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Text S1

A Covariance matrix adaptation evolution strategy

Identifying suitable parameters of a neural field model is a non-linear optimization prob-
lem. In this study, we used a semi-automatic approach to solve it. We split the optimiza-
tion problem into a linear and non-linear part:

1. After we have simulated our neural field model with some model parameters x ∈ R13

and obtained the spatio-temporal patterns of the excitatory and inhibitory layer in
response to the stimuli used for system identification, we can compute the values
λu, λv, and c using the ordinary least-squares (OLS) method under the constraints
λu, λv ≥ 0, see Eq 6 in the main paper. This yields the optimal values for λu, λv, and
c in terms of the mean squared error between aggregated model signal and observed
dye patterns for the given the activities of the excitatory and inhibitory layer u and
v, respectively.

2. For additional fine-tuning of the model parameters guu, guv, gvu, βu, βv, hu, and hv
we use a randomized direct optimization algorithm described below.

The objective function in the non-linear part of our model identification procedure is non-
convex, non-differentiable, and multi-modal(i.e., there are undesired local optima). Our
method of choice for such problems is the covariance matrix adaptation ES (CMA-ES)
explained in the following.

The covariance matrix adaptation evolution strategy. Evolution strategies are
randomized direct optimization algorithms [1–4]. They are one of the major branches
of evolutionary algorithms, a class of algorithms drawing inspiration from principles of
neo-Darwinian evolution theory.

Evolution strategies are iterative optimization methods. In every iteration (also re-
ferred to as generation), they sample a set of candidate solutions (the offspring) from a
probability distribution over the search space, evaluate these points using the objective
function f , and construct a new probability distribution over the search space. In typical
ESs, this search distribution is parameterized by a set of candidate solutions, the par-
ent population, and by parameters of the variation operators that are used to create the
offspring from the parent population.

Evolution strategies are most frequently applied to real-valued optimization. Arguably
the most elaborate ES for real-valued optimization is the covariance matrix adaptation
ES (CMA-ES, [5–9]). It relies on on Gaussian mutations, that is, solutions are modified
by adding random vectors drawn according to multi-variate zero-mean normal distribu-
tions. The CMA-ES is a variable metric algorithm adapting the shape and strength of
its Gaussian search distribution. “[The] CMA-ESs represent the state-of-the-art in evo-
lutionary optimization in real-valued Rn search spaces” [4]. This claim is backed up by
many performance comparisons across different suites of benchmark problems [5,7,10–13].

The CMA-ES has been successfully applied for adapting neural dynamics in previ-
ous studies. In particular, the algorithm has been compared with the BFGS (Broyden -
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Algorithm 1: rank-µ CMA-ES

initialize m(0) = xinit, σ
(0), evolution paths p

(0)
σ = p

(0)
c = 0 and covariance matrix C(0) = I1

(unity matrix)
// k counts number of generations
for k = 0, . . . do2

// create new offspring

for l = 1, . . . , λ do x
(k+1)
l ∼ N(m(k), σ(k)2

C(k))3

// evaluate new offspring

for l = 1, . . . , λ do y
(k+1)
l = f(x

(k+1)
l )4

// recombination and selection

m(k+1) ←
∑µ
i=1 wix

(k+1)
i:λ5

// step size control

p
(k+1)
σ ← (1− cσ)p(k)

σ +
√
cσ(2− cσ)µeffC

(k)−
1
2 m(k+1)−m(k)

σ(k)6

σ(k+1) ← σ(k) exp
(
cσ
dσ

(
‖p(k+1)

σ ‖
E[‖N (0,I)‖]

− 1
))

7

// covariance matrix update

p
(k+1)
c ← (1− cc)p(k)

c +
√
cc(2− cc)µeff

m(k+1)−m(k)

σ(k)8

C(k+1) ← (1− ccov)C
(k) + ccov

µcov
p

(k+1)
c p(k+1)

c

T
+ ccov

(
1− 1

µcov

)∑µ
i=1 wiz

(k)
i:λz

(k)
i:λ

T
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Fletcher - Goldfarb - Shanno) method based on analytically derived gradients for learning
the parameters of neural fields, and the CMA-ES clearly outperformed the quasi-Newton
method [14, 15]. An application of the CMA-ES to modelling of human car driving be-
havior using neural attractor dynamics is presented in [16].

We can only expect very weak convergence results for optimization of non-differentiable
and multi-modal objective functions in real-valued search spaces. Loosely speaking, if we
store the best solution found so far in the optimization process, impose a lower bound on
the step size1, and assume that we just need to determine the optimal solution with an
accuracy of ε > 0, then the CMA-ES converges if the number of iterations goes to infinity,
see [17] for details.

The CMA-ES in detail. For completeness, we briefly describe the CMA-ES as used in
this article closely following [9]. For more detailed information, we refer to the literature
[5–9].

In each generation k of the CMA-ES, which is shown in Algorithm 1, the lth offspring
x

(k+1)
l ∈ Rn, l ∈ {1, . . . , λ}, is generated by additive multi-variate Gaussian mutation and

weighted global intermediate recombination:

x
(k+1)
l ←m(k) + σ(k)z

(k)
l

with mutation σ(k)z
(k)
l ∼ σ(k)N (0,C(k)) and recombination m(k) ←

∑µ
l=1 wlx

(k)
l:λ . Here

x
(k)
l:λ denotes the lth best individual of the λ offspring ranked according to the values

y
(k+1)
l = f(x

(k+1)
l ) of the objective functions f : Rn → R. Considering the best µ of the

1To be more precise, in the CMA-ES we impose a lower bound on the global step size times the
smallest eigenvalue of the covariance matrix of the mutation distribution.
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offspring in the recombination implements non-elitist, rank-based selection. We use the
standard choice for the recombination weights wl ∝ ln(µ+ 1)− ln(l), ‖w‖1 = 1,w ∈ Rµ.

The CMA-ES adapts both the n×n-dimensional covariance matrix C(k) of the normal
mutation distribution as well as the global step size σ(k) ∈ R+. The covariance matrix
update has two parts, the rank-1 update considering the change of the population mean
over time and the rank-µ update considering the successful variations in the last genera-
tion. The rank-1 update is based on a low-pass filtered evolution path p(k) of successful
(i.e., selected) steps

p(k+1)
c ← (1− cc)p(k)

c +
√
cc(2− cc)µeff

m(k+1) −m(k)

σ(k)

and aims at changing C(k) to make steps in the promising direction p(k+1) more likely by

morphing the covariance towards
[
p

(k+1)
c

] [
p

(k+1)
c

]T
. The backward time horizon of the cu-

mulation process is approximately c−1
c , where cc = 4/(n+ 4) is roughly inversely linear in

the dimension of the path vector. The variance effective selection mass µeff = (
∑µ

l=1 w
2
l )
−1

is a normalization constant. The rank-µ update aims at making the single steps that were

selected in the last iteration more likely by morphing C(k) towards
[
z

(k)
i:λ

] [
z

(k)
i:λ

]T
. Putting

both updates together, we have

C(k+1) ← (1− ccov)C(k) +
ccov

µcov

p(k+1)
c p(k+1)

c

T
+ ccov

(
1− 1

µcov

) µ∑
i=1

wiz
(k)
i:λz

(k)
i:λ

T
.

The constants ccov and µcov are fixed learning rates. The learning rate of the covariance
matrix update ccov = 2

(n+
√

2)2 is roughly inversely proportional to the degrees of freedom of

the covariance matrix. The parameter µcov mediates between the rank-µ update (µcov →
∞) and the rank-one update (µcov = 1). The default value is µcov = µeff.

An appropriate adaptation of the mutation strength (step size adaptation) is of ut-
most importance to balance exploration and exploitation during search and to reach an
optimum with high accuracy [1, 2, 18]. The global step size σ(k) is adapted on a faster
timescale. It is increased if the selected steps are larger and/or more correlated than
expected and decreased if they are smaller and/or more anticorrelated than expected:

σ(k+1) ← σ(k) exp

(
cσ
dσ

(
‖p(k+1)

σ ‖
E[‖N (0, I)‖]

− 1

))
,

where E[‖N (0, I)‖] = χ̂n is the expected length of an n-dimensional random vector drawn
from a zero mean Gaussian distribution with covariance matrix equal to the unit matrix
and the (conjugate) evolution path is

p(k+1)
σ ← (1− cσ)p(k)

σ +
√
cσ(2− cσ)µeff C

(k)−
1
2
m(k+1) −m(k)

σ(k)

with learning rate cσ = µeff+2
n+µeff+3

and damping factor

dσ = 1 + 2 max

(
0,

√
µeff − 1

n+ 1

)
+ cσ .
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The matrix C−
1
2 is defined as BD−1BT , where BD2BT is an eigendecomposition of C

(B is an orthogonal matrix with the eigenvectors of C and D a diagonal matrix with the
corresponding eigenvalues) and sampling N (0,C) is done by sampling BDN (0, I).

The CMA-ES is robust in the sense that it does not rely on tweaking of hyperparam-
eters. The values of the learning rates and the damping factor are well considered and
have been validated by experiments on many basic test functions [6]. They need not be
adjusted dependent on the problem and are therefore no hyperparameters of the algorithm.
Also the population sizes can be set to default values, which are λ = max(4 + b3 lnnc, 5)
and µ = bλ

2
c for offspring and parent population, respectively. If we fix C(0) = I, the

only hyperparameter to be chosen problem dependent is the initial global step size σ(0).
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B Linear stability analysis of the homogeneous solu-

tion

We perform a standard linear stability analysis of the homogeneous solution of the DNF
equations 1 and 2 of the main paper in the absence of afferent input. We follow the classic
approach of von der Malsburg [19] (see also [20,21]). The field equations without input

τu
∂u(x, t)

∂t
= −u(x, t) + hu +

∫
wuu(x− x′)fu[u(x′, t)]dx′ − guvfv[v(x, t)]

τv
∂v(x, t)

∂t
= −v(x, t) + hv +

∫
wvu(x− x′)fu[u(x′, t)]dx′ (1)

are written as

τuu̇(x, t) = −u(x, t) + hu + (fu(u) ∗ wuu)(x)− guvfv(v) (2)

τvv̇(x, t) = −v(x, t) + hv + (fu(u) ∗ wvu)(x) . (3)

Here ∗ denotes convolution and u̇(x, t) := ∂u(x,t)
∂t

, v̇(x, t) := ∂v(x,t)
∂t

, (fu(u))(x) := fu(u(x, t)),
and (fv(v))(x) := fv(v(x, t)). We assume the weight functions to be translation invariant
and isotropic.

We restrict our considerations to the homogeneous solution of the system with u(x, t) =
ũ0 and v(x, t) = ṽ0 for all x and t:

0 = −ũ0 + hu + fu(ũ0)Wuu − guvfv(ṽ0) (4)

0 = −ṽ0 + hv + fu(ũ0)Wvu , (5)

with Wuu =
∫
wuu(x

′)dx′ and Wvu =
∫
wvu(x

′)dx′. We consider small perturbations
ε(x, t) = u(x, t)− ũ0 and η(x, t) = v(x, t)− ṽ0 at time step t:

τuε̇(x, t) = −(ũ0 + ε(x, t)) + hu + (fu(ũ0 + ε) ∗ wuu)(x, t)− guvfv(ṽ0 + η(x, t)) (6)

τvη̇(x, t) = −(ṽ0 + η(x, t)) + hv + (fu(ũ0 + ε) ∗ wvu)(x, t) (7)

By replacing the transfer function f by its fist-order Taylor approximation the system is
linearized:

τuε̇ ≈ −ũ0 − ε+ hu + (fu(ũ0) + εf ′u(ũ0)) ∗ wuu − guv(fv(ṽ0) + ηf ′v(ṽ0)) (8)

τvη̇ ≈ −ṽ0 − η + hv + (fu(ũ0) + εf ′u(ũ0)) ∗ wvu , (9)

where the dependencies of x and t are removed for simplicity. We have

τuε̇ ≈ −ũ0 − ε+ hu + fu(ũ0)Wuu + f ′u(ũ0)(ε ∗ wuu)− guv(fv(ṽ0) + ηf ′v(ṽ0)) (10)

τvη̇ ≈ −ṽ0 − η + hv + fu(ũ0)Wvu + f ′u(ũ0)(ε ∗ wvu) . (11)

By subtracting the homogeneous solution 4 and 5 from 10 and 11 we get

τuε̇ ≈ −ε+ f ′u(ũ0)(ε ∗ wuu)(x, t)− guvηf ′v(ṽ0) (12)

τvη̇ ≈ −η + f ′u(ũ0)(ε ∗ wvu)(x, t) . (13)
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Now we apply the Fourier transform in the spatial dimension. Let ĝ denote the Fourier
transform of some function g. Eqns 12 and 13 become

τuˆ̇ε(k, t) ≈ −ε̂(k, t) + f ′u(ũ0)ε̂(k, t)ŵuu(k)− guvη̂(k, t)f ′v(ṽ0) (14)

τv ˆ̇η(k, t) ≈ −η̂(k, t) + f ′u(ũ0)ε̂(k, t)ŵvu(k) , (15)

where

ŵuu(k) =
auu√

2π
e−σ

2
uu

k2

2 , for wuu(x) =
auu√
2πσuu

e
− x2

2σ2
uu (16)

and ŵvu is computed analogously. Writing Eqns 14 and 15 in vector form gives(
ˆ̇ε(k, t)
ˆ̇η(k, t)

)
≈ A(k)

(
ε̂(k, t)
η̂(k, t)

)
, (17)

with

A(k) =

(
−τ−1

u + τ−1
u f ′u(ũ0)ŵuu(k) −τ−1

u guvf
′
v(ṽ0)

τ−1
v f ′u(ũ0)ŵvu(k) −τ−1

v

)
. (18)

If the matrix A(k) has two distinct eigenvalues, the homogeneous linear differential equa-
tion 18 can be solved as(

ˆ̇ε(k, t)
ˆ̇η(k, t)

)
≈ T (k)

(
etλ(k)+ 0

0 etλ(k)−

)
T−1(k)

(
ε̂0(k)
η̂0(k)

)
, (19)

with the initial values (ε̂0(k), η̂0(k))T .
The columns of the matrix T (k) are the eigenvectors, where λ(k)+ and λ(k)− are the

corresponding eigenvalues. These can be compute by setting the characteristic polynomial
λ(k)2 − tr(A(k))λ(k) + det(A(k)) to zero:

0 = λ(k)2 − λ(k)
(
τ−1
u f ′u(ũ0)ŵuu(k)− τ−1

v − τ−1
u

)
+

τ−1
u τ−1

v (1− f ′u(ũ0)ŵuu(k)) + τ−1
u τ−1

v guvf
′
v(ṽ0)f ′u(ũ0)ŵvu(k) . (20)

Solving this quadratic equation gives

λ±(k) =
1

2

(
τ−1
u f ′u(ũ0)ŵuu(k)− τ−1

v − τ−1
u

)
±

[
1

4

(
τ−1
u f ′u(ũ0)ŵuu(k)− τ−1

v − τ−1
u

)2

− τ−1
u τ−1

v

(
1− f ′u(ũ0)ŵuu(k)

)
− τ−1

u τ−1
v guvf

′
v(ṽ0)f ′u(ũ0)ŵvu(k)

] 1
2

. (21)

For convenience, we write
λ± = B ±

√
B2 + C. (22)

If the real part of the largest eigenvalue is negative, then the system is asymptotically
stable. In our system, we have to consider a Hopf bifurcation, in which a pair of complex
conjugate eigenvalues (λ±) of the linearization crosses the imaginary axis of the complex
plane, and a saddle point bifurcation, where two fixed points, one stable and one unstable,
collide and annihilate each other.
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For the first case, we assume that the imaginary part of the eigenvalues is non zero.
This means B2 +C < 0, which implies C < 0. The bifurcation occurs when the real part
of λ is zero (i.e., λ± = 0± iω, with ω ∈ R, ω 6= 0). In this case, we have

τ−1
u f ′u(ũ0)ŵuu(k)− τ−1

v − τ−1
u = 0 (23)

and therefore
f ′u(ũ0)ŵuu(k) =

τu
τv

+ 1 (24)

and applying this to the Gaussian kernel gives

f ′u(ũ0)
auu√

2π
e−σ

2 k2

2 =
τu
τv

+ 1. (25)

Thus, under the assumption that the discriminant B2 + C is negative, the system is
asymptotically stable if B < 0 (the real part of the largest eigenvalue has to be negative,
see above). That is, the following inequality has to be true

f ′u(ũ0)
auu√

2π
e−σ

2 k2

2 <
τu
τv

+ 1. (26)

Now we look at the second case where B2 +C ≥ 0. Then the system is obviously not
asymptotically stable for B ≥ 0, therefore we consider B < 0. The bifurcation point is
λ± = λ = 0 + 0i. From Eqn 20 we see that this equality holds if C = 0:

−τ−1
u τ−1

v

(
1− f ′u(ũ0)ŵuu(k)

)
− τ−1

u τ−1
v guvf

′
v(ṽ0)f ′u(ũ0)ŵvu(k) = 0 (27)

For non negative discriminant and B < 0 this leads to the stability condition

f ′u(ũ0)ŵuu(k)− 1 < guvf
′
v(ṽ0)f ′u(ũ0)ŵvu(k). (28)

To summarize, the analysis reveals that the system is asymptotically stable if both, in-
equality 26 and inequality 28, are fulfilled.
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Figure Legends
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Figure S1. Activity centers of mass in response to the bar in the LM
condition. Activity centers of mass computed for each horizonal row along y-axis are
shown by black dots. The distribution of the centers of mass x-coordinates indicates no
tilt in the representation of the stimulus along cortical posterior-anterior, 0 – 6 mm,
y-axis. Thin vertical lines outline the spatial region of the standard deviation (mean
across y-axis, 0.51 – 2.55 mm) used for averaging data across x-axis.
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Figure S2. Trajectories of high-amplitude activity. VSD responses to flashed bar,
moving square, and LM stimulus (square followed by bar). Rectangles in the space-time
plots emphasize the regions of interest. The small circles denote the pixel positions
where activity exceeded two standard deviations computed for all conditions shown here
within the region of interest. Solid black lines visualize a linear regression computed
using these positions. The regression lines show the differences in the trajectories. The
hypothesis that the regression coefficients are zero, which indicates no propagation, is
rejected for the moving square and the LM stimulus (p < 0.01), but cannot be rejected
for the flashed bar.
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Figure S3. Visual inputs, responses of the optimized model and real VSD
responses. Visual stimuli mapped on the cortical scale are shown in the first column:
moving square (A), flashed square (B), flashed bar (C), and (D) LM stimulus. In the
second column, the neural field responses of the optimized model (see parameter
configuration in Table 1) to the respective stimuli are shown for a mixing ratio λ = 0.50.
Comparison with Figure 1 of main paper reveals significant improvement of model fit to
the flashed square stimulus (row B). The correlation coefficient between simulated and
measured data for the four conditions with moving squares was 0.86. Individual
correlation coefficients computed between the simulated and measured responses to
particular stimulus conditions were 0.77 for the square moving at 32 (A) deg/s, 0.85 for
the flashed square (B), 0.94 for the flashed bar (C) and 0.85 for the LM stimulus
condition (D).



13

∆ 
F

/F
 ×

 1
0−

4

−2

0

2

4

6

8

10

 

 

 

 

 

 

 

 

 
simulation  a

  

  

  

time (ms)

 
0 100 200

 
data  d

  

  

  

 
0 100 200

 
input  s

 

4 
de

g/
s

A

0

2

4

6

 

 

8 
de

g/
s

B

0

2

4

6

 

 

16
 d

eg
/s

C

0

2

4

6

 

 

32
 d

eg
/s

co
rt

ex
 (

m
m

)

D

0 100 200
0

2

4

6

 

 

 

 

 

 

 

 

Figure S4. VSD and optimized model responses to moving square stimuli.
Visual stimuli mapped on the cortical scale are shown in the first column, namely a
moving square with 4 deg/s (A), 8 deg/s (B), 16 deg/s (C), and 32 deg/s (D),
respectively. In the second column, the neural field responses to the respective stimuli
are shown. The third column represents the corresponding dye signals obtained in the
physiological experiments. The correlation coefficient between simulated and measured
data for the four conditions with moving squares was 0.81, the individual correlation
coefficients computed between the simulated and measured responses to particular
stimulus conditions were 0.86 for the square moving at 4 deg/s, 0.89 for the 8 deg/s,
0.83 for the 16 deg/s, and 0.77 for the 32 deg/s.
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Tables

Table S1. Summary of the optimized model parameters. The second column
gives the description of the parameters. The third column tells whether the
parameter was optimized. The parameter values are shown in the last
column.

Parameter Description Optimized Value
τu time constant for excitatory layer no 19.2 ms
τv time constant for inhibitory layer no 28.8 ms
hu resting potential for excitatory layer yes -60.8 mV
hv resting potential for inhibitory layer yes -59.8 mV
guu self-excitation gain yes 126.0
guv inhibition of excitatory layer yes 51.5
gvu excitation of inhibitory layer yes 130.7
σuu width of excitatory-excitatory kernel no 1.27 mm
σvu width of excitatory-inhibitory kernel no 1.27 mm
βu transfer function steepness for excitatory layer yes 0.16
βv transfer function steepness for inhibitory layer yes 0.05
u0 transfer function threshold for excitatory neurons no -40 mV
v0 transfer function threshold for inhibitory neurons no -40 mV
gus feed-forward gain no 70
σus width of feed-forward smoothing kernel no 0.51 mm


