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Comparison of SVR, E-scores, and PSSMs on in vitro data

We previously showed that SVR in vitro predictions outperformed the maximum E-score approach
(E-max) across yeast and mouse TFs (see Results, Figure 2). Supplementary Figure 1 shows that
(a) PBM-derived PSSMs and E-max give comparable performance in cross-validation on probe
designs, while (b) PBM-trained SVR models clearly outperform PSSMs.

In Figure 2, we compare the performance obtained by scoring PBM probe sequences using
the maximum E-scores (“E-max” method) or Z-scores (“Z-max” method) over constituent k-mer
patterns, where Z-scores are the median of the transformed probe intensities (see Badis et al.
(2009)). As in the paper, we evaluated performance on TFs for which PBMs experiments on two
array designs are available, using E-scores or Z-scores estimated on one array to make predictions
for the other array. Using the detection of the top 100 as our evaluation measure, we found no
statistically significant performance difference between Emax and Zmax (Emax is equivalent or
superior to Zmax in 68 out of 114 cases, and the mean score for each is 20.7 and 20.3 respectively).
A signed rank test shows no significant improvement of one method over the other for the detection
of the top 100 probes using a significance threshold of p < 0.05. These results indicate that either
E-max or Z-max can be used as essentially equivalent baseline methods. We chose the E-max
approach since E-scores were readily available for all the data at the time of processing.

To examine the choice of Seed-n-Wobble as our baseline method for deriving PSSMs from PBM
experiments, we ran the RankMotif algorithm on PBM data for mouse TFs for which two array
designs are available. As before, we learned PSSMs on one array and tested on the other. Since
RankMotif requires selection of a motif length parameter, we tested lengths 6-13, and we chose
the length with the highest likelihood for each PBM array using only the training data. We also
constrained our search to PSSMs of length 10 to determine the accuracy of a single parameter
setting.

Figure 3 shows the comparison of the performance of Seed-n-Wobble PSSMs, SVR models, and
RankMotif. We found that Seed-n-Wobble slightly outperforms RankMotif when a fixed length of
10bp is used, whereas RankMotif slightly outperforms Seed-n-Wobble when using the optimal (on
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the trainig set) PSSM length, measured in terms of wins/losses over PBM experiments. However,
neither of these performance differences is statistically significant at a p-value threshold of 0.05
(signed rank test). Meanwhile, the SVR model significantly outperforms RankMotif whether the
optimized length or fixed length 10 is used in the RankMotif approach (p < 3.7e − 05 and p <
3.4e− 05, respectively, signed rank test).

Alternative kernel methods

When developing our approach, we started by testing the spectrum and mismatch kernels. However,
our initial experiments using these existing kernels to train SVR models showed little improvement
over the E-max approach, which prompted our search for a more effective string kernel for this
particular problem. In Figure 4, we compare the di-mismatch kernel against the regular mismatch
kernel for (k,m) = (8, 0), i.e. 8-mers with no mismatches, and (k,m) = (9, 1), i.e. 9-mers with
one mismatch, using the same cross-validation approach as in the paper (train on one PBM array
design, test on the other). The di-mismatch kernel has equal or better performance than the 8-mer
kernel on 30 out of 33 yeast TFs and 70 out of 115 mouse TFs. Similarly, the di-mismatch kernel
equals or outperforms the regular (9, 1) mismatch kernel for 22 out of 30 yeast TFs, and 62 out of
115 mouse TFs. While the advantage of the di-mismatch kernel seems at first more marginal for
the mouse TF data set, we do see a trend where the regular mismatch kernel tends to win only
on poorly performing examples (i.e. TFs where both kernels detect < 20 true positives), while the
di-mismatch kernel tends to win on the more successful examples. More specifically, out of the 52
cases where di-mismatch and 8-mers detect more than 20 of the top 100, the di-mismatch approach
outperforms 8mers on 47 cases, with 2 ties. Similarly, di-mismatch outperforms the (9,1)-mismatch
kernel (“1-gapped 8-mers”) on 41 out of the 75 best cases (with 8 ties). We also find that the
(13, 5)-di-mismatch kernel convincingly outperforms the (13, 5)-mismatch kernel, suggesting that
in the regular nucleotide alphabet, allowing 5 mismatches is too permissive. Note that the mismatch
kernel results shown in Figure 4 involved the same feature selection as we used for our di-mismatch
SVR model. We ran experiments to see whether the feature selection hurt the mismatch model
and found no such evidence.

Conservation and SVR occupancy profiles

Traditional motif analysis uses conservation as a filter to enrich for functional binding sites. Instead,
we examined the extent to which peaks in the SVR-predicted occupancy profiles already coincide
with conserved regions. For each yeast TF, we Z-normalized the SVR peaks obtained for all the
IGRs, and we partitioned these into occupancy bins of 0-0.5, 0.5-2, 2-6 and >6 standard deviations,
each bin corresponding to predictions of background, weak binding, moderate binding, and strong
binding regions, respectively. For each peak, we defined the “flank sequences” to be those regions
flanking the peak that have SVR scores within the range specified by the bin to which the peak is
assigned. We downloaded phastCons (Siepel et al., 2005) yeast conservation scores based on the
multiple alignment of seven Saccharomyces genomes (paradoxus, mikatae, kudriavzevii, bayanus,
castelli, kluyveri) for yeast IGR sequences from the UCSC Genome Browser database. Finally, we
assigned a conservation score to each SVR peak by mapping the flank sequences to our downloaded
conservation scores, and we aggregated all peak conservation scores over the 68 yeast TFs that we
considered. The cumulative distributions of these phastCons conservation levels indicate increased
conservation as the SVR peaks increase. Interestingly, we also observe some conservation for the
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“moderate binding” bin.

Cooperative and competing factors may help explain TF occupancy in yeast

One confounding issue in the interpretation of TF occupancy data is the interaction of the immuno-
precipitated TF with other DNA-binding proteins. A previous analysis of yeast occupancy data
sought to distinguish between direct and indirect TF binding by looking for enrichment of PBM-
derived motifs for other factors in a TF’s ChIP chip signal for a given condition (Gordân et al.,
2009). In particular, if the PBM-derived motif of a base TF B was not enriched in B-occupied
IGRs, but the motif for a partner TF P was enriched, then P was proposed as a potential binding
partner for B. According to this model, B would tend to bind its IGRs indirectly via interaction
with its partner P , while P would directly bind sites in these regions.

Motivated by this analysis, we examined all pairs of TFs (B,P ) where the SVR model for
partner P was able to significantly predict the in vivo occupancy of B. We limited our analysis to
the rich media (YPD) condition, for which the most occupancy data was available. We performed
an AUC analysis where we took true positives to be B-occupied IGRs satisfying a p-value threshold
of 0.01 and true negatives to be IGRs assigned a p-value greater than 0.5. We use a more relaxed
p < 0.01 threshold for occupancy in order to avoid statistical issues with very small numbers of
positives in the AUC analysis. We then identified all TFs P such that AUC performance of P ’s
SVR model for predicting occupancy by B, denoted as fP (B), exceeds the best performance of
randomized TF SVR models. More specifically, a randomized TF SVR model refers to the AUC
obtained when the SVR of TF Pi is applied to randomly perturbed IGR sequences and validated
by B’s true binding preferences - we denote this as fPi(Brand). We further considered whether
TFs B and P had similar (a) true occupancy and/or (b) predicted occupancy, both being based
on the overlap of true/predicted occupied IGRs, using Fisher’s exact test to determine appropriate
p-values, with p < 0.05 suggesting significant overlap.

Similar to the PBM-derived motif enrichment analysis of Gordân et al. (2009), we found many
TFs B (26 out of 68) that could be paired with at least one parnter P whose SVR models sig-
nificantly predicted B-occupied IGRs in rich media conditions (see Figure 6). Of these, we found
that 22 TFs had at least one partner P whose true occupancy was similar to B’s true occupancy.
When we found pairs of TFs B and P whose predicted occupancy profiles were similar, it was
generally true that their PBM-derived motifs were almost identical, suggesting that the TFs prefer
to bind the same sites and that they may compete for these sites in vivo. As examples, we found
that the pair of TFs Cbf1 and Tye7, which have near identical PBM-derived motifs and similar
predicted occupancy patterns, each predicts the other’s true occupied IGRs. Similarly, the TFs
Fhk1 and Fhk2 have similar predicted occupancies and similar motifs, and each predicts the other’s
occupancy. These potentially interacting pairs were also identified by Gordân et al. (2009), though
Fhk1 and Fhk2 are considered to have distinct motifs in that study. We also found that the Rap1
SVR model significantly predicted occupancy for Fhl1, Gat3, and Pdr1; only the first of these
potential interactions was reported in the previous study.

Comparison of SVR, E-scores, and PSSMs on yeast in vivo data

In Results, Figure 3 we compared SVR in vivo predictions with the E-score occupancy method for
68 yeast TFs, and we found that SVR significantly outperformed E-score occupancy on TFs where
performance was relatively good for both methods. Supplementary Figure 7 shows that (a) PSSMs
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perform slightly better than the E-score occupancy, but (b) SVR outperforms PSSMs, where the
advantage is visible forTFs with a detection of at least 40 bound IGRs in the top 200 predictions.

Training on custom PBM array designs

Our SVR model can accommodate training sequences of any length. Here we trained an in vitro
binding model using data from a custom PBM array designed for the human liver-specific TF Hnf4a
(Bolotin et al., 2009). For this PBM, Bolotin et al. designed an initial PBM array (PBM1) using
probe sequences similar to known binding motifs for Hnf4a; they then trained an SVM to make
predictions of possible additional binding site sequences for the design of a second array (PBM2).
Each array comprised about 3000 probe sequences (including random controls) of length 13. Using
both PBMs, we trained a SVR model and tested it on the ChIP-seq to obtain an AUC of 0.77, a
slight improvement over the AUC of 0.74 obtained using the mouse 36-mer PBM array from (Badis
et al., 2009) (see Results, Figure 4(a)).

Figure 8 shows predicted binding profiles for the two models at two ChIP-seq peaks where we
see that the 13-mer model has a visibly more peaky signal (dark green) than the standard 36-mer
model (light green).

Predicting TF binding in mammalian genomes

As described in the main text, our SVR models for the mammalian ChIP-seq data were trained on
the PBM arrays using optimized (k,m)1 parameters for the di-mismatch kernel. Specifically, we
performed 5-fold cross-validation on the PBM arrays using a grid search to select k and m. Table
1 shows the optimal (k,m)1 parameters for the 7 mammalian examples that we considered.

TF k m

Hnf4a 9 2
Pou2f3 11 2
Klf7 13 4
Srf 12 4
Esrra 10 2
Gabpa 11 3
Sox12 9 1

Table 1: Parameter choices based on cross-validation on PBM data.

We found that the predictions for Oct4 and Sox2 ChIP-seq peaks depended on which neighbor
was used for the PBM array. The canonical motif for both Pou2f1 and Pou2f3 is the octamer
ATGCAAAT. However, the Seed-and-Wobble algorithm, which uses the 8-mer pattern with the
highest E-score as a seed, identifies TAATTA for Pou2f1 and ATGCAAT for Pou2f3. Thus the
PSSM results for Oct4, which are highly dependent on the seed and specific domain chosen, varied
considerably from one neighbor to another. On the other hand the SVR approach, which includes
a wider selection of k-mers, shows less variability from one neighbor to another. We also observed
some overlap between the top k-mers for Pou2f1 and Sox21, the highest E-scoring k-mers being
A.A.TAATTA and ATTATAAT, respectively. Neither k-mer has been identified as a binding motif
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for the Oct or Sox protein families. The presence of these AT-rich motifs may be attributable to
an unknown bias of PBM experiments, but the exact cause remains to be identified.

In an effort to understand the differences between the PBM-trained SVR and the ChIP-trained
SVM for Oct4 and Sox2, we took a closer look at the classification and the ranking of the ChIP-
seq test sequences as defined by each model. We found a good number of bound regions that are
detectable by ChIP-derived SVM but not by PBM-derived SVR for both TFs; these are highlighted
by the black circle in Figure 9. For Sox2, we found these regions to be 6-fold depleted for the Sox2
core motif TTGT and 3-fold enriched for the Oct4 core motif TGCA. This shows that the ChIP-
derived SVM is able to detect the Oct4-Sox2 indirect binding patterns that are necessarily missed
by the PBM array.

Visualizing the Pou2f3 model in contrast to Pou2f1

In Figure 5 in the paper, we showed the visualization of k-mers for the Pou2f3 PBM model as an
Oct4 stand-in. Here we consider the other Pou domain that is also discussed in the paper (see
Figure 4), namely Pou2f1. We show a feature extraction for Pou2f1 in Figure 10; we find that the
distinction between the octamer and AT-rich sequences is not as clear in Pou2f1 as for Pou2f3: the
AT-rich motif (TTAAT) seems to occur in both k-mer clusters. Also, the motif shown on the right
looks less like an octamer that the one found for Pou2f3.

Other methods for predicting TF binding in mammalian genomes

Our results in Figure 4 of the paper compare our SVM approach with two popular motif dis-
covery algorithms: Weeder and MDscan. Here tested another, newer motif discovery algorithm
called cERMIT Georgiev et al. (2010) for the task of discriminating between mammalian ChIP-seq
peaks/non-peaks. Figure 11 shows the best performing cERMIT PSSM for each TF.

We also evaluated whether SVR models trained to predict real-valued outputs (ChIP-seq peaks
labeled with a real-valued occupancy) outperformed SVM models trained with binary outputs
(peaks vs. non-peaks). Figure 11 also shows SVR results where we performed regression on the
log-transform of the MTC method from the SPP package Kharchenko et al. (2008); we find similar
but slightly worse performance than the SVM models.

Looking at the top weighted SVR k-mers

In Tables 2 and 3 we show the first five k-mers (and their reverse compliments) as ranked by their
weights in the SVR models computed on the PBM data for a selection of yeast and mouse TFs.
For comparison, we also show the motifs reported by Zhu et al. (2009) and Badis et al. (2009). By
inspection, it is clear that the top SVR k-mers from contain subsequences similar to the motifs.
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TF SVR k-mers PSSM

Ume6

TTTAACCGCCGAA
TTAACCGCGGTTA
CTCGGCGGCTAAC
ATTAACCGCCGAC
CTAAGCGCTTAAT

TTCGGCGGTTAAA
TAACCGCGGTTAA
GTTAGCCGCCGAG
GTCGGCGGTTAAT
ATTAAGCGCTTAG

Cbf1

CGTCACGTGACCA
GGTCACGTGACTA
AGGTCACGTGACT
GTCACGTGACCAT
GAGGTCACGTGAC

TGGTCACGTGACG
TAGTCACGTGACC
AGTCACGTGACCT
ATGGTCACGTGAC
GTCACGTGACCTC

Rap1

AAGGGTGTACGGA
TCCGTACACCCAA
ACCCCCGTACACC
TTCCGTACACCCA
CAAGGGTGTACGG

TCCGTACACCCTT
TTGGGTGTACGGA
GGTGTACGGGGGT
TGGGTGTACGGAA
CCGTACACCCTTG

Gcn4

GATGACTCATACC
ATGATGACTCATA
TATGAGTCATATT
GTGATGACTCATA
GAGTATGACTCAT

GGTATGAGTCATC
TATGAGTCATCAT
AATATGACTCATA
TATGAGTCATCAC
ATGAGTCATACTC

Mbp1

TTACGCGTCGCGT
ACGCGTCGCGTAG
TACGCGTCGCGTA
TTTGACGCGTATC
ATCGACGCGTCAA

ACGCGACGCGTAA
CTACGCGACGCGT
TACGCGACGCGTA
GATACGCGTCAAA
TTGACGCGTCGAT

Table 2: Top-weighted k-mers as defined by the SVR models on PBM data for selected yeast TFs.
The second column shows the reverse compliments and the last column shows the PBM motifs as
previously reported (Zhu et al., 2009).
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TF SVR k-mers PSSM

Zfp740

CCCCCCCCCCTCA
GCCCCCCCCCCTC
CCCCCCCCCCGTT
TCCCCCCCCCCGT
CACCCCCCCCCAG

TGAGGGGGGGGGG
GAGGGGGGGGGGC
AACGGGGGGGGGG
ACGGGGGGGGGGA
CTGGGGGGGGGTG

Bhlhb2

GGTCACGTGCCAC
CGGCACGTGCCTT
GTCGGCACGTGAT
AGGTCACGTGCCA
CGTCACGTGACCA

GTGGCACGTGACC
AAGGCACGTGCCG
ATCACGTGCCGAC
TGGCACGTGACCT
TGGTCACGTGACG

Sp4

GTCCGCCCCCCCC
ACCCCGCCCCCTT
TCCGCCCCCCCCG
CGCCCCCGCCCCT
GCCACGCCCCCTA

GGGGGGGGCGGAC
AAGGGGGCGGGGT
CGGGGGGGGCGGA
AGGGGCGGGGGCG
TAGGGGGCGTGGC

Plagl1

GAGGGGGCCCCCA
AGAGGGGGCCCCC
AGGGGGCCCCCAG
AGGGGCCCCCTCC
CGGGGCCCCCCGA

TGGGGGCCCCCTC
GGGGGCCCCCTCT
CTGGGGGCCCCCT
GGAGGGGGCCCCT
TCGGGGGGCCCCG

Gm397

GGTGTGTGCACAT
GTGTGTGCACATT
TGTGTGCACATTT
CATGTGCACATAC
ATGTGCACATACG

ATGTGCACACACC
AATGTGCACACAC
AAATGTGCACACA
GTATGTGCACATG
CGTATGTGCACAT

Table 3: Top-weighted k-mers as defined by the SVM models on select PBM platforms (as indicated
by v1 or v2) for some mouse TFs. The second column shows the reverse compliments and the last
column shows the PBM motifs as previously reported (Badis et al., 2009).
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Figure 1: Detection of the top 100 PBM probes for mouse TFs. Scatter plots show detection
of the top 100 probes, ranked by intensity, within the top 100 predictions over mouse TFs (Badis
et al., 2009), in cross-validation experiments over probe designs. We show PSSMs (x-axis) versus
(a) maximum E-scores (y-axis) and (b) both maximum E-scores and the SVR model (y-axis).
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Figure 2: E-max versus Z-max predictions. The scatter plot shows the detection of the top 100 PBM
probes using Emax and Zmax predictions for 114 mouse TF in vitro binding preferences.
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Figure 3: Comparison with RankMotif. The scatter plots compare the performance of RankMo-
tif when learning a model from one PBM array design and applying it to another array design. Each
plot shows the detection of the top 100 probes (averaged over the two array designs) within the
top 100 predictions for each method for a data set of mouse TFs. Statistics are given (A) The best
RankMotif length versus Seed-n-Wobble primary motif (SNW 47 wins, RM 55 wins; no significant
difference at p < 0.05 threshold, signed rank test). (B) The best RankMotif length versus SVR
(SVR 81 wins, RM 26 wins; p < 3.7e − 05, signed rank test). (C) Length 10 RankMotif versus
Seed-n-Wobble primary motif (SNW 54 wins, RM 48 wins; no significant difference at p < 0.05
threshold, signed rank test). (D) Length 10 RankMotif versus SVR (SVR 82 wins, RM 24 wins;
p < 3.4e− 05, signed rank test).
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Figure 4: Di-mismatch versus mismatch kernel. The left plot shows the detection of the top 100
probes for 33 yeast TFs, and the middle plot shows similar results for 115 mouse TFs. The plot on the right
shows results for the same yeast and mouse TFs using the mismatch kernel with k = 13 and m = 5.
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corresponding to predictions of background, weak binding, moderate binding, and strong binding
regions.
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Figure 6: Candidate interacting yeast TF pairs from ChIP-chip analysis. Candidate
binding partners are identified from an ROC analysis on the SVR models of TFs P partnering with
base TFs B (y-axis). We denote the AUC obtained by applying P ’s SVR model to B’s in vivo
binding preferences as fP (B), and this is shown on the x-axis. A pair of TFs (B,P ) was considered
to be interactive if fP (B) > maxi(fPi(Brand)) (indicated by empty stars), where maxi(fPi(Brand))
is the optimal performance obtained over all yeast TFs Pi on randomly perturbed IGRs, and
validated on B’s in vivo binding preferences. For comparison, we indicate the performance of B’s
SVR model on the true IGR sequences, fB(B), using solid black stars. Note that there are several
instances where the black star falls before the empty star, indicating that the predicted binding
preferences for B using the SVR model derived from B’s PBM data, fB, are worse than random.
The performance on B of SVR models for various partners P that exceed random performance are
indicated by colored dots; note that these always exceed the empty star. If partner P shares a
significant overlap of its true bound IGRs with base B, then P is labeled in blue, suggesting that
B and P bind cooperatively. If partner P shares a significant overlap of its predicted IGRs with
base B, then P is labeled in red. In this case, it is likely that P and B prefer similar sequences
and may compete for binding sites. If both conditions apply to P , then it is labeled in magenta; if
neither condition applies, P is labeled in grey.
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Figure 7: Detection of the top 200 IGRs for 68 yeast TFs. Scatter plots show detection
of the top 200 ranked yeast IGRs, based on ChIP chip experiments from Harbison et al. (2004),
within the top 200 predictions using PSSMs (x-axis) versus (a) E-score occupancy (y-axis) and (b)
both E-score occupancy and the SVR model (y-axis).
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Figure 8: SVR profiles for standard and custom PBM arrays for Hnf4a near two ChIP-
seq peaks. The top profile corresponds to a ChIP-seq peak ranked first by an SVR trained on the
custom PBM array and 30th by an SVR trained on a standard PBM array. The bottom profile
corresponds to a region ranked first by the standard SVR model and 458th by the custom SVR
model.
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Figure 9: Scatter plots showing in vitro vs. in vivo predicted scores for Sox2 and Oct4.
The SVM trained on ChIP-seq data (x-axis) is contrasted to the PBM array (y-axis) for (a) Sox2
and (b) Oct4. The circled regions show ChIP-peaks that are correctly predicted by ChIP-derived
SVM and incorrectly by PBM-derived SVR.
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Figure 10: Feature analysis for Pou2f1. Visualization of k-mers contributing to the Pou2f1, similar to
analysis in main paper.
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Figure 11: Expanded analysis of ChIP-seq trained sequence models. An expanded version
of Figure 4 from the main text, with two additional bars: cERMIT PSSMs and SVR. The black
lines going through the bars indicate 10-fold cross-validation results.
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