the nature of neuronal branching 167

The GUI the ged_ panel

translation

global edit toggles

others

zero root and standard rotations

scaling

root coordinates

rotation, X Y and Z

flip tree coordinates

different representations

the ged_ panel: global edit for trees

The ged_ panel is useful to rearrange the morphologies of different trees in relation to other
sets of trees. Either interactively or indirectly using the buttons on the ged_ panel, trees can be
scaled, rotated, flipped or moved and their cable diameter can be globally increased or
reduced. All these functions are applicable to all trees in a group directly if the „G“ toggle is
switched on. Apart from the edit modes, two further features of the ged_ panel are explained
in more detail in the following page.

Simple black 2D-patches or full rainbow colour 3D cylinder models of all cells in a group can
be displayed using the first or second radio button respectively. For huge groups of trees this
can become slow.

switching the „G“

toggle applies any

changes to all trees

in the group

the TREES toolbox - on the nature of neuronal branching 168

The GUI the ged_ panel

With the „spread“ button, trees of one
group are spread out in 2D for a better
overview (see „spread_tree“). The
process is reversible as long as the tree
order in the group is unchanged. To set
all root coordinates to zero, first toggle
„G“ and then press „0“ button.

reverse

spreading

By pressing the „concat“ button, a tree in a group is connected to the immediately preceding tree
it (see „cat_tree“). The tree is connected at its root to the node of its connection partner which is
closest. Arrange the trees ahead of time using the different buttons of the ged_ panel or the edit
mode. A sub-tree can be for example cut out using the mtr_ panel function „discon“.

the TREES toolbox - on the nature of neuronal branching 169

The GUI the ged_ panel

display dendrogram

compare statistics between

groups of trees

export tree to x3d

3D representation of sholl plot

display adjacency matrix

2D sholl plot

electrotonic signature

export tree to x3d with spheres

statistics

adjacency matrix
dendrogram

sholl plot

sholl 3D plot

electrotonic signature

export to POVRay (http://www.povray.org/)

export to default x3d

plotter

http://www.bitmanage

ment.com/

export to NEURON

http://www.neuron.yale

.edu/neuron/

export NEURON

export to POVRay

the TREES toolbox - on the nature of neuronal branching 170

The GUI the ged_ panel

ged_ edit mode
With the ged_ panel, different trees can be arranged in relation to each
other by scaling, rotating and moving them individually or together. In
the edit mode this is done interactively using the mouse movements.
Take for example a tree of an HSN (black) and an HSE (red) tangential
cell of the fly and switch to the edit mode. By toggling between the
three submodes “scale”, “rotate” and “move” the trees can be arranged
to place them together as if they were reconstrucitons from the same
Lobula plate. The red dashed edit line indicates which tree is closest to
the cursor. By double click of the mouse that tree can be activated.
Switching between trees of the active group is also possible with ctrl [a]
and [d] keys. The implementation of an interactive rotation is not great
yet.

the TREES toolbox - on the nature of neuronal branching 171

The GUI the slt_ panel

change region assignement

apply meta-functions

select nodes

other

select or compute Nx1

vector attributing one

value per node

the slt_ panel: node selector

The slt_ panel goes hand in hand with the mtr_ panel to
browse nodes of that active tree or analyse their
properties and change region attributing. The first
popup allows to attribute values to nodes individually
by means of one of the typical Nx1 vectors. If a vector is
selected here the values are mapped onto the colours of
the active tree in the mtr_ panel or the plot functions in
the plt_ panel (see later) or they are used for the
morphing function in the mtr_ panel. More
sophisticated Nx1 vectors can be computed using one
of the meta-functions (see „Pvec_tree“, „child_tree“,
„ratio_tree“ and „asym_tree“). For example the metric
path length is the combination of „Pvec“ and „LEN“.

select subset

of nodes

An index (subset) to the nodes can be selected here as well.
This can be done directly using one of the options (e.g. all
branch points with „iB“) or by thresholding the selected Nx1
vector („t<„ and „<t“) or by selecting a subtree to the last
active node of the mtr_ panel, or... by using the edit2 mode
of the mtr_ panel, then it becomes very complicated. The
selected nodes can be deleted directly or attributed to a new
region. Selected nodes are indicated in black on the mtr_
panel plot of the active tree. plt_ panel plotting functions,
spines allocation or current injections will be restricted to
the selected index of nodes.

the TREES toolbox - on the nature of neuronal branching 172

The GUI the slt_ panel

In the TREES toolbox, the conventional representation of a tree is as a set of cylinders, where the
diameter depends on the daughter node. However, this can easily be altered by adding a „.frustum
= 1“ field to the tree structure. In the GUI this is toggled in the slt_ panel as shown here.
Differences in total volume or membrane surfaces of more than 10% can occur when switching.
Note that POV-Ray and x3d graphical outputs do not support frustum, while NEURON to our
knowledge supports only frustum.

region name

assign selected nodes

to active regions

add selected nodes to

a new region

Region assignment is a bit complicated. To visualize which nodes belong to the selected region
use the „iR“ selection in the node selector. The popup allows to switch from one region to
another. The edit-select mode in the mtr_ panel allows together with the node selector of the slt_
panel to chose a set of specific nodes. These can then be assigned to the currently active region or
form together a new region by the control „NEW“. When this happens they are extracted from the
other region sets. In some cases regions remain empty after such a procedure: The „c“ control is
there to clear such regions. In some select cases still deletion of nodes might result into
problematic region assignements and this bug was not identified yet.

clear empty

region

region #

the TREES toolbox - on the nature of neuronal branching 173

The GUI the ele_ panel

specific membrane

capacitance [in mF/cm
2
]

specific axial

resistance R
i
[in Wcm]

specific membrane

conductance G
m

[in S/cm
2
]

m
e
m

b
r
a
n

e
 p

o
t
e
n

t
i
a
l
 [
m

V
]

the ele_ panel: electrotonics

The ele_ panel is to be expanded
dramatically in future versions. For now
the three passive electrotonic properties
can be set here. They are used for current
injection and local input resistance
measurements in the slt_ panel and are
exported to NEURON.

Change these passive properties or edit
the tree to see electrotonic changes live.

the TREES toolbox - on the nature of neuronal branching 174

The GUI the plt_ panel

hulls

browse and delete handles

plots

edit handles

popup of handle packages

the plt_ panel: graphical objects

The plt_ panel offers a number of ways to create graphical objects relating to the active tree,
its nodes and the Nx1 vector values and node index selection determined in the slt_ panel. The
various functions result in objects which are addressed as handle packages (see below). Each
new handle package is added as a new entity in the popup and can be edited in various ways.
„cla“ of the vis_ panel deletes all plt_ panel handles at once!

do not show

handles during axis

changes (rotation,

pan)

A handle for example produced by plot_tree has a number of attributes accessed by the Matlab
function „get“:

>> HP = plot_tree (sample_tree)

>> get (HP)

AlphaDataMapping = scaled

Annotation = [(1 by 1) hg.Annotation array]

CData = [(4 by 1576 by 3) double array]

CDataMapping = scaled

DisplayName =

FaceVertexAlphaData = []

FaceVertexCData = [(3152 by 3) double array]

EdgeAlpha = [1]

EdgeColor = [0 0 0]

FaceAlpha = [1]

FaceColor = interp

Faces = [(1576 by 4) double array]

LineStyle = none

LineWidth = [0.5]

Marker = none

...

Change one of the attributes with the
Matlab function „set“. For example
make render the handle red:

>> set(HP,'facecolor',[1 0 0])

the TREES toolbox - on the nature of neuronal branching 175

The GUI the plt_ panel

The examples on this page and the next are different plotting
options provided by the TREES toolbox. For the purpose of
illustration, the branch order was mapped onto the nodes (BO
Nx1 vector in the slt_ panel) and a sub-tree was selected (using
the subtree function of the slt_ panel). Each plotting function
creates a handle package. These handle packages can then be
browsed post hoc, altered or deleted.

plot

maps BO on colour but

disregards sub-tree

selection.

patch plot

2D patches in XY-plane.

Maps BO on colour plots

only selected sub-tree.

quiver plot

Arrows along edges

of graph. Disregards

BO mapping, but

plots only selected

sub-tree.

text plot

Plots the BO values as 2D or 3D text

and maps BO on colour. Covers only

selected indices.

the TREES toolbox - on the nature of neuronal branching 176

The GUI the plt_ panel

distance hulls 3D and 2D,

see “hull_tree”

voronoi hulls 3D and 2D,

see “vhull_tree”

density plots interpolated and as lego pieces,

see “gdens_tree” and “lego_tree”

three different pointers to selected node,

see “pointer_tree”

the TREES toolbox - on the nature of neuronal branching 177

The GUI the plt_ panel

The examples on the previous pages
produce handle packages with different
attributes. With the plt_ panel some of
these attributes can be altered in the
active handle package in those handles in
which the corresponding attributes are
available.

patch colour

select your favourite colour

using a GUI

line colour

add lines to patches and

select their colour.

select transparency

increase or decrease transparency of

patches and lines.

select line thickness

increase or decrease

linewidth attribute of

handles with lines.

select font using a GUI

vtext handle font attributes can be altered here.

