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1. The SIS model 

  In the SIS model individuals can be in one of two epidemiological states: Infected (I) 

or Susceptible (S). Each disease is characterized by a recovery rate (δ) and an infection 

contact rate (λ). In an infinite, well-mixed population, the fraction of infected 

individuals (x) changes in time according to the following differential equation  

          xxykx δλ −〉〈=     

where 

€ 

y =1− x  is the fraction of susceptible individuals and 

€ 

〈k〉  the average number 

of contacts of each individual [1]. There are two possible equilibria ( 0=x ): 

€ 

x = 0  and 

1
01 −−= Rx , where δλ /0 〉〈= kR  denotes the basic reproductive ratio. The value of R0 

determines the stability of these two equilibria:  is stable when  and 

unstable when .   

  We defined a discrete stochastic process describing the disease dynamics associated 

with the SIS model in a finite population (see Methods) which can be represented as a 

Markov chain M with N+1 states [2,3], illustrated in the following figure:    

 

Each configuration of the population, which is defined by the number of infected 

individuals i, corresponds to one state of the Markov chain. In a finite, well-mixed 

population, Equations M1 and M2 (with r=0) define the transitions between different 

states. In a dynamical contact network, Equations M1 and M4 define those transitions 

(assuming that the linking dynamics proceeds much faster than the disease dynamics). 

This way, we obtain the following transition matrix for M:  
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 (1)  

where each element pkj of P represents the probability of moving from state k to state j 

during one time step. The state without any infected individual (i=0) is an absorbing 

state of the Markov chain. In other words, the disease always dies out and once this 

happens, it never re-appears.  

1.1 Recovery times in finite populations  

  Here, we derive an analytical expression for the average time it takes to reach the 

single absorbing state of the SIS Markov chain (i.e., the average recovery time). Let us 

denote by 

€ 

Pi(t)  the probability that the disease disappears at time t when starting with 

i infected individuals at time 0. Hence, the average recovery time is given by [4] 

€ 

ti ≡ tPi(t)
t= 0

∞

∑ .     (2)  

Equation 1 yields the following recurrence relation for 

€ 

Pi(t) : 

€ 

P0(t) = δt,0

Pi(t) = Ti
−Pi−1 t −1( ) + 1−Ti

+ −Ti
−( )Pi t −1( ) + Ti

+Pi+1 t −1( )

PN (t) = TN
−PN−1 t −1( ) + 1−TN

−( )PN t −1( ).

 (3)  

We multiply both sides of these equations by t and sum from 

€ 

t = 0 to 

€ 

∞  

€ 

tPi(t)
t= 0

∞

∑ = Ti
− tPi−1 t −1( )
t= 0

∞

∑ + 1−Ti
+ −Ti

−( ) tPi t −1( ) +
t= 0

∞

∑ Ti
+ tPi+1 t −1( )
t= 0

∞

∑

tPN (t)
t= 0

∞

∑ = TN
− tPN−1 t −1( )
t= 0

∞

∑ + 1−TN
−( ) tPN t −1( )

t= 0

∞

∑ .
 (4)  
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Since M has only one absorbing state, we know that 

€ 

Pi(t)
t= 0

∞

∑ =1 for all values of i. The 

sums on the right hand side of Equation 4 can therefore be written in terms of the 

average recovery time ti as follows 

€ 

tPi−1(t −1) = t +1( )Pi−1(t) = ti−1 +1
t= 0

∞

∑
t= 0

∞

∑

tPi(t −1) = t +1( )Pi(t) = ti +1
t= 0

∞

∑
t= 0

∞

∑

tPi+1(t −1) = t +1( )Pi+1(t) = ti+1 +1
t= 0

∞

∑ ,
t= 0

∞

∑

  (5)  

which leads to the following recurrence relation for 

€ 

ti  

€ 

ti = Ti
−ti−1 + 1−Ti

− −Ti
+( ) ti + Ti

+ti+1 +1,  (6)  

and for 

€ 

tN  

€ 

tN = TN
−tN−1 + 1−TN

−( ) tN +1.    (7)  

We introduce a variable  ),,1(1 Nitts iii …=−≡ − for which we can derive the following 

recurrence relation by using Equation  6  

€ 

Ti
+ti+1 −Ti

+ti = Ti
−ti −Ti

−ti−1 −1
⇔Ti

+si+1 = Ti
−si −1

⇔ si+1 =
Ti
−

Ti
+ si −

1
Ti

+ .

    (8)  

Note that this equation is valid for all i=1,…,N-1. Equation 7, on the other hand, can be 

written as 

€ 

TN
−tN −TN

−tN−1 =1 so that 

€ 

sN =
1
TN
− .     (9)  

In the following, we use auxiliary variables 

€ 

γ i =
Ti
−

Ti
+  and 

€ 

qi = γ l
l=1

i

∏ . Equation 8 allows 

us to write si (i=2,…,N) as a function of t1 
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€ 
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∏
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∏
 

 
 

 

 
 

1
Tk

+ γ jj=1

k
∏k=1

i−1

∑
 

 

 
  

 

 

 
  

= qi−1s1 − qi−1
1

Tk
+qkk=1

i−1

∑ ,

  

and therefore 

€ 

si = qi−1t1 − qi−1
1

Tk
+qkk=1

i−1

∑ .    (10)  

Combining Equations 9 and 10 leads to the following expression for t1 

€ 

t1=
1

qN−1TN
− +

1
Tk

+qkk=1

N−1

∑ ,     (11)  

such that ti can be written as a function of t1 as follows 

.    (12)  

The intrinsic stochasticity of the model, resulting from the finiteness of the population, 

makes the disease disappear from the population after a certain amount of time. As 

such, the population size plays an important role in the average recovery time 

associated with a certain disease, a feature we discuss in this section. We consider 

static networks of different size N, keeping the average degree 

€ 

〈k〉  fixed, and plot the 

average time to disease eradication t1 as a function of 

€ 

〈k〉λ /δ  (see upper panel of 

Figure 1). Whenever 

€ 

〈k〉λ /δ >1, the existence of an interior root in G(i) leads to a 

dramatic increase of the recovery time (note the logarithmic scale) to extremely high 

values compared with those obtained for low infection rates. This problem becomes 

particularly acute in large populations because the fraction of time the population 
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spends in each state is not the same for different population sizes. The lower panel of 

Figure 1 shows the fingerprint of the population size on the quasi-stationary 

distribution for static contact networks with fixed average degree 

€ 

〈k〉 = 49 , for 

€ 

〈k〉λ /δ = 2. With increasing population size, the population spends less and less time 

close to the single absorbing state of the dynamics, remaining instead in the vicinity of 

the state associated with the interior root of G(i). This acts to reduce the intrinsic 

stochasticity of the dynamics, dictating a very slow convergence towards the absorbing 

state (no disease). 

 

Figure 1. Impact of population size on recovery times. A) Average number of generations 

required for disease eradication in the SIS model in static networks of different size N, while 

keeping the average degree 

€ 

〈k〉  constant (equal to 49). B) Quasi-stationary distribution of the 

number of infected for the same values of N and . The disease parameters satisfy . 



SUPPORTING INFORMATION 
S.Van Segbroeck, F. C. Santos, J. M. Pacheco, Adaptive contact networks change effective disease infectiousness and dynamics, 
PLoS Comput Biol (2010). 
 

 7 

2. The SI model 

  The SI model is mathematically equivalent to the SIS model with , and has been 

employed to study for instance the dynamics of AIDS. The Markov Chain representing 

the disease dynamics is therefore defined by transition matrix Equation 1, with  

for all i. The remaining transition probabilities  ( ) are exactly the same as 

for the SIS model. Disease spreading in an adaptive contact network will therefore be 

equivalent again to that in a well-mixed population with a transmission probability that 

is rescaled according to Equation 6. 

Since all  equal zero, the Markov Chain has two absorbing states: the canonical one 

without any infected (i=0) and the one without any susceptible (i=N). The disease will 

expand continuously as soon as one individual in the population gets infected, 

ultimately leading to a fully infected population. The average amount of time after 

which this happens, which we refer to as the average infection time, constitutes the 

main quantity of interest and can be calculated analytically, as discussed below. 

2.1. Infection times in finite populations 

  Let us denote by  the probability to reach 100% of infected at time t, when 

starting with i infected individuals at time 0. The average infection time is then given 

by 

.    (13) 

The transition matrix of the Markov Chain yields the following recurrence relation for 

: 
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   (13) 

Multiplying both sides of the equation by t and summing from  to  results in the 

following expression for : 

   (14) 

Since , for all , we can write the sums at the right hand side of 

Equation 14 in terms of  

                                    

and obtain the following recurrence relation for  

€ 

ti = 1−Ti
+( )ti + Ti

+ti+1 +1,   (15) 

which reduces to  

.   (16) 

Since , Equation 15 for  reduces to 

€ 

tN−1 = 1−TN−1
+( ) tN−1 +1,   (17) 

so that . By combining this with Equation 16, we obtain the following 

expression for : 

                  .             (18)  
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Hence, the average number of time steps needed to reach 100% infection, starting from 

i infected equals 

                                                                           (19)  

2.2. Infection times in dynamical networks 

  The main text discusses how the availability of information regarding the health 

status of one’s partners affects the average infection time. Here, we use computer 

simulations to verify to which extent these results, obtained analytically via time scale 

separation, remain valid for intermediate values of the relative timescale  for the 

linking dynamics. We start with a complete network of size N, in which initially one 

individual is infected, the rest being susceptible. Disease spreading and network 

evolution proceed simultaneously under asynchronous updating. Network update 

events take place with probability , SI state update events occur otherwise. 

Both processes are defined in exactly the same way as in the SIS model, taking  

(see Methods). For each value of , we run 104 simulations and calculate the average 

number of generations after which the population becomes completely infected. These 

values are depicted in Figure 2. The lower dashed line indicates the analytical 

prediction of the infection time in the limit , which we already recover in 

simulation for . When  is smaller than , the average infection time 

significantly increases, and already reaches the analytical prediction for the limit 

 (indicated by the upper dashed line) when . Hence, the validity of the time 

scale separation does again extend well beyond the limits one might expect. 
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Figure 2. Disease spreading in the SI model for variable time scales  of the linking dynamics. 

Solid circles show the average number of generations to reach a fully infected population, starting 

from one single infected individual, obtained in simulation. Dashed lines indicate the analytical 

predictions for these values, either in the limit  (upper dashed line), or in the limit  

(lower dashed line). We use the following parameter values: , , , 

 and . 

3. The SIR model   

  With SIR one models diseases in which individuals acquire immunity after 

recovering from infection. Typical examples of situations potentially modeled with 

SIR are flu over a single season or computer virus epidemics. We distinguish three 

epidemiological states to model the dynamics of such diseases: susceptible (S), 

infected (I) and, finally, recovered (R), indicating those who have become immune to 

further infection. 

  The SIR model in infinite, well-mixed populations is defined by a recovery rate  

and an infection contact rate . The fraction of infected individuals x changes in time 

according to the following differential equation 

,     (20) 
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where y denotes the fraction of susceptible individuals, which in turn changes 

according to  

.      (21) 

Finally, the fraction of individuals z in the recovered class changes according to 

.      (22) 

3.1. The SIR model in finite populations 

  We address the SIR model in finite, well-mixed populations in the same way as we 

addressed the SIS and SI models. The Markov Chain describing the disease dynamics 

becomes slightly more complicated and has states , where i is the number of 

infected individuals in the population and r the number of recovered (and immune) 

individuals ( ). A schematic representation of the Markov Chain is given in the 

following figure: 

 
 

Note that the states , with , are absorbing states. Each of these states 

corresponds to the number of individuals that are (or have become) immune at the time 

the disease goes extinct. 
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Consider a population of size N with average degree . The number of infected will 

increase with a rate  

    (23) 

and decrease with a rate 

,    (24) 

where  denotes the recovery time scale. The gradient of infection, which measures 

the likelihood for the disease to either expand or shrink in a given state, is given by 

.   (25) 

Note that we recover Equation 20 in the limit . For a fixed number of recovered 

individuals , we have that  for  and for . For 

,  becomes the finite population analogue of an interior 

equilibrium. Furthermore, one can show that the partial derivative  has at most 

one single root in , possibly located at . Hence,  reaches a 

maximum at ( ). The number of infected will therefore most 

likely increase for  (assuming  immune individuals), and most likely decrease 

otherwise. 

The gradient of infection determines the probability to end up in each of the different 

absorbing states of the Markov chain. These probabilities can be calculated 

analytically as follows. Let us use  to denote the probability that the population 
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ends up in the absorbing state with a recovered individuals, starting from a state with i 

infected and r recovered. We obtain the following recurrence relationship for  

,   (26) 

which reduces to  

. (27) 

The following boundary conditions 

    (28) 

allow us to compute  for every a, i and r.  

3.2.  The SIR model in dynamical networks 

  We adopt the same convention as before and normalize the recovery time scale  to 

1. In the fast linking limit, the number of infected increases with a rate given by  

 . (29) 

The rate with which the number of infected decreases is network independent and 

equal to  

     (30) 

We can write Equation 26 as follows 

,           (31) 

so that the disease dynamics in an adaptive contact network becomes once again 

equivalent to that in a well-mixed population with a transmission probability that is 

rescaled according to , where  
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.   (32) 

The gradient of infection allows us to characterize, once more, when disease expansion 

will either be most likely or least likely. To do so, we study the partial derivative 

 at   

.  (33) 

This equation exceeds zero whenever   

.  (34) 

Note that taking  yields the basic reproductive ratio 

€ 

R0
A  for both SIR and SIS:  

€ 

R0
A ≡ NφSI

λ
δ

>1.    (35) 

 
Figure 3. Disease spreading in the SIR model for variable time scales  of the linking dynamics. 

Solid circles show the final fraction of recovered individuals as a function of  in populations with 

initially one infected. The upper (lower) dashed line shows the corresponding analytical prediction 

in the limit  ( ). We use the following parameter values: , , 

, ,  and . 
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  Figure 2 of the main text gives a complete picture of the gradient of infection in the 

fast linking limit, showing how availability of information modifies the spreading 

dynamics and reduces the number of individuals that will be affected by the disease. In 

the following, we study to which extent such result remains true for variable time 

scales  of the linking dynamics. We start again with a complete network of size N in 

which one single individual is infected, the rest being susceptible. The simulations 

proceed exactly as before, i.e., network evolution proceeds simultaneously with 

disease spreading. Network update events take place with probability , SIR 

state update events occur otherwise. Each simulation runs until the disease goes 

extinct. For each value of , we run 104 simulations and average the final fraction of 

individuals that have been affected by the disease, which corresponds to the final 

fraction of individuals in the recovered class. These results are depicted in Figure 3. 

The upper dashed line indicates the expected fraction of recovered individuals in a 

static network ( ). This value is obtained by calculating , where  is 

given by Equations 27 and 28. One observes that linking dynamics does not affect 

disease dynamics for . Once  drops below 10, a significantly smaller fraction 

of individuals is affected by the disease. This fraction reaches the analytical prediction 

for  as soon as . Hence, once again, results obtained via separation of 

time scales remain valid for a wide range of intermediate time scales. 

4. Individual diversity in linking dynamics   

  So far, we have studied the role of network adaptation on disease dynamics, assuming 

that individuals can be considered equivalent in all respects, apart from their 

epidemiological state. However, in realistic human webs of contacts, not all 
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individuals are equally likely to engage in new interactions with each other, depending 

on different factors such as social and genetic distance, geographical proximity, family 

ties, etc [1,5-9]. On the other hand, the very same factors may also influence an 

individual’s capacity of breaking existing links. Hence, generally speaking, some links 

will last longer (will be created faster) than others, and the question is to which extent 

such diversity in individual behavior influences disease dynamics. As pointed out in 

the discussion, there may be situations in which links cannot be set up or removed 

randomly. Such features, of course, cannot be captured with the present model.  

  Here, we address individual diversity by means of numerical simulations. Before, we 

considered a fixed characteristic rate bpq for breaking links of type pq (p and q 

), and another fixed rate c for creating new links. Instead of using these 

fixed values for all individuals, we now assign different rates to each pair of 

individuals, thereby accounting for a variety of factors that influence the social 

conditions between different individuals. Specifically, we assign rates cab and  to 

each pair of individuals a and b, their explicit values being drawn from a Gaussian 

distribution with mean c and bpq, respectively, and standard deviation . 

  Figure 4 shows the fraction of recovered/immune individuals after disease extinction 

for the SIR model, but similar conclusions are obtained for the SI and SIS models (not 

shown). Our results show that diversity in the way individuals create and remove links 

(which may originate from a broad range of factors) does not affect the overall final 

fraction of individuals in the recovered class, as long as the average rates remain 

unchanged. In summary, to the extent that individual diversity can be recast in the 

form modeled here, our results discussed in the main text remain valid. 
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Figure 4. Fraction of recovered individuals after disease extinction for the SIR model as a function 

of the standard deviation  associated with the normal distribution from which the rates that 

define the linking dynamics are drawn. We use the following parameter values: , 

, , , ,  and . 
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