Text S1: Membrane Energy Minimization

Assuming axial symmetry, we introduce a surface of revolution approach to model the membrane at equilibrium. We consider a generating curve γ parameterized by arc length s lying in the $x-z$ plane. The curve γ is expressed as

$$
\begin{equation*}
\gamma\left(0, s_{1}\right) \rightarrow \mathbf{R}^{3} \gamma(s)=(R(s), 0, z(s)) \tag{S1.1}
\end{equation*}
$$

where s_{1} is the total arc-length. This generating curve leads to a global parametrization of the membrane expressed as

$$
\begin{array}{r}
X:\left(0, s_{1}\right) \times(0,2 \pi) \rightarrow \mathbf{R}^{3} \\
X(s, u)=(R(s) \cos (u), R(s) \sin (u), z(s)) \tag{S1.3}
\end{array}
$$

where u is the angle of rotation about z-axis. With this parametrization, the mean curvature H and the Gaussian curvature K are given as follows respectively

$$
\begin{array}{r}
H=-\frac{z^{\prime}+R\left(z^{\prime} R^{\prime \prime}-z^{\prime \prime} R^{\prime}\right)}{R} \\
K=-\frac{R^{\prime \prime}}{R} \tag{S1.5}
\end{array}
$$

where the prime indicates differential with respect to arc-length s. The expressions obtained above for the mean curvature and the gaussian curvature are quite complicated. To simplify them, an extra variable ψ where $\psi(s)$ is the angle between the tangent to the curve and the horizontal direction, is introduced. The declation of this extra variable introduces following two geometric constraints:

$$
\begin{array}{r}
R^{\prime}=\cos (\psi(s)) \\
z^{\prime}=-\sin (\psi(s)) \tag{S1.7}
\end{array}
$$

These two constraints lead to the following simplified expressions for the mean curvature and the gaussian curvature.

$$
\begin{array}{r}
H=\psi^{\prime}+\frac{\sin (\psi(s))}{R(s)} \\
K=\psi^{\prime} \frac{\sin (\psi(s))}{R(s)} \tag{S1.9}
\end{array}
$$

The membrane free energy E is defined by

$$
\begin{equation*}
E=\int_{0}^{2 \pi} \int_{0}^{s_{1}} \frac{\kappa}{2}\left[H-H_{o}\right]^{2}+\bar{\kappa} K+\sigma d A \tag{S1.10}
\end{equation*}
$$

where $d A$ is the area element given by $R d s d u, \kappa$ is the bending rigidity, $\bar{\kappa}$ is the splay modulus, σ is the line tension. Substituting for H, K, we obtain the following expression for the free energy

$$
\begin{equation*}
E=\int_{0}^{2 \pi} \int_{0}^{s_{1}}\left(\frac{\kappa}{2}\left[\psi^{\prime}+\frac{\sin (\psi(s))}{R(s)}-H_{o}\right]^{2}+\bar{\kappa} \psi^{\prime} \frac{\sin (\psi(s))}{R(s)}+\sigma\right) R d s d u \tag{S1.11}
\end{equation*}
$$

We now proceed to determine the minimum-energy shape of the membrane. The condition that specifies the the minimum-energy profile is that, the first variation of the energy should be zero. That is

$$
\begin{equation*}
\delta E=0 \tag{S1.12}
\end{equation*}
$$

subject to the geometric constraints $R^{\prime}=\cos (\psi(s)), z^{\prime}=-\sin (\psi(s))$. These constraints can be reexpressed in an integral form as follows

$$
\begin{align*}
& \int_{0}^{s_{1}} R^{\prime}-\cos (\psi(s)) d s=0 \tag{S1.13}\\
& \int_{0}^{s_{1}} z^{\prime}+\sin (\psi(s)) d s=0 \tag{S1.14}
\end{align*}
$$

Introducing lagrange multipliers, we solve our constrained optimization problem as follows. We introduce the Lagrange function ν, η and minimize the quantity F
$F=\int_{0}^{2 \pi} \int_{0}^{s_{1}}\left(\frac{\kappa}{2}\left[\psi^{\prime}+\frac{\sin (\psi(s))}{R(s)}-H_{o}\right]^{2}+\bar{\kappa} \psi^{\prime} \frac{\sin (\psi(s))}{R(s)} \sigma\right) R d s d u+\nu \int_{0}^{s_{1}} R^{\prime}-\cos (\psi(s)) d s+\eta \int_{0}^{s_{1}} z^{\prime}+\sin (\psi(s)) d s$
Since the integrand of the double integral is independent of u, F simplifies to
$F=2 \pi \int_{0}^{s_{1}}\left\{\frac{\kappa R}{2}\left[\psi^{\prime}+\frac{\sin (\psi(s))}{R(s)}-H_{o}\right]^{2}+\bar{\kappa} \psi^{\prime} \sin (\psi(s))+\sigma R+\nu\left[R^{\prime}-\cos (\psi(s))\right]+\eta\left[z^{\prime}+\sin (\psi(s))\right]\right\} d s$
The minimization problem is then expressed as

$$
\begin{equation*}
\delta F=0 \tag{S1.16}
\end{equation*}
$$

We denote the integrand of functional in Eq. S1.16 as L.

$$
\begin{equation*}
L=\frac{\kappa R}{2}\left[\psi^{\prime}+\frac{\sin (\psi(s))}{R(s)}-H_{o}\right]^{2}+\bar{\kappa} \psi^{\prime} \sin (\psi(s))+\sigma R+\nu\left[R^{\prime}-\cos (\psi(s))\right]+\eta\left[z^{\prime}+\sin (\psi(s))\right] \tag{S1.18}
\end{equation*}
$$

So, we get

$$
\begin{equation*}
F=2 \pi \int_{o}^{s_{1}} L d s \tag{S1.19}
\end{equation*}
$$

We interpret F in as a functional of the variables $s_{1}, R, z, \psi, \eta, \nu$. We denote variables R, z, ψ, η, ν by p_{i}. Now the "generalized" or (non-simultaneous) variation ΔF is expressed as

$$
\begin{equation*}
\Delta F=2 \pi \Delta \int_{0}^{s_{1}} L\left(s, p_{i}\right) d s \tag{S1.20}
\end{equation*}
$$

For a detailed description of terminology used and the following method, readers are referred to [1]. Performing the generalized variation, we get

$$
\begin{equation*}
\Delta F=\int_{0}^{s_{1}}\left(\frac{\partial L}{\partial p_{i}}-\frac{d}{d s} \frac{\partial L}{\partial p_{i}^{\prime}}\right) \delta p_{i} d s+\left[\frac{\partial L}{\partial p_{i}^{\prime}} \Delta p_{i}\right]_{0}^{s_{1}}+\left[\left(L-\frac{\partial L}{\partial p_{i}^{\prime}} p_{i}^{\prime}\right) \Delta s\right]_{0}^{s_{1}} \tag{S1.21}
\end{equation*}
$$

At equlibrium, the integral in Eq. S1.21 should be zero, which leads to following Euler-Lagrange eqns.

$$
\begin{equation*}
\frac{\partial L}{\partial p_{i}}-\frac{d}{d s} \frac{\partial L}{\partial p_{i}^{\prime}}=0 \tag{S1.22}
\end{equation*}
$$

Therefore, the boundary conditions at s_{1} are specified by the relationship

$$
\begin{equation*}
\left[\frac{\partial L}{\partial p_{i}^{\prime}} \Delta p_{i}\right]_{0}^{s_{1}}+\left[\left(L-\frac{\partial L}{\partial p_{i}^{\prime}} p_{i}^{\prime}\right) \Delta s\right]_{0}^{s_{1}}=0 \tag{S1.23}
\end{equation*}
$$

To simplify the boundary conditions, we define a new function H (analogous to Hamiltonian) which is of the form

$$
\begin{equation*}
H=-L+p_{i}^{\prime} \frac{\partial L}{\partial p_{i}^{\prime}} \tag{S1.24}
\end{equation*}
$$

Now, the boundary term simplifies to

$$
\begin{equation*}
[-H \Delta s]_{0}^{s_{1}}+\left[\frac{\partial L}{\partial p_{i}^{\prime}} \Delta p_{i}\right]_{0}^{s_{1}}=0 \tag{S1.25}
\end{equation*}
$$

The above two key equations results in the following series of equations that describe the membrane equilibrium profile.

$$
\begin{align*}
\frac{\partial L}{\partial \psi}-\frac{d}{d s} \frac{\partial L}{\partial \psi^{\prime}} & =0 \tag{S1.26}\\
\frac{\partial L}{\partial R}-\frac{d}{d s} \frac{\partial L}{\partial R^{\prime}} & =0 \tag{S1.27}\\
\frac{\partial L}{\partial z}-\frac{d}{d s} \frac{\partial L}{\partial z^{\prime}} & =0 \tag{S1.28}\\
\frac{\partial L}{\partial \nu} & =0 \tag{S1.29}\\
\frac{\partial L}{\partial \eta} & =0 \tag{S1.30}\\
{[-H \Delta s]_{0}^{s_{1}} } & =0 \tag{S1.31}\\
{\left[\frac{\partial L}{\partial \psi^{\prime}} \Delta \psi\right]_{0}^{s_{1}} } & =0 \tag{S1.32}\\
{\left[\frac{\partial L}{\partial R^{\prime}} \Delta R\right]_{0}^{s_{1}} } & =0 \tag{S1.33}\\
{\left[\frac{\partial L}{\partial z^{\prime}} \Delta z\right]_{0}^{s_{1}} } & =0 \tag{S1.34}\\
{\left[\frac{\partial L}{\partial \nu^{\prime}} \Delta \nu\right]_{0}^{s_{1}} } & =0 \tag{S1.35}\\
{\left[\frac{\partial L}{\partial \eta^{\prime}} \Delta \eta\right]_{0}^{s_{1}} } & =0 \tag{S1.36}
\end{align*}
$$

Recall that

$$
\begin{equation*}
L=\frac{\kappa R}{2}\left[\psi^{\prime}+\frac{\sin (\psi(s))}{R(s)}-H_{o}\right]^{2}+\bar{\kappa} \psi^{\prime} \sin (\psi(s))+\sigma R+\nu\left(R^{\prime}-\cos (\psi(s))+\eta\left(z^{\prime}+\sin (\psi(s))\right.\right. \tag{S1.37}
\end{equation*}
$$

We now take the spontaneous curvature $H_{o}=\phi(s)$ where $\phi(s)$ is an appropriately chosen function. The lagrangian L becomes

$$
\begin{equation*}
L=\frac{\kappa R}{2}\left[\psi^{\prime}+\frac{\sin (\psi(s))}{R(s)}-\phi(s)\right]^{2}+\bar{\kappa} \psi^{\prime} \sin (\psi(s))+\sigma R+\nu\left(R^{\prime}-\cos (\psi(s))+\eta\left(z^{\prime}+\sin (\psi(s))\right.\right. \tag{S1.38}
\end{equation*}
$$

The Lagrangian, L depends on the arc-length s due to the (in general) spatially-varying spontaneous curvature, $\phi(s)$. Hence the Hamiltonian, H is not a conserved quantity along s. This is in contrast to the conserved Hamiltonian in [2] and [3] since those authors assumed a constant spontaneous curvature along the membrane.

Since for a topologically-invariant transformation, the contribution to gaussian curvature to functional F is constant, we do not expect to see any terms involving $\bar{\kappa}$ in following expressions. The Eq. S1.26 results in the following
expression

$$
\begin{equation*}
\psi^{\prime \prime}=\frac{\cos (\psi) \sin (\psi)}{R^{2}}-\frac{\psi^{\prime} \cos (\psi)}{R}+\frac{\nu \sin (\psi)}{R \kappa}+\frac{\eta \cos (\psi)}{R \kappa}+\phi^{\prime}(s) \tag{S1.39}
\end{equation*}
$$

Note that in the above expression, we retain the $\phi^{\prime}(s)$ term since, in general, spontaneous curvature can be a function of arc-length, s.

The Eq. S 1.27 gives the following expression for ν^{\prime}

$$
\begin{equation*}
\nu^{\prime}=\frac{\kappa\left[\psi^{\prime}-\phi(s)\right]^{2}}{2}-\frac{\kappa \sin ^{2}(\psi)}{2 R^{2}}+\sigma \tag{S1.40}
\end{equation*}
$$

The Eq. S1.28 gives the following expression for η

$$
\begin{equation*}
\eta^{\prime}=0 \tag{S1.41}
\end{equation*}
$$

The Eq. S1.29 gives the following expression

$$
\begin{equation*}
R^{\prime}=\cos (\psi(s)) \tag{S1.42}
\end{equation*}
$$

The Eq. S1.30 gives the following expression

$$
\begin{equation*}
z^{\prime}=-\sin (\psi(s)) \tag{S1.43}
\end{equation*}
$$

Since, s is fixed when $s=0, \Delta s=0$ when $s=0$. Hence, Eq. S1.31 reduces to

$$
\begin{equation*}
[-H \Delta s]_{s_{1}}=0 \tag{S1.44}
\end{equation*}
$$

Since, $\Delta s \neq 0$ when $s=s_{1}$, we conclude that at $s=s_{1}, H=0$. Deriving H from L, we get

$$
\begin{equation*}
H=\kappa \frac{R}{2}\left[\psi^{\prime 2}-\left(\frac{\sin \psi}{R}-\phi\right)^{2}\right]-\sigma R+\nu \cos \psi-\eta \sin \psi=0 \tag{S1.45}
\end{equation*}
$$

A similar result was obtained by Seifert [3] where they showed that when the total arc-length s_{1} is not known a priori (i.e. s_{1} is free) the Hamiltonian, $H\left(s_{1}\right)=0$.

From Eq. S1.32, we get

$$
\begin{equation*}
\kappa\left[R\left(\psi^{\prime}+\frac{\sin \psi}{R}-\phi\right) \Delta \psi\right]_{0}^{s_{1}}=0 \tag{S1.46}
\end{equation*}
$$

From Eq. S1.33, we get

$$
\begin{equation*}
[\nu \Delta R]_{0}^{s_{1}}=0 \tag{S1.47}
\end{equation*}
$$

From Eq. S1.34, we get

$$
\begin{equation*}
[\eta \Delta z]_{0}^{s_{1}}=0 \tag{S1.48}
\end{equation*}
$$

There are no terms involving ν^{\prime} and η^{\prime} in definition of L in S1.38. Hence, Eq. S1.35 and S1.36 does not provide any information. Since we have second order ODE for ψ, first order ODE for R, z, ν, η and since s_{1} is also unknown, in total we need 7 boundary conditions. Equation S1.45 provides us with 1 equation. We still need to provide 6 additional equations. For clarity, s is zero when the curve has zero radius.
We consider few example cases for the boundary conditions:

S1.1 Case I

At $s=0$, let's specify $\psi=0, R=0$ and $z=0$. So, at $s=0, \Delta \psi, \Delta R, \Delta z$ are all zero. Since, we have not specified ψ, R, z at $s=s_{1}$, we have $\Delta \psi, \Delta R, \Delta z$ are all non-zero at $s=s_{1}$. Use of Eq. S1.46, S1.47 and S1.48 tells us that at

$$
\begin{align*}
R\left(s_{1}\right)\left(\psi^{\prime}\left(s_{1}\right)+\frac{\sin \psi\left(s_{1}\right)}{R\left(s_{1}\right)}-\phi\left(s_{1}\right)\right) & =0 \tag{S1.49}\\
\nu\left(s_{1}\right) & =0 \tag{S1.50}\\
\eta\left(s_{1}\right) & =0 \tag{S1.51}
\end{align*}
$$

If we assume in S 1.49 that $R\left(s_{1}\right) \neq 0$, then we have

$$
\begin{equation*}
\left(\psi^{\prime}\left(s_{1}\right)+\frac{\sin \psi\left(s_{1}\right)}{R\left(s_{1}\right)}-\phi\left(s_{1}\right)\right)=0 \tag{S1.52}
\end{equation*}
$$

Substitution of this relation into Eq. S1.45 along with using Eq. S 1.50 and S 1.51 results into $R\left(s_{1}\right)=0$ which invalidates our assumption. So, R has to be zero at s_{1}, i.e. the curve has both its ends at the z-axis and so it looks like a sphere. Hence, this boundary condition is not applicable for the pinned membrane.

S1.2 Case II

At $s=0$, let's specify $\psi=0, R=0$ and $z=0$ and at $s=s_{1}$, we specify $\psi=0, R=R_{0}$ and $z=z_{0}$. With these conditions, Eq. S1.45 reduces to

$$
\begin{equation*}
\nu\left(s_{1}\right)=\sigma R_{0} \tag{S1.53}
\end{equation*}
$$

S1.3 S2 Numerical Algorithm

S1.3.1 Analytical Solution for initial guess

When $\sigma=0$, we expect the solution to be $H=\phi, R^{\prime}=\cos \psi$ and $\nu=0$. In this section, we show that above three equations are indeed a solution to the Eq. S1.39, S1.40 and S 1.42 when $\sigma=0$. Now, $H=\phi$ tells us that

$$
\begin{equation*}
\psi^{\prime}+\frac{\sin \psi}{R}=\phi \tag{S1.54}
\end{equation*}
$$

We differentiate S 1.54 w.r.to s and use $R^{\prime}=\cos \psi$ to get

$$
\begin{equation*}
\psi^{\prime \prime}=-\frac{\psi^{\prime} \cos (\psi)}{R}+\frac{\cos \psi \sin \psi}{R^{2}}+\phi^{\prime} \tag{S1.55}
\end{equation*}
$$

Now, above equation along with $\nu=0$ satisfies eq. S1.39. Substituting, $\nu=0$ and $\psi^{\prime}=-\frac{\sin \psi}{R}+\phi$ in S1.40, we get

$$
\begin{equation*}
0=\frac{\kappa}{2}\left[\left(\frac{\sin \psi}{R}\right)^{2}-\left(\frac{\sin \psi}{R}\right)^{2}\right] \tag{S1.56}
\end{equation*}
$$

This proves that when $\sigma=0, H=\phi, R^{\prime}=\cos \psi$ and $\nu=0$ are the solution. Note we assume $\nu=0$ so that it also satisfies the boundary condition, i.e. $\nu\left(s_{1}\right)=0$. This analytical solution might provides us with a very good initial guess when $\sigma \neq 0$. However, since $H=\phi$ is a first order differential equation, it satisfies only one boundary condition. Hence, in general, solution of $H=\phi$ will not satisfy both boundary conditions for ψ. Hence, in general, $H=\phi$ is not a solution for our system. $H=\phi$ satisfies both boundary conditions iff $\int_{0}^{s_{1}} \psi^{\prime} d s=0$, i.e. $\int_{0}^{s_{1}} \frac{\sin \psi}{R}-\phi d s=0$. So, we rather use a different approach to calculate the initial guess: We know that for ψ to satisfy both the boundary conditions, $\int_{0}^{s_{1}} \psi^{\prime} d s$ has to be zero. When $\int_{0}^{s_{1}} \phi d s=0$, then, we know that $\psi^{\prime}=\phi$ provides us with a good intial guess consistent with the boundary conditions. When $\int_{0}^{s_{1}} \phi d s \neq 0$, we define $\epsilon=\int_{0}^{s_{1}} \phi d s$. Then we know that
$\int_{0}^{s_{1}}\left(\phi-\epsilon / s_{1}\right) d s=0$. Now, we define our initial guess to be $\psi^{\prime}=\phi-\epsilon / s_{1}$. Integrating this expression, we get $\psi=\int_{0}^{s} \phi d s-\epsilon s / s_{1}$ as our initial guess.

S1.3.2 Numerical Solution

We specify guess value for s_{1} and then calculate the guess value for ψ using the method outlined in section S1.3.1. Once initial value of ψ is available, we also calculate initial value of R and ν using Eq. S1.42 and Eq. S1.40 respectively. Then we solve the Eq. $\mathrm{S} 1.39, \mathrm{~S} 1.40$, S 1.42 and S 1.43 along with the boundary conditions specified in section S1.2 and Eq. S 1.53 numerically. From the results of these calculations, we calculate $R\left(s_{1}\right)$. Convergence of $R\left(s_{1}\right)$ to R_{0} within some tolerance by varying s_{1} indicates the converged membrane profile.

References

[1] Vujanovic, B. D. and Atanackovic, T. M. (2004) An introduction to modern variational techniques in mechanics and engineering (Springer), pp. 132.
[2] M. Deserno, Phys Rev E 69, 031903 (2004).
[3] U. Seifert, K. Berndl, and R. Lipowsky, Phys Rev A 44, 1182 (1991).

