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Supporting Text S1

Description of physiological data and model computations

1. Experimental values of membrane diffusion capacities at four levels of exercises

(1) At rest.  Many studies have measured the diffusion capacity for carbon monoxide of the alveolar membrane (Tm, CO) or the whole lung (TL,CO) at rest (Table 1). Because of the difference in solubility and diffusivity of oxygen and carbon monoxide molecules in water, the diffusion of oxygen is 1.23 times faster than carbon monoxide, so 
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 (see e.g. Ref. [S1]).  Some studies only measured TL, CO. In those cases, we take the classic model of pulmonary diffusion proposed by Roughton and Forster [S2], which describes the two-resistor model for CO transfer, to calculate Tm, CO: 
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where 
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 is the rate of carbon monoxide uptake by whole blood and combination with hemoglobin, and 
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is the pulmonary capillary blood volume.

We take the median value 
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 for further calculation (Table 1).  With equation 
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, and empirical value of oxygen current, I = 270ml/min (Table 1 in main text), we have 
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Table 1. Comparison of values of membrane and whole lung diffusion capacity for oxygen and carbon monoxide from 17 studies. 
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	Lewis et al. (1958) [S3]
	120.5
	98
	29
	65

	Bedell et al. (1962) [S4]
	64.9
	52.8
	29
	-

	Roughton (1964) [S5]
	68.9
	56
	33
	79

	Johnson et al. (1965) [S6]
	68.9
	56
	30
	75

	Krumholz (1966) [S7]
	131.6
	107
	39
	99

	Hyde et al. (1967) [S8]
	75
	61
	44
	104

	Cross et al. (1973) [S9]
	89.2
	72.5
	45
	121

	Crapo et al. (1982) [S10]
	70.1
	57
	29
	87

	Guenard et al. (1987) [S11]
	97.2
	79
	30
	78

	Borland et al. (1989) [S12]
	88.4
	71.9
	40
	90~115

	Huang et al. (1994) [S13]
	71.3
	58
	30.5
	-

	Hsia et al. (1995) [S14]
	63.6
	51.7
	32
	108

	Puri et al. (1995) [S15]
	73.4
	59.7
	30.1
	-

	Zanen et al. (2001) [S16]
	67.8
	55.1
	28.8
	86.3

	Tamhane et al. (2001) [S17]
	57.7
	46.9
	29.3
	110

	Huang et al. (2002) [S18]
	69.6
	56.6
	30.1
	-

	Zavorsky et al. (2004) [S19]
	131.2
	106.7
	46.2
	116.3

	Median
	71.3
	58
	30.1
	99

	25 percentile
	68.9
	56
	29.3
	79

	75 percentile
	89.2
	72.5
	39
	108



(2) Moderate exercise.  Borland et al. (2001) [S20] measured steady-state membrane diffusion capacity of nitric oxide (NO) and carbon monoxide (CO) on moderate exercise in men [S20]. The oxygen uptake rate at this level of exercise was reported to be 1300 ml/min. Based on two different assumptions of the reaction rate of NO with hemoglobin, the authors gave an upper and lower limit for membrane diffusion capacity of CO, 
[image: image13.wmf]CO

 

,

m

T

, and therefore two limits of 
[image: image14.wmf]2

O

 

,

m

T

 (126.7 ~ 204.7 ml/min/Torr). We take the median value of them 165.7 ml/min/Torr as the experimental value at this level of exercise. 


(3) Heavy exercise.  At this level of exercise, Weibel (1984) reported that the oxygen current is 2420 ml/min, and the corresponding diffusion capacity of the whole lung, 
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is 100 ml/min/Torr [S1].  We take the Roughton-Forster equation [S2, S9] to calculate the membrane diffusion capacity, 
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, where 
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is the reaction rate of oxygen and hemoglobin and 
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 is the capillary blood volume at this level of exercise. 
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 is unknown.  But, since recruitment of pulmonary capillaries increases with exercise intensity [S21], 
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 must be between the values at moderate exercise, 127 ml [S20], and the morphometric value, which is also the maximum, 194 ml [S22].  So, we take the middle value, 160.5 ml, to do the calculation.  It is difficult to measure 
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 [S1].  Weibel presented the value of it in desaturated blood (1.5ml/ml/min/Torr) and the effective mean value of it (0.85ml/ml/min/Torr). We take these two values to calculate the upper and lower limit of 
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at this level of exercise: 
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.  The mean value is 272.7 ml/min/Torr. 

(4) Maximum exercise.  We take the value of oxygen current at maximum exercise for well-trained athletes, 5500 ml/min, because it is the maximum value the human lung can reach.  We assume that at this level of exercise, the spare surface area, which play roles of spare resource at lower level of exercises and rest, is fully used.  Therefore, screening disappears at maximum exercise.  This assumption is supported by two-dimensional numerical simulation in a Hilbert acinus [S22-24].  The pulmonary efficiency is 100%, and the membrane diffusion capacity is equal to the morphometric value of it 
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2. Oxygen currents across single gas exchangers: random-walk computations and finite-element computations

The currents from the random-walk method in Fig. 6A, for the two specimens of a gas exchanger analyzed by Felici et al. [S25-26], were calculated from 
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, where ( and Sg are the pulmonary efficiency and gas exchanger surface area, respectively, reported in Fig. 5 in Ref. [S25] for the largest and smallest gas exchanger, and 
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 at rest (Table 1 in main text).  The corresponding currents from the renormalization method (RM) were calculated from 
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 and Equation 3, with Sg from Fig. 5 in Ref. [S25], 
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 at rest (Table 1 in Main text), and 
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The currents from the finite-element method were obtained by solving the boundary-value problem Equation 2 in two dimensions (2D) with the following data:
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where the values in Equations S2a,b are from Ref. [24], and Equations S2c-e are from Table 1 in main text, observing that the alveolar side length, diffusion coefficient, and permeability have values and units independent of the dimensionality of the diffusion space.  The concentration difference in two dimensions, 
[image: image35.wmf]  

(

c

a

-

c

b

b

a

/

b

b

)

2D

, was calculated from that in three dimensions, 
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 (Equation 4) and Table 1 in main text, as follows.  If N molecules occupy a volume V, then one molecule occupies a cube of side length 
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for O2 transport at rest.  We note that the formula 
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 requires concentrations to be in units of number of particles per unit volume and number of particles per unit area, respectively, for purely dimensional reasons.  If the 3D concentration were in moles per volume, the right hand side of 
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The currents from the renormalization method for the models in two dimensions were computed from
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with 
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 (plane-filling membrane) and S52a-f.  Equation S4 is the renormalization result in two dimensions, for a membrane with fractal dimension Df, 
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It follows that, in two dimensions, the current in the renormalization method is controlled by the size of the source, (Ss)2D, in the strong partial and complete screening regime, Equations S4a, b, but not for weak partial screening, Equation S4c.  So the renormalization currents at large W in Fig. 6B differ for the large and small Sierpinski exchanger because the size of the source is different for the two exchangers, Equations S4a, b, but the currents coincide in the plateau regime.
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