
Supporting Text S1 for the manuscript “Untangling the interplay
between epidemic spread and transmission network dynamics”

Christel Kamp∗

August 19, 2010

General remarks

Throughout the following paragraphs we use the following notation:
ḟ(x, t) = ∂

∂tf(x, t) partial derivative of function f with respect to t

f ′(x, t) = ∂
∂xf(x, t) partial derivative of function f with respect to x

Ak number of individuals in group A with k contacts
A =

∑
k Ak number of individuals in group A

Nk =
∑

A Ak number of individuals with k contacts
N =

∑
k Nk total number of individuals

pAk = Ak
A probability for an individual in group A to have k contacts

gA(x, t) =
∑

k pAk(t)xk probability generating function (PGF) of pAk(t)
〈k〉A = g′A(1, t) average number of contacts of A individuals
pk = Nk

N probability for an individual to have k contacts
g(x, t) =

∑
k pk(t)xk =

∑
A

A
N gA(x, t) probability generating function (PGF) of pk(t)

〈k〉 = g′(1, t) average number of contacts of individuals
p̄k probability for a new individual entering the population to

have k contacts
ḡ(x, t) =

∑
k p̄k(t)xk probability generating function (PGF) of p̄k(t)

MA =
∑

k kAk = Ag′A(1, t) number of links coming from A individuals
M =

∑
A MA number of links

MAB number of links coming from A individuals and pointing
to B individuals

pAB = MAB
MA

probability for a link starting from an A individual to point
to an B individual

Note that A and B correspond to the stages passed through during an infection, e.g., S for susceptible, I
for infected etc.. As long as no ambiguities arise, partial derivatives with respect to time/spatial variables are
denoted by a dot/prime throughout the manuscript, otherwise standard notation is used.
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Equations for the SID model

We consider an epidemic of a disease that is transmitted at a rate, r, and from which infected individuals die
at a rate µ. The demographics of the background population are determined by a birth rate η1 and a death rate
η2. This leads to the following equations for the evolution of the number of susceptible and infected individuals
with k (infectious) contacts:

Ṡk = −rpSIkSk new infections
+η1Np̄k − η2Sk natural birth and death
+η1ḡ

′(1, t)(Sk−1 − Sk) contacts made with new nodes
−η2(kSk − (k + 1)Sk+1) contacts lost from dying nodes
−µpSI(kSk − (k + 1)Sk+1) contacts lost from nodes dying from infection

İk = +rpSIkSk new infections
−(η2 + µ)Ik death due to natural causes and disease
+η1ḡ

′(1, t)(Ik−1 − Ik) contacts made with new nodes
−η2(kIk − (k + 1)Ik+1) contacts lost from dying nodes
−µpII(kIk − (k + 1)Ik+1) contacts lost from nodes dying from infection.

In summary

Ṡk = −rpSIkSk + η1Np̄k − η2Sk + η1ḡ
′(1, t)(Sk−1 − Sk)− (η2 + µpSI)(kSk − (k + 1)Sk+1) (1)

İk = +rpSIkSk − (η2 + µ)Ik + η1ḡ
′(1, t)(Ik−1 − Ik)− (η2 + µpII)(kIk − (k + 1)Ik+1). (2)

Note that these equations imply that individuals who enter the population at a rate η1 are susceptible and have
k contacts with a probability of p̄k by which they are randomly linked to individuals already present in the
population. The following calculations rely on this random establishment of new contacts; however, other
patterns of contact establishment, for example preferential attachment to nodes with respect to degree, could
also naturally be implemented. Individuals dying from natural causes at a rate of η2 are assumed to have an
average number of contacts as found in the total population and do not show preferences to have contacted
susceptible or infected individuals.

The terms in equations (1) and (2) which contain pSI and pII imply approximations which mediate the
transition from more general pair models to individual based probability generating function approaches [1].
The number of susceptible individuals with k contacts decreases due to infection at a rate proportional to the
transmission rate r and the number of links between them and infected individuals MSkI (MSkI = [SkI] in
pair model notation, analogous for contacts lost from individuals dying from infection). Equations (1) and (2)
assume that the probability for a link starting from a susceptible or infected node to point to an infected node is
independent of the starting node’s degree k, i.e.

−rMSkI ≈ −rMSI
kSk∑
k kSk

= −r
MSI

MS
kSk = −rpSIkSk (3)

−µ(MIkI −MIk+1I) ≈ −µMII

(
kIk∑
k kIk

− (k + 1)Ik+1∑
k kIk

)
= −µ

MII

MI
(kIk − (k + 1)Ik+1)

= −µpII(kIk − (k + 1)Ik+1). (4)

Therefore, pSI and pII are not explicitly dependent on the starting node’s degree k, they however reflect differ-
ent average contact behavior within the group of susceptible and infected hosts (cf. Fig. 1 of this document and
of the main manuscript, for an in detail discussion of the connection between pair models with moment closure
and individual based PGF models considering also performance issues cf. [1]).
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Adding up the contributions of Sk and Ik for all k results in equations for the total number of susceptible
and infected hosts:

Ṡ = η1N − rpSIMS − η2S (5)

İ = rpSIMS − (η2 + µ)I. (6)

To close this set of equations we also need to derive equations for pSI and pII , as well as for the probability
generating functions (PGF) gS(x, t) and gI(x, t).

We start with the probabilities for a link starting from a susceptible or infected individual to point to an
infected individual, pSI and pII , respectively. This takes into account that there are different probabilities for
susceptible and infected individuals to have infected contacts (cf. Fig. 1). Following the argument in [2] we
write the evolution equations for pSI = MSI/MS and pII = MII/MI in terms of links among susceptible and
infected hosts:

ṗSI =
ṀSI

MS
− ṀS

MS
pSI (7)

ṗII =
ṀII

MI
− ṀI

MI
pII (8)

for which expressions are derived in the following paragraph. From the definition of MS and MI equations for
their temporal evolution can be derived as

ṀS =
∑

k

kṠk (9)

ṀI =
∑

k

kİk. (10)

After substitution from equations (1-2) this results in

ṀS = −rpSIS(g′′S(1, t) + g′S(1, t)) + η1ḡ
′(1, t)(N + S)− (2η2 + µpSI)MS (11)

ṀI = = rpSIS(g′′S(1, t) + g′S(1, t)) + η1ḡ
′(1, t)I − (2η2 + µ + µpII)MI . (12)

The temporal change in MS and MI is affected by the epidemic process (first contribution), contacts made
from new nodes as well as contacts of new nodes for MS (second contribution) and by dying nodes and their
bi-directional contacts (third contribution).

Following arguments analogous to those in [2] one can show that the probability generating function of the
joint probability to find a susceptible node with k − i links to susceptible nodes and i links to infected nodes is
generated by gS(xSpSS +xIpSI) = gS(xS(1−pSI)+xIpSI). This relies on the assumption that the number of
contacts from susceptible hosts to susceptible and infected hosts is binomially distributed with probabilities pSI

and pSS = 1− pSI . The probability for a susceptible node that was reached from an infected node (i.e., chosen
with probability proportional to the number of contacts pointing to infected nodes i) to have (i − 1) contacts
to infected nodes and k − i contacts to susceptible nodes is generated by g′S(xS(1−pSI)+xIpSI)

g′S(1)
. Therefore, the

average excess degrees of a susceptible node that was reached from an infected node to susceptible or infected
nodes are

δSI(S) =
∂

∂xS

g′S(xS(1− pSI) + xIpSI)
g′S(1) |xS=xI=1

= (1− pSI)
g′′S(1, t)
g′S(1, t)

(13)

δSI(I) =
∂

∂xI

g′S(xS(1− pSI) + xIpSI)
g′S(1) |xS=xI=1

= pSI
g′′S(1, t)
g′S(1, t)

. (14)

Bookkeeping of the changes in the numbers of links among susceptible and infected hosts due to the epidemic
and demographic process results in:
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ṀSI = −rpSIMS(δSI(I)− δSI(S)) change due to epidemic spread:
change in the number of susceptible nodes rpSIMS due to the
epidemic times their average excess contacts to susceptible and
infected nodes

−rMSI discount for link along which the infection spread
−µMSI link loss due to disease progression
−2η2MSI link loss due to natural death
+η1ḡ

′(1, t)I link addition due to birth

ṀII = 2rpSIMSδSI(I) change due to epidemic spread:
change in the number of susceptible nodes rpSIMS due to the
epidemic times their average excess contacts to infected nodes
(bi-directional)

+2rMSI add link along which infection spread (bi-directional)
−2µMII link loss due to disease progression
−2η2MII link loss due to natural death.

In summary this results in

ṀSI = −rpSIMS(δSI(I)− δSI(S))− (r + µ)MSI − 2η2MSI + η1ḡ
′(1, t)I (15)

= −r(2pSI − 1)pSIMS
g′′S(1, t)
g′S(1, t)

− (r + µ + 2η2)MSI + η1ḡ
′(1, t)I (16)

ṀII = 2rpSIMSδSI(I) + 2rMSI − 2µMII − 2η2MII (17)

= 2rp2
SIMS

g′′S(1, t)
g′S(1, t)

+ 2rMSI − 2(µ + η2)MII , (18)

which finally leads to

ṗSI = rpSI(1− pSI)
g′′S(1, t)
g′S(1, t)

− (r + µ)pSI(1− pSI) + η1
ḡ′(1, t)
MS

(I − (N + S)pSI) (19)

ṗII = r
MS

MI
pSI(2pSI − pII)

g′′S(1, t)
g′S(1, t)

− r
MS

MI
pSIpII + 2r

MS

MI
pSI − µ(1− pII)pII + η1

ḡ′(1, t)
MI

IpII .(20)

pSI and pII are not explicitly dependent on the node degree k. However, they describe the probabilities for
a link that starts from a susceptible or infected node to point to an infected node. Infected nodes have, on
average, a higher degree than susceptible nodes as long as the epidemic does not die out (cf. Fig. 1 of the
main manuscript). To close the set of equations we also need to derive equations for the probability generating
functions (PGF) gS(x, t) and gI(x, t) which correspond to the probabilities to find individuals with k contacts
among the susceptible and infected hosts, respectively, i.e., pSk and pIk. From the definitions of the PGFs we
obtain

ġS(x, t) =
∑

k

(
Ṡk

S
− Ṡ

S
pSk

)
xk (21)

ġI(x, t) =
∑

k

(
İk

I
− İ

I
pIk

)
xk, (22)
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which results in

ġS(x, t) = −rpSI(xg′S(x, t)− g′S(1, t)gS(x, t)) + η1
N

S
(ḡ(x, t)− gS(x, t))

−η1(1− x)ḡ′(1, t)gS(x, t) + (η2 + µpSI)(1− x)g′S(x, t) (23)

ġI(x, t) = rpSI
S

I
(xg′S(x, t)− g′S(1, t)gI(x, t))

−η1(1− x)ḡ′(1, t)gI(x, t) + (η2 + µpII)(1− x)g′I(x, t). (24)

The probability generating function g(x, t) of the total population’s degree distribution pk reads

ġ(x, t) = µ
I

N
(g(x, t)− gI(x, t)) + η1(ḡ(x, t)− g(x, t))− η1(1− x)ḡ′(1, t)g(x, t)

+η2(1− x)g′(x, t) + µ(1− x)(
S

N
pSIg

′
S(x, t) +

I

N
pIIg

′
I(x, t)). (25)

Noticing that equations (19) and (20) contain gS(x, t) and its derivatives only for x = 1 suggests that the set
of partial differential equations can be reduced to a set of ordinary differential equations including the moments
of pSk expressed by g′S(1, t) = 〈k〉S and g′′S(1, t) = 〈k2〉S − 〈k〉S . The mth partial derivative of g(x, t) with
respect to x at x = 1 and its derivative with respect to t can be written as

g
(m)
S (1, t) =

∑

k

k(k − 1)...(k −m + 1)pSk =
∑

k

k(k − 1)...(k −m + 1)
Sk

S
(26)

ġ
(m)
S (1, t) =

∑

k

k(k − 1)...(k −m + 1)ṗSk =
∑

k

k(k − 1)...(k −m + 1)

(
Ṡk

S
− Ṡ

S
pSk

)
(27)

in which ṗSk can be derived by substitution from equations (1) and (5) to be

ṗSk =

(
Ṡk

S
− Ṡ

S
pSk

)
(28)

= −rpSI(k−〈k〉S)pSk + η1
N

S
(p̄k−pSk) + η1〈k〉S(pSk−1− pSk)− (η2 + µpSI)(kpSk−(k + 1)pSk+1).

Due to the first term (i.e. −rpSIkpSk) in equation (28) equations for the temporal evolution of g(m)(1, t) (or
the mth moment of pSk) will depend on g(m+1)(1, t), i.e. the next higher order moment of pSk. This results in
a hierarchy of ordinary differential equations for g(m)(1, t) (or the moments of pSk, respectively).

Complementarily to the figures shown in the main manuscript, Fig. 1 shows the time evolution in the
probabilities pSI and pII in comparison with the values expected under random mixing MI/M . The deviations
are a clear indicator of local clustering of infected cases.
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Figure 1: Evolution in the probabilities of contacts from susceptible or infected hosts to be made with infected
hosts pSI (green) and pII (red) in comparison with the total fraction of contacts with infected hosts MI/M
(black). Parameters were chosen analogous to Fig. 1 in the main manuscript, i.e., average number of contacts
〈k〉 = 3, pk = 〈k〉ke−〈k〉

k! , transmission rate of r = 0.2 and a recovery rate of µ = 0.1 (initial conditions were
pSI(0) = pII(0) = MI(0)/M(0) = I(0)/N = 0.001). Note that infected hosts are more likely to link to
infected hosts than expected by random mixing (i.e., MI/M ), whereas susceptible hosts are less likely to do
so. This is a consequence of local clustering of infected cases.

Equations for the SI1I2D model

We extended the equations of the SID model to accommodate two infected stages, I1 and I2, with transmission
rates of r1 and r2, which cease at rates µ1 and µ2, respectively. The equations for the number of individuals
with k contacts who are in the classes S, I1 or I2 read accordingly:

Ṡk = −(r1pSI1 + r2pSI2)kSk + η1Np̄k − η2Sk + η1ḡ
′(1, t)(Sk−1 − Sk)

−(η2 + µ2pSI2)(kSk − (k + 1)Sk+1) (29)

İ1k = +(r1pSI1 + r2pSI2)kSk − (η2 + µ1)I1k + η1ḡ
′(1, t)(I1k−1 − I1k)

−(η2 + µ2pI1I2)(kI1k − (k + 1)I1k+1) (30)

İ2k = µ1I1k − (η2 + µ2)I2k + η1ḡ
′(1, t)(I2k−1 − I2k)

−(η2 + µ2pI2I2)(kI2k − (k + 1)I2k+1). (31)
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In terms of the total number of susceptible and infected individuals of either stage, the equations read (after
adding up the contributions for all k)

Ṡ = η1N − (r1pSI1 + r2pSI2)MS − η2S (32)

İ1 = (r1pSI1 + r2pSI2)MS − (η2 + µ1)I1 (33)

İ2 = µ1I1 − (η2 + µ2)I2. (34)

To derive the probabilities pAB for links from A to point to B we again use

ṗAB =
ṀAB

MA
− ṀA

MA
pAB (35)

with A,B ∈ {S, I1, I2}. Analogous to [2] and to the case of the SID model, we derive that the average excess
degree of a susceptible node that was reached from an infected node (either of I1 or I2 type) to susceptible
or infected nodes are δSI(I1) = pSI1

g′′S(1,t)

g′S(1,t)
, δSI(I2) = pSI2

g′′S(1,t)

g′S(1,t)
or δSI(S) = (1 − pSI1 − pSI2)

g′′S(1,t)

g′S(1,t)
,

respectively. This relies on the assumption that the number of contacts from susceptible hosts to susceptible,
primarily and latently infected hosts is multinomially distributed with probabilities pSI1 , pSI2 and pSS = 1 −
pSI1 − pSI2 . With this, we can write down the contributions that change the numbers of contacts among
susceptible and infected hosts of either stage (i.e., MA, MAB , A,B ∈ {S, I1, I2}) and summarize as

ṀS = −(r1pSI1 + r2pSI2)S(g′′S(1, t) + g′S(1, t)) + η1ḡ
′(1, t)(N + S)− (2η2 + µ2pSI2)MS (36)

ṀI1 = (r1pSI1 + r2pSI2)S(g′′S(1, t) + g′S(1, t)) + η1ḡ
′(1, t)I1 − (2η2 + µ1 + µ2pI1I2)MI1 (37)

ṀI2 = µ1MI1 + η1ḡ
′(1, t)I2 − (2η2 + µ2 + µ2pI2I2)MI2 (38)

ṀSI1 = −(r1pSI1 + r2pSI2)MS(δSI(I1)− δSI(S))− (r1 + µ1)MSI1 − 2η2MSI1 + η1ḡ
′(1, t)I1 (39)

= −(r1pSI1 + r2pSI2)(2pSI1 + pSI2 − 1)MS
g′′S(1, t)
g′S(1, t)

− (r1 + µ1 + 2η2)MSI1 + η1ḡ
′(1, t)I1 (40)

ṀSI2 = −(r1pSI1 + r2pSI2)MSδSI(I2)− (r2 + µ2)MSI2 + µ1MSI1 − 2η2MSI2 + η1ḡ
′(1, t)I2 (41)

= −(r1pSI1 + r2pSI2)pSI2MS
g′′S(1, t)
g′S(1, t)

+ µ1MSI1 − (r2 + µ2 + 2η2)MSI2 + η1ḡ
′(1, t)I2 (42)

ṀI1I1 = 2(r1pSI1 + r2pSI2)MSδSI(I1) + 2r1MSI1 − 2µ1MI1I1 − 2η2MI1I1 (43)

= 2(r1pSI1 + r2pSI2)pSI1MS
g′′S(1, t)
g′S(1, t)

+ 2r1MSI1 − 2(µ1 + η2)MI1I1 (44)

ṀI1I2 = (r1pSI1 + r2pSI2)MSδSI(I2) + r2MSI2 − (µ1 + µ2)MI1I2 + µ1MI1I1 − 2η2MI1I2 (45)

= (r1pSI1 + r2pSI2)pSI2MS
g′′S(1, t)
g′S(1, t)

+ r2MSI2 + µ1MI1I1 − (µ1 + µ2 + 2η2)MI1I2 (46)

ṀI2I2 = 2µ1MI1I2 − 2(µ2 + η2)MI2I2 . (47)
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From this, the equations for pSI1 , pSI2 , pI1I1 , pI1I2 and pI2I2 can be derived to be

ṗSI1 = (r1pSI1 + r2pSI2)(1− pSI1 − pSI2)
g′′S(1, t)
g′S(1, t)

+ (r1pSI1 + r2pSI2)pSI1

−(r1 + µ1 − µ2pSI2)pSI1 + η1
ḡ′(1, t)
MS

(I1 − (N + S)pSI1) (48)

ṗSI2 = (r1pSI1 + r2pSI2)pSI2 + µ1pSI1 − (r2 + µ2 − µ2pSI2)pSI2 + η1
ḡ′(1, t)
MS

(I2 − (N + S)pSI2)(49)

ṗI1I1 = (r1pSI1 + r2pSI2)(2pSI1 − pI1I1)
MS

MI1

g′′S(1, t)
g′S(1, t)

− (r1pSI1 + r2pSI2)
MS

MI1

pI1I1 + 2r1
MS

MI1

pSI1

−(µ1 − µ2pI1I2)pI1I1 − η1
ḡ′(1, t)
g′I1(1, t)

pI1I1 (50)

ṗI1I2 = (r1pSI1 + r2pSI2)(pSI2 − pI1I2)
MS

MI1

g′′S(1, t)
g′S(1, t)

− (r1pSI1 + r2pSI2)
MS

MI1

pI1I2 + r2
MS

MI1

pSI2

+µ1pI1I1 − µ2(1− pI1I2)pI1I2 − η1
ḡ′(1, t)
g′I1(1, t)

pI1I2 (51)

ṗI2I2 = µ1
MI1

MI2

(2pI1I2 − pI2I2)− µ2(1− pI2I2)pI2I2 − η1
ḡ′(1, t)
g′I2(1, t)

pI2I2 . (52)

Again, to close the set of equations, we need to derive the probability generating functions

ġA(x, t) =
∑

k

(
Ȧk

A
− Ȧ

A
pAk

)
xk with A ∈ {S, I1, I2}, (53)

to conclude with

ġS(x, t) =
(r1pSI1 + r2pSI2)

S
(MSgS(x, t)− xSg′S(x, t)) + η1

N

S
(ḡ(x, t)− gS(x, t))

−η1(1− x)ḡ′(1, t)gS(x, t) + (η2 + µ2pSI2)(1− x)g′S(x, t) (54)

ġI1(x, t) = −(r1pSI1 + r2pSI2)
I1

(MSgI1(x, t)− xSg′S(x, t))

−η1(1− x)ḡ′(1, t)gI1(x, t) + (η2 + µ2pI1I2)(1− x)g′I1(x, t) (55)

ġI2(x, t) = µ1
I1

I2
(gI1(x, t)− gI2(x, t))

−η1(1− x)ḡ′(1, t)gI2(x, t) + (η2 + µ2pI2I2)(1− x)g′I2(x, t). (56)

Note that the global quantities can be easily derived from these equations

Ṅk = η1Np̄k − η2Nk − µ2I2k + η1ḡ
′(1, t)(Nk−1 −Nk) + η2(kNk − (k + 1)Nk+1)

−µ2(pSI2(kSk − (k + 1)Sk+1) + pI1I2(kI1k − (k + 1)I1k+1) + pI2I2(kI2k − (k + 1)I2k+1))(57)

Ṅ = (η1 − η2)N − µ2I2 (58)

Ṁ = 2η1ḡ
′(1, t)N − 2η2g

′(1, t)N − 2µ2MI2 (59)

ġ(x, t) = µ2
I2

N
(g(x, t)− gI2(x, t)) + η1(ḡ(x, t)− g(x, t))− η1(1− x)ḡ′(1, t)g(x, t)

+η2(1− x)g′(x, t) + µ2(1− x)(
S

N
pSI2g

′
S(x, t) +

I1

N
pI1I2g

′
I1(x, t) +

I2

N
pI2I2g

′
I2(x, t)). (60)
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Transient contacts

Transient contacts are considered analogous to [3] by swapping of partners at a rate of ρ. That means that the
identity of each contact of a node changes at a rate of ρ, i.e., highly connected nodes are more likely to establish
new contacts. Transient contacts affect the probabilities for links originating from A nodes to point to B nodes
pAB via an additional term

−ρpAB

(
1− MB

M

)
+ ρ(1− pAB)

MB

M
= ρ

(
MB

M
− pAB

)
(61)

in the differential equations with A,B ∈ {S, I, I1, I2}. An example of the impact of transient contacts on
epidemics is shown for the SID case in Fig. 2.
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Figure 2: The impact of various levels of concurrency and transience in contact behavior is shown for epidemics
with a transmission rate of r = 2, a progression rate of µ = 1 and birth and death rate of η = 0.02. The scenarios
of weak and strong concurrency refer to the degree distributions as shown in Fig. 3 of the main manuscript, i.e.,
with 〈k〉 = 1.3 and 〈k〉 = 1.75, respectively. Contacts change at a rate ρ so that the number of lifetime partners
is 〈k〉ρ

η + 〈k〉 = 10, 100 and 1000.

9



Networks with node age

To distinguish between the topological changes introduced by demographic and epidemic processes, we focus
on network evolution under a demographic process without an epidemic. In this case, the equation (25) reduces
to

ġ(x, t) = η1(ḡ(x, t)− g(x, t))− η1(1− x)ḡ′(1, t)g(x, t) + η2(1− x)g′(x, t), (62)

which can equivalently be written as
∂

∂t
g(x, t) = η1(ḡ(x, t)− g(x, t))− η1(1− x)

∂

∂x
ḡ(1, t)g(x, t) + η2(1− x)

∂

∂x
g(x, t). (63)
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0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
= 0.1 r = 0.2µµ= 0.0 r = 0.0

time t

x
Figure 3: Time evolution of the probability generating function g(x, t) for a network that originally has a scale

free degree distribution of pk = k−γe−
k
κ

Liγ
“
e−

1
κ

” (γ = 1.615, κ = 20) with an average number of contacts per node

of 〈k〉 = 3. Nodes enter and leave the network with the original distribution, i.e, ḡ(x, t) = g(x, 0) at a rate
of η. Contour plots interpolate between 0 and 1 lightening up in steps of 0.1. The left panel shows the time
evolution of g(x, t) without an epidemic process; the right panel shows g(x, t) under an epidemic with µ = 0.1
and r = 0.2 (for details cf. [4]).

Figure 3 shows that the topological change observed in the total network can largely be attributed to the
interaction with the epidemic process. To study whether this also applies to nodes of different age, a, we further
analyze the contact behavior of nodes, taking into account their age. For this case study, we restrained our
analysis to the simplest demographic scenario of identical birth and death rates, independent of time t and age
a, i.e., η = η1 = η2 and in consequence a constant population size of N̄ . The population density N(a, t) with
respect to age is described by the following equation [5]

∂

∂a
N(a, t) +

∂

∂t
N(a, t) = −ηN(a, t) (64)
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Figure 4: G(x, a, t) and ga(x, t) at the initial stage t = 0 (blue) and t = 200 (green) of a network that originally

has a scale free degree distribution pk = k−γe−
k
κ

Liγ
“
e−

1
κ

” (γ = 1.615, κ = 20) with an average number of contacts

per node of 〈k〉 = 3. Nodes enter and leave the network with the original distribution, i.e., ḡ(x, t) = g(x, 0)
at a rate of η = 0.01. Differences mainly arise at G(0, a, t) = N0(a,t)

N̄
and ga(0, t) = N0(a,t)

N(a,t) , respectively.
Although the original network does not have nodes without contacts, i.e., g(0, 0) = ḡ(0, t) = p̄0 = 0, nodes
without contacts are introduced by the demographic process. In the case of a Poisson degree distribution with
same average degree, G(x, a, 0) (resp. ga(x, 0)) and G(x, a, 200) (resp. ga(x, 200)) are indistinguishable (data
not shown).

in which the number of individuals between the ages of a1 and a2 is given by the integral of N(a, t) over
[a1, a2]. With initial and boundary conditions of N(a, 0) = N̄ηe−ηa and N(0, t) = ηN̄ , this results in a
population with a stable exponential age distribution, i.e., N(a, t) = N̄ηe−ηa [5].

The population density can also be studied for individuals with a certain number of contacts, k, i.e., for
Nk(a, t), resulting in

∂

∂a
Nk(a, t) +

∂

∂t
Nk(a, t) = −ηNk(a, t) + η

∂

∂x
ḡ(1, t)(Nk−1(a, t)−Nk(a, t))

−η(kNk(a, t)− (k + 1)Nk+1(a, t)). (65)

Assuming a constant total population, N(t) =
∫

N(a, t)da = N̄ , we further define

G(x, a, t) =
∑

k

Nk(a, t)
N

xk =
1
N̄

∑

k

Nk(a, t)xk (66)

which changes according to

∂

∂a
G(x, a, t) +

∂

∂t
G(x, a, t) = −ηG(x, a, t) + η(1− x)

∂

∂x
ḡ(1, t)G(x, a, t) + η(1− x)

∂

∂x
G(x, a, t). (67)

This equation can be solved with the initial and boundary conditions G(x, a, 0) = ηe−ηaḡ(x, 0), G(1, a, t) =
ηe−ηa and G(x, 0, t) = ηḡ(x, t). Note that the probability generating function ga(x, t) for the conditional
probability to have k contacts at age a is given by

ga(x, t) =
∑

k

Nk(a, t)
N(a, t)

xk =
N̄

N(a, t)

∑

k

Nk(a, t)
N̄

xk = ηeηaG(x, a, t). (68)
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Figure 5: Time evolution in the degree distributions for several sub-populations at t = 100: The degree distri-

bution of the original network and of newly entering individuals p̄k = k−γe−
k
κ

Liγ
“
e−

1
κ

” (γ = 1.615, κ = 20, blue),

the current degree distribution in the network pk (black), the current degree distribution of individuals (at least)
of age 100 (green) in comparison to a Poisson distribution with average 〈k〉 = 3 (grey) are shown.

The probability generating function g>a(x, t) for the conditional probability to have k contacts, given a minimal
age of a, can be written as:

g>a(x, t) = eηa

∫ ∞

a
G(x, a′, t)da′. (69)

Figures 4 and 5 demonstrate the age dependent topological consequences of the demographic process for a
network that originally has a scale free degree distribution. Although the average degree is constant for all age
groups, there are differences in the distributions of contacts. Newly introduced nodes show a heterogeneous
contact pattern that becomes more centered on the average number of contacts with increasing age. However,
the degree distribution of the total population does not converge over time towards a Poisson distribution. As a
consequence of the presence of a few highly connected nodes, the distribution of contacts in the total population
has a higher variance than expected for a Poisson distribution with the given average degree (data not shown).

Agent-based simulations

Agent based simulations were performed using NetLogo V4.0.4 [6], some code fragments were used from the
model “Virus on Network” that is included in the software’s model library [7]. Each simulation starts with the
generation of a random network with a certain degree distribution followed by the simulation of the epidemic
process on this network.

Two methods have been used to generate the initial random network:

• Generation of Poisson networks

Poisson networks defined by a degree distribution pk = 〈k〉ke−〈k〉
k! were generated by assigning 〈k〉N/2

links between randomly chosen nodes [8].

• Generation of random networks with a given degree sequence

All random networks, except for Poisson networks, were generated from their degree sequence using the
algorithm described in [9].
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After infecting an initial fraction of random nodes, the simulation of the epidemic process on the random
network is done according to the following pseudo-code until the epidemic dies out:

For each simulation step

1. each infected node progresses with a probability of µ (or µ1 and µ2, respectively) to the next infected
stage (or death),

2. each infected node spreads disease to each of its susceptible contacts with a probability of r (or r1 and
r2, respectively),

3. each node gives birth to a new node with a probability of η1 and k contacts are randomly connected to
already present nodes with a probability of p̄k,

4. each node dies with a probability of η2 (including its links),

5. for each (undirected) link another random (undirected) link is chosen with a probability of ρ/2 after
which the nodes at their ends are swapped (note that ρ/2× number of (undirected) links × number of
changed (directed) contacts per swap/number of directed contacts =ρ).

Note that all parameters x (µ, µ1, µ2, r, r1, r2, η1, η2 and ρ) were scaled to be sufficiently small to
satisfy 1 − e−x ≈ x ¿ 1 for each simulation step to comply with constant rates of progression/exponentially
distributed waiting times in each compartment. In the exploratory studies, we found that there was a good
trade-off between simulation precision and simulation time if the probabilities for transmission and recovery
per simulation step are 0.02 and 0.01, respectively (other parameters scaled accordingly, cf. Fig. 1 of the main
manuscript). The parameters in the simulations on HIV epidemics in Fig. 2 of the main main manuscript were
scaled analogously, i.e., r1, r2, µ1 and µ2 were translated to probabilities of 0.0276, 0.001, 0.041 and 0.0012 per
simulation step, respectively. This corresponds to simulation time steps of 0.01 years. While the computation
time for the partial differential equations took seconds or minutes on a current typical desktop computer, the
computation time for agent-based models took hours per run, i.e., days for a reasonable sample size.

References

[1] House T, Keeling M (2010) Insights from unifying modern approximations to infections on networks. J. R.
Soc. Interface, e-pub. ahead of print.

[2] Volz, E (2008) SIR dynamics in random networks with heterogeneous connectivity. J.Math.Biol. 56:293–
310.

[3] Volz, E, Meyers, LA (2007) Susceptible-infected-recovered epidemics in dynamic contact networks.
Proc.Biol.Sci. 274:2925–2933.

[4] Kamp, C (2010) Demographic and behavioural change during epidemics. Proc. Comp. Sci. 1:2247–2253.

[5] Hoppensteadt, F (1975) Mathematical Theories of Populations: Demographics, Genetics and Epidemics.
SIAM CBMS-NSF Regional Conference Series in Applied Mathematics pp. 1–15.

[6] Wilensky, U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/, Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL.

[7] Stonedahl, F, Wilensky, U (2008) NetLogo Virus on a network model.
http://ccl.northwestern.edu/netlogo/models/VirusonaNetwork. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.

13



[8] Durrett, R (2007) Random graph dynamics (Cambridge University Press).

[9] Molloy, M, Reed, B (1995) A critical point for random graphs with a given degree sequence. Random
Structures and Algorithms 6:161–180.

14


