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S2: Derivation of the Policy-Gradient Update Rule

In the following we provide a derivation which shows that thepolicy-gradient
update rules (9) and (10) given in the main text perform gradient ascent on the
reward signalR(t). Consider several neurons that influence the reward signal by
their output. In fact, in our setup the rewardR(t) directly depends on the output of
the neurons at timet. The weights should change in the direction of the gradient
of the reward signal, which is given by the chain rule as
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whereai(t) is the total somatic input to neuroni at timet, see equation (6) in the
main text. We assume that the noiseξ is independently drawn at each time and
for every neuron with zero mean and varianceµ2, hence we have〈ξi(t)〉 = 0,
and〈ξi(t)ξj(t

′)〉 = µ2δijδ(t− t′) whereδij denotes the Kronecker Delta,δ(t− t′)
denotes the Dirac delta, and〈·〉 denotes the average over the random variableξ,
i.e., an average over trials with the same input but different noise. We assume
that the noise depends deterministically on the activationof a set of neurons. The
deviation of the rewardR(t) from the rewardR0(t) without the noise term can be
approximated to be linear in the noise for small noise

R(t) − R0(t) ≈
∑

k
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Multiplying this equation withξi(t) and averaging over different realizations of
the noise, we obtain the correlation between the reward at time t and the noise
signal at neuroni

〈(R(t) − R0(t))ξi(t)〉 ≈
∑

k

∂R(t)

∂ak(t)
〈ξk(t)ξi(t)〉 = µ2

∂R(t)

∂ai(t)
. (3)

The last equality follows from the assumption that the noisesignal is temporally
and spatially uncorrelated. Hence, the derivative of the reward signal with respect
to the activation of neuroni is
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Note also that〈R0(t)ξi(t)〉 = 0, thus the actual choice of the baselineR0 is not
important in the mean. However, the baseline can have an effect on the variance
of the estimate. The choice in the learning rule estimates the average reward for
zero noise since inputs are temporally correlated whereas the noise is not. Using
this result in equation (1), we obtain
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We further note that for a small learning rate or if the input changes slowly com-
pared to the noise signal, the weight vector is self-averaging and we can neglect
the average in equation (5).

By symmetry, we find that
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We thus obtain
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