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A Text S1 - Supplementary Material

A.1 Analytical Derivations

A.1.1 Probability of Emergence

As in [10], our derivations use a multi-type branching formulation to describe the extinction probability

in the process of emergence. In general, our n-type branching process is given by n probability generating

functions (pgfs)

gi(si, . . . , sn) =
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i . . . sjnn (1)

with φi(ji, . . . , jn) being the probability that a single infected host of type i gives rise to jk secondary

infections with k ∈ {i, . . . , n}. Hence, for a geometric offspring distribution governed by (2) in the main

text, φ is
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(2)

Note we define
b
∏

a

. . . = 1 whenever a > b for all product operators.

The probability of extinction qi is defined as probability of an introduction which will reach only a

finite outbreak size, and go extinct. Hence it is the probability that all secondary cases of every infected

host finally lead to extinction. This self-similarity is expressed with

gi(qi, . . . , qn) = qi (3)

It is possible to calculate all extinction probabilities, starting with the fully adapted strain. Inserting the

probabilities of (2) and taking into account that pi, qi < 1, the pgfs in (1) become, under the use of the
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fixed point relation (3),
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(4)

It is possible to find a closed form for the probabilities of extinction with a few lines of derivations. If

pi = 0, equation (4) becomes
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(5)

If pi > 0, equation (4) becomes
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Note that qi with pi > 0 has two analytical solutions with qi = 1 as trivial one. Only the solution shown

in (6) needs to be explicitly calculated.

If a wildtype strain is introduced at each introduction, the probability of extinction becomes q0. The

probability of emergence per introduction pem is one minus the probability of extinction

pem = 1−
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(7)

This expression can be solved analytically for all possible routes of adaptation.

A.1.2 Outbreak Size Distribution

An emerging disease in a population can be modelled as individual particles with new offspring, as done in

the branching process calculations above. State-space models are another representation. These focus not

on individual hosts, but the ”states” in which these hosts are. Instead of having X hosts moving between

the states of being susceptible, infected, or recovered, the system gets transformed into moving through

Y states corresponding to the number of susceptibles, infected, or recovered hosts. The probabilities to

infect, mutate, or recover are constant over time for each host, and so are the transition rates between
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the states.

Let the system be in state Ii,t, corresponding to the number of infectious hosts with Ri at transition

t. The number of transitions t is similar to a time as it goes only in one direction. Each change of state,

which means every infection, mutation, or recovery, is a single transition. Hence the rate of entering the

state Ii,t+1+1 is equal to the probability of infection plus the probability of mutation, pi and mi−1. The

transition into state Ii,t+1− 1 can happen either by mutation or recovery. Hence the according transition

rates are mi and ri. This leads to the following Master-Equation for Ii,t > 1 with ρi(Ii,t, t) as probability

of being in state Ii,t

ρi(Ii,t, t) = (pi +mi−1) ρi(Ii,t − 1, t− 1) + (mi + ri) ρi(Ii,t + 1, t− 1) (8)

Otherwise it is for Ii,t = 1

ρi(1, t) = mi−1 ρi(0, t− 1) + (mi + ri) ρi(2, t− 1) (9)

And for Ii,t = 0

ρi(0, t) = ρi(0, t− 1) + (mi + ri) ρi(1, t− 1) (10)

The initial condition at t = 0 is all probabilities are 0 except ρi(Ii,0, 0) = 1. Ii,0 is the number of infected

hosts to start with, also known as ”patient zeros”. Going back to the branching process interpretation,

each infected host is assumed independent from each other. The same idea is true in the Master-Equation

interpretation. The time of the transition through mutation is irrelevant, only the transition event itself

counts. Hence it is possible to sum up all the mutation events from strain i−1 to i and add these number

to the initial number of infected hosts with strain i at t = 0.

In addition, the end condition is also known. Let strain i go extinct at transition t = T . Hence the

system must have been in state 1 at transition t = T − 1 and

xi =
T − Ii,0

2
(11)

of the past transition events must have been infections. xi is also the outbreak size of secondary infected
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hosts. Accordingly the number of transitions for a given outbreak size is

T = 2xi + Ii,0 (12)

Equation (12) reveals a direct relation between the number of transitions and the number of secondary

infections. It enables us to derive the outbreak size probability gi(Ii,0, xi), as it is possible to derive ρi(1, t)

for every t with the initial condition Ii,0 and the Master-Equations (8), (9), and (10). In general, the

outbreak size probability is

gi(Ii,0, xi) = A pxi

i (ri +mi)
xi+Ii,0 (13)

with

A =































0 if Ii,0 = 0

1 if xi = Ii,0

(

2xi+Ii,0−1
2xi+Ii,0−1

)

−
(

2xi+Ii,0−1
2xi+Ii,0

)

otherwise

(14)

Note that xi is only the number of new infected hosts in i, not the mutated ones Ii,0. It is necessary to

subtract these to prevent over-counting of infected. The derivations can be done analogous to the ones

above to count Ii,0 in at strain i instead of i− 1.

The number of initially infected hosts Ii,0 depends on xi−1 and the Ii−1,0 as only infected host with

strain i − 1 can possibly mutate into strain i. The probability of mutation for each infected host is

µi−1

µi−1+1 = mi−1

mi−1+ri−1

. As the number of mutations is binomial distributed, the probability of this initial

condition is

ζi(Ii,0) = gi−1(Ii−1,0, xi−1)

(

Ii−1,0 + xi−1

Ii,0

)(

mi−1

mi−1 + ri−1

)Ii,0 ( ri−1

mi−1 + ri−1

)Ii−1,0+xi−1−Ii,0

(15)

It is possible to calculate the distribution of each strain by recursive derivation, starting with the

wildtype strain. Furthermore the overall outbreak size probability can be derived using conditional

probabilities

pout(X) = g1(I1,0, x1)

I1,0+x1,...,In−1,0+xn−1
∑

I2,0,...,In,0=0

n
∏

i=2

ζi(Ii,0) gi(Ii,0, xi) (16)

with X = I1,0+
n
∑

i=1

xi as overall outbreak size. In addition, it is straight forward to derive the probability
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of emergence given pout

pem = 1−
∞
∑

X=1

pout(X) (17)

While equation (7) is the fastest way to compute pem, equation (17) can be used as well.

A.1.3 Waiting Time to Emergence

Let the probability of emergence per introduction be pem with 0 ≤ pem ≤ 1. Hence the probability of

having an emergence after M introductions is

Pem(M) = (1− pem)
M

pem

= qMext pem

(18)

with qext = 1−pem as probability of extinction per introduction. A convenient way to handle probability

distributions is with pgfs

GM (z) =

∞
∑

M=0

Pem(M)zM

= pem

∞
∑

M=0

(qext z)
M

=
pem

1− qext z

(19)

with |z| < 1
qext

.

Using known characteristic of pgfs, it is possible to calculate the expected number of introductions

〈M〉 = G′

M (1) =

[

d

dM
GM (z)

]

z=1

= pem

∞
∑

M=0

MqMext

= pem
1− pem

p2em

=
1

pem
− 1

(20)

Note that this is the average number of introductions without an emergence, as defined in (18). The

average number of introductions needed to get an emergence event is 〈M〉+ 1.
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In addition, the variance can be obtained in a similar way

var(M) =G′′

M (1) +G′

M (1)− [G′

M (1)]
2

=

[

pem

∞
∑

M=0

M(M − 1)qMextz
M−2

]

z=1

+

[

pem

∞
∑

M=0

MqMextz
M−1

]

z=1

−

([

pem

∞
∑

M=0

MqMextz
M−1

]

z=1

)2

=
1

p2em
−

1

pem

(21)

The variance is very large, and therefore the peak around the expected value very wide. The standard

deviation is of the same magnitude as the mean. This makes the number of needed introductions highly

unpredictable.

A.2 Spatial Heterogeneity on Larger Timescales

As for commuting on a daily basis, we focus on a simple village - city model to approximate the spatial

heterogeneity in rural areas only weakly connected to bigger cities. As before, we have a wildtype

pathogen capable of acquiring adaptations for human transmission. Assume N (v) = 1000 villagers, and

an infinite number of hosts in the city. Moreover, assume a commuting rate of χ between city and village.

As discussed in the main text, we assume here that commuting is on a timescale longer than the infectious

period, but may be temporary. Thus we assume that the return rate is the same as the outgoing rate, in

order to maintain a constant number of hosts in the village. Figure 1 shows a schematic representation

of the model.

For the village, we write: S(v) for the number of susceptibles, and I
(v)
i for the numbers of infected

with strain i. Correspondingly, I
(c)
i is the number infected with type i in the city. Then, assuming that

all strains have the same mean infectious period, and normalising continuous time with respect to this
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mean infectious period, an ODE model for this system reads

dS(v)

dt
= −

3
∑

i=1

αiI
(v)
i

S(v)

N (v)
+ χ(N (v) − S(v))

dI
(v)
i

dt
= αiI

(v)
i

S(v)

N (v)
+ µi−1I

(v)
i−1 − (χ+ µi + 1) I

(v)
i

dI
(c)
i

dt
= αi

(

I
(c)
i + I

(v)
i

)

+ µi−1I
(c)
i−1 − (χ+ µi + 1) I

(c)
i

(22)

where µi and αi are, as before, respectively the mutation number and basic reproductive number as-

sociated with strain i. Our initial conditions are I
(v)
1 = 1, and all other infected numbers zero, which

means the infection is seeded with a wildtype strain in the village. An emergence is defined as before

(100 infected with the fully adapted strain in the city).

Figure 2 shows the outbreak size distribution of our long-term migration model, compared with the

analytical results for one infinite population. The number of commuters varies between 10 and 100.

Even for the smallest average number of commuters the simulations agree very well with the analytical

derivations, a result consistent with that for the short term commuting model discussed in the main text.

Figure 3 shows the probability of emergence as a function of the infectious host number. Again,

the analytical derivations show very good agreement with the simulations, neglecting an influence of

spatial heterogeneity, and revealing a grouping according to the biological adaptation process of the

novel pathogen. Note that Figure 3 also reveals the possibility of an emergence in the village without

further sustained transmission in the city for 〈c〉 = 10 as the probability of emergence does not reach 1.

Nevertheless, this is an very unlikely scenario with a probability of less than 0.02 at 100 infected hosts.

Interestingly, five infectious hosts or more are need in the gradual route (II) before emergence becomes

more likely than extinction (see Figure 3). In the punctuated route (I), this becomes three or more

infected, caused by the very low probability of generating secondary infected with an average reproductive

number of α2 = 0.1. Secondary infections are most likely to occur with the fully adapted strain only.
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A.3 Figures

Figure 1. Schematic representation of the long-term commuting model. N (v) is the number
of hosts in the village and χ the migration rate. Note the number of commuters from the village to the
city is a function of the village size and the migration rate. The city has an infinite number of
inhabitants.
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Figure 2. Outbreak size distribution of the village-city model with long-term commuting.

The solid black lines represent the analytical results for an infinite population without spatial
heterogeneous structure. Data points are the average probability of 107 simulations. Squares represent
the punctuated route (I), and triangles the gradual route (II), both with the mutation probability
µ = 0.1 (see main article). As for homogeneous populations, the outbreak size distributions group
according to the evolutionary route of adaptation. The average number of commuters, 〈c〉, does not
have an influence as all simulations do not show a significant variation from the analytical results.
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Figure 3. Probability of emergence in the city with long-term commuting. The probability is
a function of the overall number of infectious hosts in the village-city model. The solid black lines
represent the analytical results for an infinite population without spatial heterogeneous structure. Data
points are the average probability of 107 simulations. Squares represent the punctuated route (I), and
triangles the gradual route (II), both with the mutation probability µ = 0.1 (see main article). The
orange colour represent an average number of commuters 〈c〉 = 10, the blue colour 〈c〉 = 50, and the red
colour 〈c〉 = 100. The plot is dived at 30 infectious hosts into a linear probability scale (left), and a
log10 probability scale (right). As with the outbreak size distribution, probabilities group according to
the route of adaptation instead of connection strength in number of commuters. However, the
probability of emergence does not converge to 1 for 〈c〉 = 10 commuters. Here the effect of spatial
heterogeneity is very small but visible as a small number of commuters can lead to an emergence in the
village without further, sustained transmission to and within the city.


