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SI Text 
 

I) Processing of cytometry data and assessing uncertainty in experimental distributions 

A number of studies have noted the importance of accounting for heterogeneity in cell 

size and cell cycle to resolve the component of expression heterogeneity that may be due to noise 

sources intrinsic to the biochemical processes involved in gene expression.  In [1], this was 

accomplished by ‘in-silico’ synchronization of microscopy time courses to select cells whose 

growth had progressed through a specified fraction of the cell cycle since the previous division, 

as quantified by image-analysis-based size determination.  In [2], where cytometry data similar 

to our own was analyzed (in yeast), it was found that gating the data to select a narrow range of 

forward and side scatter values (FSC and SSC, considered as measures of cell size and 

granularity respectively), that minimized the width of the fluorescence distribution over a clonal 

population of cells, and eliminated correlation between scattering measurements and cellular 

fluorescence, was an effective means of isolating the component of expression heterogeneity 

believed to be due to intrinsic expression noise (which was also quantified using a dual reporter 

system for several test cases in that study).  Essentially, the effect of such a procedure is to select 

cells of uniform size and state.  However, this procedure only uses a small fraction of the 

originally collected data.  Thus, we wished to optimize a correction for our measurements that 

accounts for cell size and state in our quantification of expression heterogeneity, but which 

makes use of a larger fraction of the total cell population to improve statistics. 

Our aim was to select an optimal method of distribution extraction that minimizes the 

uncertainty in inferring a protein expression distribution at a defined value of FSC, where we 

considered FSC measure as a proxy for counting cells of uniform size., and we chose the mean 

FSC to specify a fluorescence distribution, referring to this conditional GFP distribution as the 

‘target’ distribution (i.e. the distribution that we aim to reproduce).  We adopted a procedure that 

combines gating, possibly ‘correcting’ the data to further remove correlations, and smoothing the 

resulting histogram, and we used a bootstrap approach to quantify uncertainties in candidate 

processing procedures, which we outline below. Our procedure essentially balances the errors 

that are generated by: 1) counting cells whose scattering measures differ from the mean, and 

whose associated conditional GFP distribution may differ from the ‘target’ distribution (and we 

explore the possibly of correcting for these deviations), with 2) the increased counting error due 
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to only counting smaller numbers of cells within a very narrow gate of scattering measures, 

which was the procedure followed in [2].  Here we limit our discussion to optimization 

accounting for FSC variability.  We note however, that we performed a similar analysis to 

account for variability in SSC, and found a similar gating to be optimal, with a similar 

quantification of distribution uncertainties.  However, due to correlation between FSC and SSC, 

combining the two procedures had minimal effect on distribution shape, and our analysis of fit 

quality only includes uncertainty derived from the FSC procedure, which we now outline. 

 

1)  A ‘reference’ distribution was generated for each clone: Our goal is to optimize a 

procedure for estimating the conditional GFP distribution at fixed FSC (or SSC), e.g. for the set 

of cells with mean FSC values.  To optimize a distribution-processing procedure, we began by 

specifying for each clone a ‘reference’ distribution – that is, a smooth 2-d distribution that 

captures the co-dependence of GFP and FSC, and might represent the underlying probability 

distribution from which the collection of cells in each experimental data set were generated.  By 

re-sampling from these ‘reference’ distributions, we computationally generated a collection of 

‘synthetic’ data sets (described below in S.I.2), with known underlying probability distribution, 

and known associated ‘target’ GFP distribution at fixed FSC, on which we could test and 

optimize different distribution processing procedures.  Specifically, below we will identify an 

FSC (or SSC) gate size that, together with further distribution processing procedures to be 

discussed, when applied to a ‘real’ data set, such as that generated by cytometry measurements 

on 104 cells from one of the clones in our study, produces an output distribution whose deviation 

from the ‘target’ GFP distribution at fixed FSC is minimized.  

We generated ‘reference’ distributions by taking first the 2-d data set of GFP and FSC 

values for the 104 cells that were initially measured for each clone, and generating a 2-d 

histogram for each (e.g. Fig. S1.A).  We then applied a 2-d low-pass Fourier filter to generate a 

smooth 2-d distribution, which after normalization (i.e. the count in each bin was divided by the 

total number of cells counted for the histogram), we considered to reflect an underlying 

probability distribution that is ‘close’ to the actual underlying probability distribution of 

observing any combination of GFP and FSC values for a randomly selected cell for that clone 

(e.g. Fig. S1.B).  Specifically, the filter was set by adjusting a single parameter specifying the 

cut-off in Fourier space, such that the resulting 2-d distribution specified a mono-modal GFP 
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distribution for any fixed value of FSC (i.e. the conditional distribution), and such that the mean 

GFP and FSC values, as well as their covariance matrix, were preserved to experimental 

accuracy.  This resulted in a ‘reference’ 2-d distribution for each clone that quantitatively 

captured the dependence of the 1-d GFP (conditional) distribution on FSC measure, at least to 

linear order.  The 1-d GFP distribution at the mean FSC slice through the 2-d smooth ‘reference’ 

distribution was then taken as the ‘target’ distribution that our processing procedure aims to 

reproduce for each clone (e.g. Fig. S1.C).  

 

2)  Bootstrap-generated synthetic data: We re-sampled from the smooth 2-d ‘reference’ 

distributions from step 1 to computationally generate 200 ‘synthetic’ data sets for each clone, 

each of which included FSC and GFP values for 104 cells; we considered a range of cell numbers 

to investigate whether the optimal procedure changed substantially if we took measurements on a 

different number of cells and found that it did not for a range of at least a factor of 10 about the 

number of cells counted in our experiments.  

 

3)  Optimizing an FSC gate size: We optimized our distribution-processing procedure by 

applying it to our ‘synthetic’ 2-d data sets, with the goal of reproducing their known ‘target’ 1-d 

GFP distributions at mean FSC for each clone.  We first considered using different sized FSC 

gates.  Each synthetic data set was gated to include only a fixed percentage of FSC values about 

the mean.  The resulting GFP histogram for the gated cells was then normalized to generate a 

probability distribution, and a 1-d Fourier filter was applied to generate a smooth distribution 

(the 1-d Fourier cut-off was optimized to reproduce a smooth underlying 1-d probability 

distribution from any given number of sampled cells, based on a bootstrap procedure similar to 

that outlined here).  For each size gate, for each clone, the distribution-deviation after gating and 

smoothing, of each ‘synthetic’ data set from the ‘target’ distribution (Dev, see Fig. S.1 caption 

and Materials and Methods of the main text for definition), was calculated and then averaged 

over the set of synthetic data sets (Fig. S1.D).  This average deviation provided a measure of the 

error in estimating the ‘target’ distribution, from an experimental distribution of the considered 

type, by applying a given gate size, for each clone.   

We found that for our experimental data sets, for most clones, the optimal gate size for 

identifying a GFP probability distribution at the mean FSC value, included cells whose FSC 



 7 

values spanned approximately the mid 40-60% of values.  This was the optimal balance between 

improving counting statistics and selecting cells of uniform size (a similar result was found for 

gating SSC values).  Apparently, over this range of FSC values, the effect on the GFP 

distribution of including larger and smaller cells effectively cancel each other.  This finding is 

consistent with the observation that the expression distributions in our study are much ‘noisier’ 

than most that had been analyzing in other studies [1,2], with cellular fluorescences spanning a 

larger than typical range of values relative to the mean fluorescence for any given clone.  This is 

discussed further below in Section S.VIII where we address extrinsic source of noise’; in the 

Discussion section of the main text we considered features of the HIV promoter that might 

account for its observed large expression variability, and how this variability might play an 

advantageous role in the viral life-cycle dynamics.  

  

4)  Possible ‘corrections’ to the processing procedure: Two other possible ‘size corrections’ 

were considered that might allow us to further increase the range of FSC values included in our 

histograms for our processing procedure to optimally resolve a ‘target’ GFP distribution at fixed 

FSC.  We followed the same procedure as in 3.  But subsequent to gating, we either subtracted 

linear correlation between FSC and GFP from the GFP values (‘lin’), or divided by the ratio fo 

the FSC value to the mean FSC value (‘div’).  In each case, we found that agreement with our 

‘target’ distribution was not significantly improved, and a gating window of order 60% remained 

optimal (Fig. S1.E). 

 

5)  Applying the optimal procedure to the ‘real’ data: Based on our optimization of a 

distribution-processing procedure for our ‘synthetic’ data (which was re-sampled from the 

original data after smoothing, see S.I.2), we followed the simple ‘gating’ procedure identified 

above in S.I.3 to process our experimental data, keeping only cells whose FSC values spanned 

the mid 60% for each clone.  In this way, we optimally extracted a smooth GFP distribution that 

represents the probability of observing a given cellular fluorescence in cells whose FSC value is 

fixed at the mean over the population.  A similar procedure was applied to select cells whose 

SSC values span the mid 60% (which was found as well to be nearly optimal for selecting a GFP 

distribution at the mean SSC for all clones).  As a result of gating by both FSC and SSC, data 
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from approximately 3600 cells per clone were used to generate the final histograms that were 

smoothed and used in our analysis for model fitting. 

 

6)  Estimate of uncertainty in our experimental distributions: The analysis in Step 3 then 

provides an estimate of the uncertainty in estimating a target GFP distribution at the mean FSC 

value by using a gate that spans the mid 60%.  In other words, the distribution of deviations for 

our optimized processing procedure, between the processed ‘synthetic’ data sets and their 

associated ‘target’, for each clone (both specified by the ‘reference’ distribution for each clone), 

provides an estimate of the deviation that we expect between our optimally processed 

experimental data and the actual underlying probability distribution of observing a GFP value 

from that clone for a cell whose FSC value is the average over the population.  Specifically, we 

used the 95% upper bound on the values of distribution deviations (Dev) from the ‘target’ over 

the set of ‘synthetic’ data sets for each clone as a measure of the uncertainty in identifying the 

desired underlying probability distribution from our cytometry data.  This estimate of uncertainty 

in our experimental distributions was then used to normalize the calculated deviations between 

our model fits and the processed experimental distributions, as described in the Materials and 

Methods section of the main text. 

 

7)  Quantifying the contribution of cell-size variability to expression variability: As a check 

on the contribution of cell-size variability to our measurement of GFP expression variability, we 

calculated the relative contribution to the GFP distribution variance from correlation between 

GFP and FSC measurements (Fig. S1.F).  This quantity is essentially the R2 value for linear 

regression of fluorescence measurement against FSC.  In general, if we take FSC as a measure of 

cell size, we conclude that cell-size variability only contributes a few percent of the observed 

GFP distribution variances, despite the wide gate of FSC values that we have adopted.  This 

suggests that the large expression heterogeneities observed in this study are not due to variability 

in cell size (see Sec. S.VIII for further discussion).  

 As an extra check, to be sure that our wide gating is not distorting the shape-features of 

our processed distributions, we considered the behavior of distribution coefficients of variation 

(‘CV’ = σ/µ) and skewness (‘skew’ = m3/σ3, where m3 is the distribution 3rd central moment), for 

varying gate sizes in the FSC/SSC plane (Figs. S1G-H).  We find that even at gate sizes as small 
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as 10% (i.e. a factor of 6 smaller in each scattering dimension than the optimized gate discussed 

above), the coefficient of variation is only typically affected by a few percent, and the skew by 

approximately 15%.  Further, if we normalize our GFP values by subtracting off the average 

correlation between GFP and FSC (or SSC), as suggested above in Sec. S.I.4, the decrease in 

average coefficient of variation and skew at smaller gates is approximately cut in half (not 

shown).  In general, the effect on distribution moments of reducing the gate size to 10% 

demonstrates significant scatter, and a number of clones surprisingly demonstrate larger 

coefficients of variation and skews for reduced gate sizes.  This analysis further confirms that our 

relatively wide 60% gating is only generating a slight overestimate of distribution noise and 

skew, and that our choice of gate size is warranted as optimally reproducing a GFP distribution 

at a fixed value of scattering measure. 

 

The approach taken here to optimize out distribution-processing procedure, and the role it 

plays in our analysis of heterogeneity-generating transcriptional dynamics, is summarized in a 

flow diagram, Table S1. 

 

II) Solving the model 

The model in Fig. 2A was solved numerically to identify the model-predicted probability 

of observing a given number of copies of protein (GFP) in a given cell, for comparison to our 

processed experimental distributions.  To systematically search the parameter space of the model 

and identify a best-fit parameter combination for each clone, an efficient and precise algorithm 

was necessary.  The algorithm that was used, which we discuss below, was implemented in 

Matlab (The Mathworks) and is available upon request. 

The model in Fig. 2A of the main text represents a Markov process, where all rates 

denote a probability per unit time.  The evolution of the probability distribution function (PDF) 

denoted W{φ, m, n} –  which specifies the probability of observing a cell in a particular 

configuration defined by the gene-state (φa/r), the number of copies of the transcript present in 

the cell (m copies), and the number of copies of the protein (n copies) – is given by the Chemical 

Master Equation (CME) for the system, which is a standard representation for describing well-

mixed chemically reacting systems [3].  Marginalizing over the gene-state and transcript number 
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distributions gives the protein number distribution that we wish to calculate to compare with our 

experimental cytometry data.   

The CME for our system is: 

� 

dW !a / r,m,n{ }

dt
= " # r / a + # t

+
+ # t

"
m + # p

+
m + # p

"
n( )W !a / r,m,n{ }

+#a / rW !r / a ,m,n{ } + # t

+
W !a / r,m "1,n{ } + # t

"
m +1( )W !a / r,m +1,n{ }

+# p

+
mW !a / r,m,n "1{ } + # p

"
n +1( )W !a / r,m,n +1{ }

   (1) 

The full set of equations specified by eq. 1, for the probability of observing any state, is an 

infinite linear system of ordinary differential equations (ODEs).   

For many-component systems (i.e. large numbers of reacting species), a direct solution to 

the master equation is not computationally feasible, and stochastic simulation techniques are 

often used to directly simulate trajectories of the stochastic process under consideration [4], with 

a large number of simulations generally necessary to sample the desired underlying probability 

distribution.  However, for systems such as ours, with only a few components, a direct solution 

to the CME becomes feasible, and it can provide a fast and accurate method for calculating the 

desired probability distributions.  This is the approach that we took.   

Though an analytic solution exists for the transcript distribution in our model, as well as 

for a small number of other simple models [5,6,7], none exists for the protein distribution in our 

model.  We therefore solved the system numerically.   Here we discuss several important aspects 

of the numerical algorithm that we used.  In particular: 1) Truncating the system at large protein 

and transcript numbers; 2) A continuum approximation that we used to coarse-grain the 

distribution; 3) The algorithm that was used to evolve the system in time to steady state; 4) 

Several checks that were used to ensure that the algorithm converged to the correct distribution.   

 

1)  State-space truncation: In order to numerically solve the infinite system of equations 

represented by the CME, it was necessary to truncate the system at large values of transcript and 

protein number to specify a finite set of equations.  We chose to truncate the system at transcript 

and protein numbers with values corresponding to the steady-state mean plus 15X the standard 

deviation of the transcript and protein distributions, which we analytically calculated (see Sec. 

S.III below).  All probabilities were set to zero beyond these cut-offs, which represent states of 
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the system that are effectively ‘almost never’ visited by the system over the time-course of our 

simulations.   

The consistency of this choice of cut-off was confirmed in two ways.  First, for all test 

cases where we examined them, the calculated probabilities of observing states at the boundary 

of our cut-off were near the order of the machine precision.  Second, the Finite State Projection 

(FSP) algorithm, developed elegantly by Munsky and Khammash [8], provides a rigorous 

method of calculating an upper bound on the error due to state-space truncation.  We applied this 

procedure to several test cases where the system was small enough to be solved exactly by the 

FSP, and always found the error-bound to be several orders of magnitude smaller than the 

uncertainty in our experimental distributions, over the mid 98% of the distribution.    

 

2)  Coarse-graining: The CME is an exact formulation to evolve the probability of observing 

each individually-enumerated state of a chemically reacting system.  However, for systems with 

large numbers of particles, the CME represents a very large system of equations (even after 

truncation).  Under these conditions, though the system is large, the desired distributions often 

vary smoothly and admit a continuum approximation.  For example, a system-size expansion 

leads to a Fokker-Planck Equation (FPE) [3,9], which for our system would represent transcript 

and protein numbers as continuous variables, and their evolution would be described by a pair of 

Partial Differential Equations (PDEs), rather than an infinite system of ODEs.  For systems with 

large numbers of particles but small numbers of components, a numerical solution to the FPE can 

often be achieved with acceptable accuracy more efficiently than the solution to the original 

CME – that is, if a discretization can be achieved that leads to a substantially smaller number of 

equations through appropriate approximations of the PDF derivatives that are involved in the 

FPE.  On the other hand, for systems that may sample both states of high and low particle 

numbers, as is often the case for cellular systems and in particular for our own system, relevant 

regions in the state space exist where a continuum approximation can provide an accurate 

computation, while other regions exist containing states of low particle number where a 

continuum approximation is inaccurate and it is necessary to solve the master equation to achieve 

acceptable accuracy in determining the PDF.  For such systems, hybrid algorithms are often 

employed to partition the system and apply an appropriate and efficient method in each part of 

the state space and/or to different subsets of reactions.  Such hybrid algorithms have generally 
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been developed in connection with stochastic simulation algorithms [4,10,11,12,13], while 

methods that directly use a continuum approximation, such as the FPE, might use a state-space 

discretization for their numerical algorithm that converges to the CME for small particle 

numbers [13].  

To take advantage of a continuum approximation at large particle numbers in our system, 

while keeping an exact CME treatment at low particle numbers, we applied a graded coarse-

graining procedure.   Probabilities were binned together, separately for each gene-state, into 

‘rectangles’, or ‘bins’ in the transcript-protein plane.  Bin sizes increased for larger transcript and 

protein numbers, where the distributions generally changed more slowly and were approximated 

well by a continuous distribution that could be expanded in a Taylor series for small changes in 

protein and transcript number.  An approach to grading that we found to yield efficient and stable 

solutions was coarse-graining with bin sizes increasing in proportion to the square root of the 

protein or transcript number, in such a way that bins with protein or transcript numbers below 50 

included exactly 1 state (any number at least of order 10, below which we required single-state 

bins, was effective in this respect).   

The probability in a ‘bin’ was specified as the sum of the probabilities of all system 

configurations in the bin.  Transition rates between ‘binned’ configurations were then specified 

by linearly approximating the values of the distribution at the boundaries of the bins.  Thus, 

transition rates from one gene-state to another were still calculated exactly, while protein and 

transcript transitions were accounted for based on this continuum description, whose coarseness 

increased for larger transcript and protein numbers.  For states of small transcript and protein 

number, this method retains the exact form of the CME.  For large transcript and protein 

numbers, the resulting equations are equivalent to a discretization of the FPE that corresponds to 

our system.  Coarse-graining and interpolation for transition rates was done in such a way that 

retains the probability-conserving feature of the CME.   

This approximation scheme greatly increased computation speed, and its validity was 

checked by increasing and decreasing the length-scale of the coarse-graining/binning procedure 

by a factor of 2, over which the solutions were found to remain stable.  

 

3)  Evolving the system to steady state:  The CME for our system, as well as the smaller 

system that resulted from our coarse-graining procedure, represents a stiff system of ODEs.  For 
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this reason, the system is integrated more efficiently with an implicit solver (one that evaluates 

derivatives based on the function values at the next time step for which it is solving).  A method 

that we found to be fast and stable steps through time by treating, on a given time step, the 

transitions due to transcript and gene-state dynamics implicitly (using a backwards Euler 

method) and those due to protein dynamics explicitly (using a forward Euler method), and 

exchanging the terms that are treated implicitly and explicitly in the following time-step.  Such 

methods are used to integrate multi-dimensional PDEs, in order to maintain numerical stability 

while taking longer time steps, and they facilitate the use of fast matrix inversion methods that 

take advantage of the banded structure that arises when only a single dimension is treated 

implicitly at each time-step in reaction-diffusion type problems [14]. 

The system was initialized with the gene inactive and no transcript or protein present 

(W{φr, 0, 0} = 1).  The system was then integrated by the above procedure till a steady-state 

distribution was reached.  Steady state was determined when the relative change in probability 

for any bin with value greater than 0.1% of the maximum over the set of bins (this generally 

covered more than the mid 98% of protein values, which we used to compare to our 

experimental distributions) fell below 10-5dt, where dt is the size of the time step.  This 

represents a change 4 orders of magnitude slower than the slowest time scale in the problem 

(which was generally the protein degradation time), and the total time for which the system was 

evolved was always at least 50X the protein degradation time.  This steady-state criterion always 

resulted in good agreement between the moments of the calculated distribution and their 

theoretical steady-state values (see below) 

 

4)  Solution accuracy:  We checked the accuracy of our calculations by multiple methods, 

including the checks on the various approximations in our algorithm that were mentioned above.  

In addition, we compared the first 3 moments of our simulated distributions to their theoretical 

values, where the distribution moments were analytically calculable as outlined below in the next 

section.  Deviations were always less than 0.1% (this value is generally less than the uncertainty 

in these moments estimated for our experimental data), and often significantly less.  In addition, 

for several test cases, where the mean transcript and protein numbers were small enough to 

calculate an effective steady state distribution by the FSP algorithm without any approximation – 

this is an exact calculation with an associated rigorously-calculated error bound [the FSP was 
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discussed above; see 8] – we compared our results to this method.  We typically found relative 

deviations between our solution and the FSP solution to be several orders of magnitude less than 

the uncertainty in our experimental distributions.    

 

III) Distribution moments 

Distribution moments of all orders can be obtained analytically for our system by 

standard methods [3], and were important for qualitatively analyzing our experimental 

distributions, characterizing the bursting regime in our theoretical analysis, generating initial 

guesses at best-fit model parameters, and specifying non-fit model parameters from independent 

measurements.  Here we use a generating-function approach to calculate the distribution 

moments of the model.  The generating function for the system is defined as: 

� 

Fa / r = W !a / r,m,n{ }xmyn

m,n

"         (2) 

and satisfies the generating-function equation: 

� 

!Fa / r

!t
= "# r / aFa / r + # r / aFr / a + # t

+
x "1( )Fr / a "# t

"
x "1( )

!Fr / a

!x

+# p

+
y "1( )Fr / a "# p

"
y "1( )

!Fr / a

!y

    (3) 

This is simply a restatement of the infinite system in eq. 1 in multivariate form, and the full set 

ODEs that specifies the Master Equation for the system can be recovered by equating 

coefficients of powers of x and y on both sides of eq. 3.   

Moments of the distribution are calculated by taking derivatives of eq. 3 with respect to x 

and y, and evaluating at x = y = 1.   In particular the mean number of transcripts and proteins are 

given, respectively, by 

� 

µT = m =Ux x=1,y=1
!
"U

"x x=1,y=1

,      µP = n =Uy x=1,y=1
,      U = Fa + Fr  (4) 

where the bracket, 

� 

 denotes an average over all gene states, transcript numbers, and protein 

numbers, for the probability distribution generated by the two-state model.  At steady state, this 

yields the expression that would be expected from assuming deterministic, mass-action kinetics.  

Namely: 

� 
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+

! p

"
µT

      (5) 
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In general, one can generate a hierarchy of algebraic equations to be solved for higher 

derivatives of the generating function with respect to x and y, which are used to calculate higher 

moments of the distribution, in terms of lower derivatives, and eventually in terms of model 

parameters.  This allows one to calculate analytic expressions for all moments of the joint 

distribution for the system in terms of model parameters.  In particular, variances of the protein 

and transcript distributions are given according to: 
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and at steady state we find: 
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The same expressions for the first two moments of the protein distribution for this model are 

given in slightly reorganized form in the supplement to [15], and the first two moments of the 

transcript distribution are given, together with a very elegant analytic derivation of the full 

transcript distribution, in [5].  

 As mentioned in Sec. S.II, though all distribution moments for the two-state model are 

analytically calculable, the protein distribution its self is not analytically calculable, and was 

solved for numerically as described above.  The first 3 analytic moments were therefore used to 

assess both the accuracy of our numerical simulations, and convergence to steady state.  

 

IV) Bursting regime 

The bursting regime is specified by relatively short active-state durations (κr >> κt
-), 

multiple transcripts produced during each gene-activation event (b = κt
+/κr finite), and moderate 

frequency of gene activation (in particular, κr >> κa).  Under these conditions, the distribution 

mean and variance reduce to: 
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The active-duration for the two-state model is the average time that the gene remains in 

the active configuration during a single visit, and is given by:  

� 

! =1/"
r
          (12) 

(the distribution of lengths of time for a single visit to the active state is exponential, with decay 

constant κr, and here we omit the normalization by transcript decay time that is used in the main 

text and model fitting).  While the gene remains in the active state, transcript is produced at a 

fixed rate (i.e. in a Poisson process), and the average number of transcripts produced during a 

single visit to the active state is given by the product of the production rate (κt
+) and the average 

time that the gene remains in the active state (i.e. τ).  Namely: 

b = κt
+τ  = κt

+/κr         (13) 

This is the quantity that we have defined as the transcriptional burst size.  For any regime of the 

model, this number specifies the average number of transcripts produced during a single visit to 

the active state.  For relatively long active-durations, a number of transcripts will be degraded as 

well during a typical visit of the system to the active configuration, such that the full 

transcriptional burst will not be observed in any cell at a single time.  However, in the ‘bursting’ 

regime, active-durations are short, and the transcriptional burst size quantifies the number of new 

transcripts expected to be present in the cell at the time when the system returns to the inactive 

gene-state, i.e. immediately after a completed single visit to the active configuration.   

The frequency of gene-activation events is specified by the reciprocal of the average time 

for a cycle of activation and inactivation, i.e. by the reciprocal of the sum of the average time 

between one gene activation event and the following inactivation event plus the average time 

between an inactivation event and the following activation event.  The average time spent during 

a visit to the inactive state is given as 

� 

!
r

=1/"
a
.  Thus, the frequency of activation events is 

given by 
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1/ ! + !
r( )  = 

� 

!
a
!
r
/ !

a
+ !

r( ) .  In the bursting regime, the frequency of gene-activation 



 17 

events reduces to κa, because κr >> κa.  Thus, in the bursting regime, κa specifies the burst 

frequency, and the mean transcript number is given by the product of burst size and burst 

frequency (normalized by the rate of transcript degradation, see eq. 9). 

 

V) Estimating non-fit model parameters 

A number of the processes represented in Fig. 2A of the main text likely occur at 

locations that are spatially separated from the site of viral integration in our system, and are 

therefore expected to occur at the same rate for all integration clones.  Namely, the rates of 

transcript degradation (κt
-), and protein production (κp

+) and degradation (κp
-), are assumed fixed 

over the full set of integration-clones.  A conversion factor from protein number to cytometer-

measured relative fluorescence units (RFU) is also necessary to compare model results to our 

experimental data.  We will refer to this factor as ‘α’.  Here we discuss how these parameters 

were measured experimentally 

Protein degradation in our model should more precisely labeled as protein dilution – 

because of the slow time-scale of GFP degradation, the process that effectively decreases the 

concentration of GFP in the cell is growth, which increases the cellular volume (of course the 

cell must produce GFP in excess of the ‘actual’ degradation rate in order to maintain a constant 

concentration in the face of cell growth, at steady state).  Thus, the cell growth-rate defines an 

‘effective’ GFP degradation/dilution rate.  The cellular growth-rate was measured by adding a 

non-degraded fluorescence marker to label the cells (Cell-Trace DDAO-SE Far Red, Invitrogen), 

and flow cytometry was used to measure single-cell fluorescence and generate population 

fluorescence histograms over time.  A decay curve yielded a GFP dilution time of approximately 

20 h.  The absolute value of this rate is not essential for our analysis because, as mentioned in the 

main text, at steady state only the relative values of the rates in our model affect the model 

distributions.  However, having a measured value of this rate allows us to calculate absolute 

values of our other model parameters from the relative values inferred by our analysis. 

In order to calibrate the remaining non-fit model parameters, we used data from 

preliminary transcript-counting measurements using fluorescence in-situ hybridization (FISH) 

(Foley et al., manuscript in preparation).  This allowed us to compare the mean and variance of 

the transcript distribution for the analyzed clone to the mean and variance obtained from the 
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cytometry-based protein distributions.  The RFU mean is related to the transcript mean according 

to the relationship: 
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via eq. 5.  We thus obtained 
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+
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#( ) = 2.5 from the measured ratio of population-mean RFU to 

population-mean transcript number for the analyzed clone.  Similarly, in the bursting regime the 

distribution variances are related according to eq. 11, and the 1st term on the RHS can be 

dropped in the regime of large protein numbers, yielding: 
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after regrouping terms and using and the above-estimated value of 
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+
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#( ) .  From the 

measured ratio of RFU and transcript variances for the considered clone, we thus obtained 
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= 4 .  Using the measured value of transcript dilution rate, this yields 
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!
t

"

~ 5h .   

Because protein numbers are large in our system, their fluctuations do not significantly 

affect the expression profile.  At steady state the model distributions depend on the protein 

production rate only through a simple scaling of all fluorescence values by the ratio 

� 

! p

+
/! p

" , 

which in converting to measured RFU values becomes the ratio 
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! " p

+
/" p

#( ) . i.e. the protein 

production rate and conversion factor to cytometry-based RFU only enter into our analysis in this 

combination.  The measurements discussed above thus specify all of the integration-independent 

model parameters necessary for our analysis, together with our choice of a protein production 

rate in the regime where model-predicted typical protein numbers are large (protein numbers of 

order hundreds, or even tens, are sufficient to be in the regime where the actual value of !
p

+
/!

p

"  

does not significantly affect distribution shape, and we chose !
p

+
/!

p

"
~ 20 for convenience, 

noting that the experimental values for our system are likely several orders of magnitude greater, 

e.g. using the average value of 

� 

! p

+
/! t

"
~ 1200  estimated by [16] over their data set gives an 

estimate of 

� 

! p

+
/! p

"
~ 4800  for our system). 

The effects of uncertainties in the values of our non-fit model parameters were not 

explicitly considered in our analysis in the main text.  Here we comment on how these 
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uncertainties might affect our findings.  Uncertainties in determining the ratio 

� 

! " p

+
/" p

#( )  were 

analyzed by sampling several values above and below the measured value (differing by up to a 

factor of 2.5), and then re-applying our fitting procedure to the cytometry data.  Variations in 

� 

! " p

+
/" p

#( )  were found to proportionately effect our determination of transcriptional burst size, 

though this proportionately was only partially maintained for dimmer clones (not shown).   The 

effects of uncertainty in the ratio 

� 

! t

"

/! p

"  were similarly assessed by sampling several values 

about the measured value, and were found to proportionately affect the transcriptional burst 

frequencies inferred by our fitting procedure (not shown).  Thus, uncertainties in non-fit model 

parameters do affect the absolute values of the inferred integration-dependent model parameters 

in our system.  But these uncertainties affect all clones proportionately, and we thus expect that 

the trends in model-inferred dynamics over the set of viral integrations would be unaffected.  i.e. 

our key finding, that transcriptional burst size is the primary feature that varies over viral 

integrations, is expected to be robust towards uncertainty in non-fit model parameters.  

 

VI) Fitting procedure and fit quality 

The routine that we used to search the model parameter space for a best-fit combination 

for each clone, which is discussed in the main text, required a parameter estimate for 

initialization.  This initialization was accomplished by estimating model parameters based on the 

first two distribution moments, and assuming transcriptional bursting, as follows.   

In the bursting regime, distributions are effectively described by the transcriptional burst 

size and burst frequency (with other non-fit parameters fixed at their separately measured values, 

see Sec. S.V above).  More generally, for a fixed value of active-state duration (τ), the model is 

specified by only two integration-dependent parameters (in any regime), which reduce to the 

transcriptional burst size and frequency in the bursting regime.  Since the mean and variance are 

analytically calculable for any combination of parameters (see Sec. S.III above), their analytic 

forms (given by eqs. 5, 8) could be inverted to specify the remaining integration-dependent 

model parameters in terms of the distribution moments.  Thus, we were able to analytically 

calculate a set of model parameters that reproduce the first two moments of each experimental 

distribution, for any fixed active duration, for each clone.  In the bursting regime, this led to an 

analytically calculable transcriptional burst size and burst frequency.  These calculated ‘moment-
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fit’ parameters were used to initialize the more systematic fitting routine that was used to obtain 

the results discussed in the main text.  To be certain that the results of our fitting procedure were 

not dependent on the moment-based initial guess of the fit parameters, the initial-guess 

parameters were varied randomly by up to a factor of two, and the routine always converged to 

the same set of best-fit parameters for each clone, to within our estimate of experimental 

accuracy. 

The quality of the final fits was such that the deviations from the experimental 

distribution (Dev) for a number of clones were comparable to the uncertainty in our data (Fig. 

S2.A), and most were significantly improved over the initial moment-based guess (Fig. S2.B).  

In particular, the moment-fits generally did not account for the full skew of the experimental 

distributions, while the more systematic fitting routine, which minimized the deviation between 

the full model and experimental distributions (as described in the main text), only approximated 

the mean and variance, allowing small deviations in these features in order to better capture other 

distribution features such as skew.  Nevertheless, some systematic deviation in the fits remained, 

with the systematic model fits still often demonstrating smaller skews than the data.  That is, 

model fits often peaked to the right of the data and still underestimated the right tail of the 

distribution at larger fluorescence (Fig. S2.C).  The scale of the distribution deviations was such 

that for the portions of the distribution where they were maximal, their magnitude generally 

remained larger than expected due to uncertainty in the data, even for fits where the overall 

deviation (Dev) fell below the value expected due to experimental uncertainty (Fig. S2.D).  

Investigation of other processes that could be added to the model to account for these deviations 

will be the subject of a future study.   

 

VII) Summary of sources of uncertainty 

The primary sources of uncertainty considered in our analysis are counting error (due to 

the finite number of cells counted to generate our experimental histograms), and error due to 

uncertainty in specifying a fluorescence distribution at fixed values of scattering measurements, 

as outlined above in section S.I. 

 Another potentially important source of uncertainty in our measurements is distribution 

drift over time, since our analysis assumes that our measurements represent steady-state 

expression profiles.  We carried out longitudinal studies on 6 clones, where GFP expression 
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profiles were measured daily by cytometry over the course of approximately one week.  We 

found expression profiles to be relatively stable over time, with mean expressions fluctuating by 

a few percent, and no significant correlations between clones (Fig. S3.A).  However, some 

systematic drift was evident in the processed distributions.  The primary affect of this drift on 

distribution shape was to effectively scale all fluorescence values by a factor of 1 ± a few 

percent, such that the distribution were effectively shifted with their shapes preserved over the 

log-binning of our cytometry measurements (for a log-binned histogram, a distribution scaling 

effectively translates the distribution by a fixed number of bins, while maintaining the 

distribution shape).  For small variations, such a distribution scaling implies that the relative 

change in the distribution variance is proportional to twice the relative change in distribution 

mean.  This proportionality is clearly seen for our data, and is demonstrated in Fig. S3.B.  

Indeed, distribution variability from day to day appeared qualitatively as a translation on the log-

binned fluorescence axis for the plotted fluorescence histograms, a sample of which is given in 

Fig. S3.C.  Further, for each clone, scaling the fluorescence values for distributions taken on 

different days by the ratio of their means effectively eliminates a substantial fraction of the day-

to-day distribution variability.  Such rescaled distributions demonstrate much smaller variability 

(e.g. Fig. S2.D), such that the remaining distribution drift over time was often on the order of that 

expected due to the distribution-processing errors quantified in Sec. S.I.   

The fact that no correlation was found between the daily fluctuations in distribution mean 

between the clones (i.e. Fig. S3.A) suggests that distribution drift over time is not due to drift in 

our instrumentation.  A distribution scaling, such as that which characterizes our longitudinal 

measurements, might arise for example if cellular transcription or translation rates were to drift 

over time, perhaps due to slight differences in cell density or to other small differences in the 

growth conditions for each clone, and might be incorporated in our analysis as uncertainties in 

these parameters.  Theoretical analysis of the propagation of experimental uncertainties to our 

inference of best-fit model parameters suggests that such uncertainties in cellular transcription 

and translation rates lead to a proportional scaling of the transcriptional burst size identified by 

our fitting procedure for each clone (e.g. as discussed above in Sec. S.V.).  A few percent 

variation in distribution mean due to drift over time translates into uncertainty of a few percent in 

the inferred transcriptional burst size.  Such an uncertainty would not be correlated over the set 

of clones, and its magnitude is on the order of the uncertainties that we have currently identified 
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due distribution-processing error or smaller.  Thus, such an uncertainty would not significantly 

affect the inferred trends in burst-parameter variation over the set of integration clones. 

To confirm that distribution drift over time would not significantly affect our model-

based inference of the underlying transcriptional dynamics, we applied our fitting procedure to 

the processed experimental distributions taken on each of the six days, for each clone sampled in 

our longitudinal study.  In Fig. S3.E-F we plot the calculated best-fit transcriptional burst 

frequencies (S3.E) and burst sizes (S3.F) for each clone, for each day, relative to their time-

average, against the log expression mean.  Heavy bars about the value of 1 represent 95% 

confidence intervals for a single fit of a given clone as calculated in the main text, which do not 

include uncertainty due to distribution variability over time.  We find that while the scatter of 

best-fit burst parameters over time generally exceeds the heavy error bar, they are of the same 

order.  Further, the scatter is always significantly less than the scatter of best-fit model 

parameters about the trends inferred in the main text (Fig. 4) over integration positions (thin 

green bar).  These observations further support our suggestion that distribution stability over time 

is not likely to affect our inference of trends in burst-parameter variation over integration 

positions.  Finally, fitting these distributions, after applying the rescaling mentioned above (in 

Fig. S.3D), results in a further reduction of scatter in fit parameters (not shown). 

Similarly, uncertainty generated by our instrumentation also contributes to uncertainty in 

identifying an experimental distribution for model fitting.  The point-spread function (PSF) for 

our cytometer was much sharper than our experimental distributions, and its uncertainty, which 

we might estimate to be on the order of 10% for its relative width, would affect all distributions 

similarly.  Theoretical analysis here suggests that uncertainty in the PSF width leads to an 

uncertainty in determining a transcriptional burst frequency from our fitting procedure, with the 

effect being quadratic.  That is, uncertainties of order 10% in the relative width of the PSF 

typically would lead to a corresponding uncertainty of order 1% in determining the 

transcriptional burst frequency for each fit.  As with uncertainty due to distribution drift over 

time, this uncertainty is on the order or smaller than that which was considered in our analysis 

due to our distribution processing procedure.  Further, uncertainty in measuring the cytometer 

PSF would affect all distribution fits in the same way, scaling all inferred burst frequencies by a 

similar factor.  Thus, even larger uncertainties in the cytometer PSF would not affect our 

inference of trends in burst-parameter variation over the set of clones.  
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As a final consideration of uncertainties in our model inference that might be due to our 

optimized gating procedure, which was applied to specify an experimental GFP distribution at 

fixed scattering measure in the main text, we re-applied our fitting procedure to the experimental 

distributions obtained by applying a 10% square gate in the FSC/SSC plane, as discussed in Sec. 

S.I.7, which is a factor of 6 narrower in each scattering dimension than the optimal gating used in 

the main text.  The fit parameters obtained for this set of distributions are compared to those 

obtained in the main text, in Fig. S4.  In general, best-fit model parameter for these ‘narrow-

gated’ distributions agreed with those obtained in the main text approximately to within the 95% 

confidence intervals obtained by the analysis of the main text.  Further, regression analysis 

indicates no significant change in calculated trends in burst-parameter variation with expression 

mean, confirming that the main results of our analysis are robust to uncertainties due our choice 

of distribution gating. 

Overall, the above qualitative discussion, and additional systematic fits, suggest that the 

trends in burst parameter variation over integration position inferred in the main text are a robust 

result of our analysis, as are the specific values of inferred transcriptional dynamic parameters 

for each clone (though the later to a lesser degree). 

 

VIII) Considering extrinsic sources of heterogeneity 

Our analysis has assumed that expression heterogeneities in our system arise completely 

from the intrinsic processes represented by the model in Fig. 2A.  Namely, from the probabilistic 

nature of the biochemical reactions involved in gene activation, transcription, and translation, at 

fixed values of the model parameters.  Extrinsic sources of heterogeneity may be thought of as 

cell-cell variability in the parameters of the model.  That is, the model parameters themselves 

may be random variables.  Here we discuss features of our data and simulation results that 

support our intrinsic-noise-based analysis.    

  In earlier work, we had experimentally considered the affects of specific extrinsic factors 

in a similar HIV model system, including stage in cell cycle, cell size, aneuploidy, and mitotic 

cell division, finding little contribution to expression heterogeneity [17].  Here, we have found 

little correlation between cellular fluorescence and cell size, as measured by FSC, further 

indicating that cell growth is not a significant source of expression heterogeneity (e.g. Fig. S1.F).  

We found that the contribution of cell-size variability to expression heterogeneity can be 
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minimized by a coarse gating that includes cells whose FSC values lie in the mid 60% of the 

population (see Sec. S.I.3) in contrast to the narrow gating that Newman & Weissman found 

necessary to isolate the intrinsic component of expression variability [2], and we have noted that 

the large coefficient of variation of approximately 60% for the ‘typical’ distribution in our 

system is atypical when compared to the results of a number of studies that quantified expression 

heterogeneities from large numbers of promoters [1,16,18].  Here we continue to develop the 

argument that the large expression heterogeneities observed in our system more generally make 

an account based on extrinsic sources of heterogeneity less plausible.  

Extrinsic fluctuations in processes that affect the expression of all genes should 

contribute similarly to expression heterogeneities from any promoter.  This reasoning was 

applied to the large data set in [2,16], where it was suggested that extrinsic fluctuations therefore 

set a lower limit to the amount of expression heterogeneity the should be generated by any 

promoter, and therefore should only make a dominant contribution to expression heterogeneities 

from promoters with the sharpest expression profiles.  The expression variability noted for the 

less ‘noisy’ promoters in those studies thus sets an upper bound for the relative contributions of 

extrinsic variability to the expression variability from an arbitrary promoter.  Our measurements, 

on the other hand, represent the opposite end of the spectrum – the HIV promoter, for any of the 

sampled integrations (and especially for brighter ones), is much ‘noisier’ than the ‘typical’ 

eukaryotic promoter considered in the mentioned studies.  We have no reason to suspect that the 

HIV promoter has any unique properties in terms of how it propagates extrinsic noise.  We 

therefore argue that the increased expression noise demonstrated by the HIV promoter in our 

system, above the lower limit set by the class of least ‘noisy’ promoters that were analyzed in the 

mentioned studies, reflects intrinsic expression heterogeneities that are specified by features of 

the HIV promoter and its coupling to the host-cell environment. 

From a theoretical point of view, we might consider the effects of sources of external 

‘noise’ on the modeled processes in our system, as follows.  Fluctuations in transcription rate are 

modeled in our system via fluctuations in promoter configuration between an active and 

repressed state.  Any further fluctuations in this dynamic would simply be represented as a more 

complex stochastic process governing the gene-state dynamics and/or the inclusion of more 

states.  We acknowledge that the representation of gene-state dynamics in our analysis is a great 

simplification.  However, it captures the fundamental process of gene activation, and allows us to 



 25 

effectively capture the expression profiles that we observe experimentally.  A two-state 

promoter, whose dynamics are described as in our model, thus represents a parsimonious and 

biologically motivated account of our data.  Any proposition of a more complex underlying 

promoter dynamic, perhaps based on hypothesized contributions of extrinsic fluctuations, would 

need to be directly motivated by observations that are not accounted for by the current model.  

For the present, there is no direct evidence to motivate consideration of a more complex 

promoter dynamic in our analysis. 

On the other hand, even if we assume a two-state-promoter model to be correct, the 

transition rates between the states of our model should depend on concentrations of transcription 

factors that themselves fluctuate, and one could imagine that these fluctuations would generate 

extrinsic contributions to expression heterogeneity.  To consider this possibility, we note that 

noise from each process in our model is filtered by the next in the chain of reactions that 

represent gene expression.  That is, our observed protein expression heterogeneities result from 

much larger underlying heterogeneities in transcript distributions (see, for example, the sample 

distributions in Fig. 2B of the main text).  In particular, if we consider the coefficient of variation 

as a measure of expression heterogeneity, then in the bursting regime, using eqs. 14 and 15, we 

find that the coefficient of variation for the protein and transcript distributions are related as: 
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where we have inserted our experimentally measured value for the ratio of protein and transcript 

degradation rates in the last equality.   

Similarly, if we consider the coefficient of variation of the transcription-rate distribution 

over the population (the transcription rate dynamics is determined by the gene-state dynamics, 

with values κt
+ or 0 for the transcription rate, depending if the gene is in the inactive or active 

state) we find 

� 

CV
G

2
= !

r
/!

a
          (17) 

which becomes large in the bursting regime (where κr >> κa).  The coefficient of variation for the 

gene-state (transcription rate) is related to the coefficient of variation for the transcript 

distribution according to 
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where the bursting regime has again been assumed.  The first factor on the RHS becomes small 

only for burst sizes of order 1 or smaller, i.e. when transcripts are effectively produced one at a 

time and their distribution becomes indistinguishable from what would result from production in 

a continuous Poisson process.  For large burst sizes, this factor approaches 1, and the second 

factor becomes large in the bursting regime.  

Thus, in the bursting regime, for burst sizes that are not small 
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Therefore, for our experimental distributions, our analysis predicts that the ‘noisy’ protein 

expression distributions that we measured are generated by yet ‘noisier’ underlying transcript 

distributions, which are in turn generated by yet ‘noisier’ underlying gene-state dynamics.  And 

this is generally the case for a cascade of stochastic processes of the type that we are considering 

here.  For noise in an upstream process to make a significant contribution to heterogeneity in the 

distribution of a down-stream component, the upstream process should be significantly noisier 

(and/or slower) than the down-stream process to which it couples.  Of course the situation 

becomes more complicated if feedback is considered, but because our reporter system only 

produces GFP, we do not expect any feedback effects.   

We thus conclude that for fluctuations in upstream components – such as transcription 

factors that directly couple to the LTR – to significantly contribute the expression heterogeneity 

from the LTR, their dynamics should be noisier than the predicted gene-state dynamics of the 

LTR.  But the gene-state dynamics of the LTR are necessarily noisier than its protein expression 

dynamics, which in turn are likely noisier than the protein expression dynamics of most cellular 

proteins, since the LTR is noisier than the vast majority of promoters considered in other studies, 

as discussed above.  Thus, we suggest that it is unlikely that fluctuations in the expression of 

upstream proteins that interact with the LTR significantly affect the expression distributions that 

we observe from the LTR. 

We make one final comment concerning extrinsic fluctuations in our system.  For the 

moment it is left as an open question specifically which processes are represented by the gene-

state dynamics of our model, though we have made several suggestions in the Discussion section 

of the main text, and we have further suggested that the process of gene activation and 

inactivation in our model might be part of a larger-scale chromatin/genomic dynamic.  Such a 

dynamic would affect the expression of multiple genes simultaneously.  Since a common probe 
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for extrinsic fluctuations is the use of two-reporter systems [19], one would thus expect to find 

expression correlations between two independent reporters in such a system.  It is still an open 

and important problem in eukaryotic transcriptional biology, to understand the large-scale 

genomic and nuclear dynamics that affect the expression dynamics of multiple genes 

simultaneously, and more specifically, to identify and distinguish between contributions of 

extrinsic and intrinsic sources of expression noise in such a system where these two contributions 

may be highly integrated.  
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