
Text S1: Membrane Energy Minimization

Assuming axial symmetry, we introduce a surface of revolution approach to model the membrane at equilibrium. We
consider a generating curveγ parameterized by arc lengths lying in thex− z plane. The curveγ is expressed as

γ(0, s1) → R
3γ(s) = (R(s), 0, z(s)) (S1.1)

wheres1 is the total arc-length. This generating curve leads to a global parametrization of the membrane expressed as

X : (0, s1) × (0, 2π) → R
3 (S1.2)

X(s, u) = (R(s)cos(u), R(s)sin(u), z(s)) (S1.3)

whereu is the angle of rotation about z-axis. With this parametrization, the mean curvatureH and the Gaussian
curvatureK are given as follows respectively

H = −
z′ +R(z′R′′ − z′′R′)

R
(S1.4)

K = −
R′′

R
(S1.5)

where the prime indicates differential with respect to arc-length s. The expressions obtained above for the mean
curvature and the gaussian curvature are quite complicated. To simplify them, an extra variableψ whereψ(s) is the
angle between the tangent to the curve and the horizontal direction, is introduced. The declation of this extra variable
introduces following two geometric constraints:

R′ = cos(ψ(s)) (S1.6)

z′ = −sin(ψ(s)) (S1.7)

These two constraints lead to the following simplified expressions for the mean curvature and the gaussian curvature.

H = ψ′ +
sin(ψ(s))

R(s)
(S1.8)

K = ψ′
sin(ψ(s))

R(s)
(S1.9)

The membrane free energyE is defined by

E =

∫

2π

0

∫ s1

0

κ

2
[H −Ho]

2 + κK + σdA (S1.10)

wheredA is the area element given byRdsdu, κ is the bending rigidity,κ is the splay modulus,σ is the line tension.
Substituting forH,K, we obtain the following expression for the free energy

E =

∫

2π

0

∫ s1

0

(
κ

2
[ψ′ +

sin(ψ(s))

R(s)
−Ho]

2 + κψ′
sin(ψ(s))

R(s)
+ σ)Rdsdu (S1.11)

We now proceed to determine the minimum-energy shape of the membrane. The condition that specifies the the
minimum-energy profile is that, the first variation of the energy should be zero. That is

δE = 0 (S1.12)
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subject to the geometric constraintsR′ = cos(ψ(s)), z′ = −sin(ψ(s)). These constraints can be reexpressed in an
integral form as follows

∫ s1

0

R′ − cos(ψ(s))ds = 0 (S1.13)
∫ s1

0

z′ + sin(ψ(s))ds = 0 (S1.14)

Introducing lagrange multipliers, we solve our constrained optimization problem as follows. We introduce the La-
grange functionν, η and minimize the quantityF

F =

∫

2π

0

∫ s1

0

(

κ

2
[ψ′ +

sin(ψ(s))

R(s)
−Ho]

2 + κψ′
sin(ψ(s))

R(s)
σ

)

Rdsdu+ν

∫ s1

0

R′−cos(ψ(s))ds+η

∫ s1

0

z′+sin(ψ(s))ds

(S1.15)
Since the integrand of the double integral is independent ofu, F simplifies to

F = 2π

∫ s1

0

{

κR

2

[

ψ′ +
sin(ψ(s))

R(s)
−Ho

]2

+ κψ′sin(ψ(s)) + σR+ ν [R′ − cos(ψ(s))] + η [z′ + sin(ψ(s))]

}

ds

(S1.16)
The minimization problem is then expressed as

δF = 0 (S1.17)

We denote the integrand of functional in Eq. S1.16 asL.

L =
κR

2

[

ψ′ +
sin(ψ(s))

R(s)
−Ho

]2

+ κψ′sin(ψ(s)) + σR+ ν [R′ − cos(ψ(s))] + η [z′ + sin(ψ(s))] (S1.18)

So, we get

F = 2π

∫ s1

o

Lds (S1.19)

We interpretF in as a functional of the variabless1, R, z, ψ, η, ν. We denote variablesR, z, ψ, η, ν by pi. Now the
“generalized” or (non-simultaneous) variation∆F is expressed as

∆F = 2π∆

∫ s1

0

L(s, pi)ds (S1.20)

For a detailed description of terminology used and the following method, readers are referred to [1]. Performing the
generalized variation, we get

∆F =

∫ s1

0

(

∂L

∂pi
−

d

ds

∂L

∂p′i

)

δpids+

[

∂L

∂p′i
∆pi

]s1

0

+

[(

L−
∂L

∂p′i
p′i

)

∆s

]s1

0

(S1.21)

At equlibrium, the integral in Eq. S1.21 should be zero, which leads to following Euler-Lagrange eqns.

∂L

∂pi
−

d

ds

∂L

∂p′i
= 0 (S1.22)

Therefore, the boundary conditions ats1 are specified by the relationship

[

∂L

∂p′i
∆pi

]s1

0

+

[(

L−
∂L

∂p′i
p′i

)

∆s

]s1

0

= 0 (S1.23)
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To simplify the boundary conditions, we define a new functionH (analogous to Hamiltonian) which is of the form

H = −L+ p′i
∂L

∂p′i
(S1.24)

Now, the boundary term simplifies to

[−H∆s]
s1
0

+

[

∂L

∂p′i
∆pi

]s1

0

= 0 (S1.25)

The above two key equations results in the following series of equations that describe the membrane equilibrium
profile.

∂L

∂ψ
−

d

ds

∂L

∂ψ′
= 0 (S1.26)

∂L

∂R
−

d

ds

∂L

∂R′
= 0 (S1.27)

∂L

∂z
−

d

ds

∂L

∂z′
= 0 (S1.28)

∂L

∂ν
= 0 (S1.29)

∂L

∂η
= 0 (S1.30)

[−H∆s]
s1
0

= 0 (S1.31)
[

∂L

∂ψ′
∆ψ

]s1

0

= 0 (S1.32)

[

∂L

∂R′
∆R

]s1

0

= 0 (S1.33)

[

∂L

∂z′
∆z

]s1

0

= 0 (S1.34)

[

∂L

∂ν′
∆ν

]s1

0

= 0 (S1.35)

[

∂L

∂η′
∆η

]s1

0

= 0 (S1.36)

Recall that

L =
κR

2

[

ψ′ +
sin(ψ(s))

R(s)
−Ho

]2

+ κψ′sin(ψ(s)) + σR+ ν(R′ − cos(ψ(s)) + η(z′ + sin(ψ(s)) (S1.37)

We now take the spontaneous curvatureHo = φ(s) whereφ(s) is an appropriately chosen function. The lagrangianL
becomes

L =
κR

2

[

ψ′ +
sin(ψ(s))

R(s)
− φ(s)

]2

+ κψ′sin(ψ(s)) + σR+ ν(R′ − cos(ψ(s)) + η(z′ + sin(ψ(s)) (S1.38)

The Lagrangian,L depends on the arc-lengths due to the (in general) spatially-varying spontaneous curvature,φ(s).
Hence the Hamiltonian,H is not a conserved quantity alongs. This is in contrast to the conserved Hamiltonian in [2]
and [3] since those authors assumed a constant spontaneous curvature along the membrane.

Since for a topologically-invariant transformation, the contribution to gaussian curvature to functionalF is con-
stant, we do not expect to see any terms involvingκ in following expressions. The Eq. S1.26 results in the following
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expression

ψ′′ =
cos(ψ)sin(ψ)

R2
−
ψ′cos(ψ)

R
+
νsin(ψ)

Rκ
+
ηcos(ψ)

Rκ
+ φ′(s) (S1.39)

Note that in the above expression, we retain theφ′(s) term since, in general, spontaneous curvature can be a function
of arc-length,s.

The Eq. S1.27 gives the following expression forν′

ν′ =
κ[ψ′ − φ(s)]2

2
−
κsin2(ψ)

2R2
+ σ (S1.40)

The Eq. S1.28 gives the following expression forη

η′ = 0 (S1.41)

The Eq. S1.29 gives the following expression

R′ = cos(ψ(s)) (S1.42)

The Eq. S1.30 gives the following expression

z′ = −sin(ψ(s)) (S1.43)

Since,s is fixed whens = 0, ∆s = 0 whens = 0. Hence, Eq. S1.31 reduces to

[−H∆s]s1 = 0 (S1.44)

Since,∆s 6= 0 whens = s1, we conclude that ats = s1,H = 0. DerivingH fromL, we get

H = κ
R

2

[

ψ′2 −

(

sinψ

R
− φ

)2
]

− σR+ νcosψ − ηsinψ = 0 (S1.45)

A similar result was obtained by Seifert [3] where they showed that when the total arc-lengths1 is not known a priori
(i.e. s1 is free) the Hamiltonian,H(s1) = 0.

From Eq. S1.32, we get

κ

[

R

(

ψ′ +
sinψ

R
− φ

)

∆ψ

]s1

0

= 0 (S1.46)

From Eq. S1.33, we get
[ν∆R]

s1
0

= 0 (S1.47)

From Eq. S1.34, we get
[η∆z]

s1
0

= 0 (S1.48)

There are no terms involvingν′ andη′ in definition ofL in S1.38. Hence, Eq. S1.35 and S1.36 does not provide any
information. Since we have second order ODE forψ, first order ODE forR, z, ν, η and sinces1 is also unknown, in
total we need 7 boundary conditions. Equation S1.45 provides us with 1 equation. We still need to provide 6 additional
equations. For clarity,s is zero when the curve has zero radius.
We consider few example cases for the boundary conditions:
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S1.1 Case I

At s = 0, let’s specifyψ = 0,R = 0 andz = 0. So, ats = 0, ∆ψ, ∆R, ∆z are all zero. Since, we have not specified
ψ,R, z ats = s1, we have∆ψ, ∆R, ∆z are all non-zero ats = s1. Use of Eq. S1.46, S1.47 and S1.48 tells us that at

R(s1)

(

ψ′(s1) +
sinψ(s1)

R(s1)
− φ(s1)

)

= 0 (S1.49)

ν(s1) = 0 (S1.50)

η(s1) = 0 (S1.51)

If we assume in S1.49 thatR(s1) 6= 0, then we have
(

ψ′(s1) +
sinψ(s1)

R(s1)
− φ(s1)

)

= 0 (S1.52)

Substitution of this relation into Eq. S1.45 along with using Eq. S1.50 and S1.51 results intoR(s1) = 0 which
invalidates our assumption. So,R has to be zero ats1, i.e. the curve has both its ends at the z-axis and so it looks like
a sphere. Hence, this boundary condition is not applicable for the pinned membrane.

S1.2 Case II

At s = 0, let’s specifyψ = 0, R = 0 andz = 0 and ats = s1, we specifyψ = 0, R = R0 andz = z0. With these
conditions, Eq. S1.45 reduces to

ν(s1) = σR0; (S1.53)

S1.3 S2 Numerical Algorithm

S1.3.1 Analytical Solution for initial guess

Whenσ = 0, we expect the solution to beH = φ, R′ = cosψ andν = 0. In this section, we show that above three
equations are indeed a solution to the Eq. S1.39, S1.40 and S1.42 whenσ = 0. Now,H = φ tells us that

ψ′ +
sinψ

R
= φ (S1.54)

We differentiate S1.54 w.r.to s and useR′ = cosψ to get

ψ′′ = −
ψ′cos(ψ)

R
+
cosψsinψ

R2
+ φ′ (S1.55)

Now, above equation along withν = 0 satisfies eq. S1.39. Substituting,ν = 0 andψ′ = − sinψ

R
+ φ in S1.40, we get

0 =
κ

2

[

(

sinψ

R

)2

−

(

sinψ

R

)2
]

(S1.56)

This proves that whenσ = 0, H = φ, R′ = cosψ andν = 0 are the solution. Note we assumeν = 0 so that it also
satisfies the boundary condition, i.e.ν(s1) = 0. This analytical solution might provides us with a very goodinitial
guess whenσ 6= 0. However, sinceH = φ is a first order differential equation, it satisfies only one boundary condi-
tion. Hence, in general, solution ofH = φ will not satisfy both boundary conditions forψ. Hence, in general,H = φ
is not a solution for our system.H = φ satisfies both boundary conditions iff

∫ s1

0
ψ′ds = 0, i.e.

∫ s1

0

sinψ

R
− φds = 0.

So, we rather use a different approach to calculate the initial guess: We know that forψ to satisfy both the boundary
conditions,

∫ s1

0
ψ′ds has to be zero. When

∫ s1

0
φds = 0, then, we know thatψ′ = φ provides us with a good intial

guess consistent with the boundary conditions. When
∫ s1

0
φds 6= 0, we defineǫ =

∫ s1

0
φds. Then we know that
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∫ s1

0
(φ− ǫ/s1) ds = 0. Now, we define our initial guess to beψ′ = φ − ǫ/s1. Integrating this expression, we get

ψ =
∫ s

0
φds− ǫs/s1 as our initial guess.

S1.3.2 Numerical Solution

We specify guess value fors1 and then calculate the guess value forψ using the method outlined in section S1.3.1.
Once initial value ofψ is available, we also calculate initial value ofR and ν using Eq. S1.42 and Eq. S1.40
respectively. Then we solve the Eq. S1.39, S1.40, S1.42 and S1.43 along with the boundary conditions specified in
section S1.2 and Eq. S1.53 numerically. From the results of these calculations, we calculateR(s1). Convergence of
R(s1) toR0 within some tolerance by varyings1 indicates the converged membrane profile.
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