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The Burke algorithm for constructing dendrite models
The Burke algorithm has two probability functions based on the diameter θ of the current dendritic segment: the
probability of terminating the current branch p(T |θ); and the probability of branching p(B|θ), which is obtained
by evaluating two subsidiary distributions and using the minimum value: p(B|θ) = min{p1(B|θ), p2(B|θ)}.

The form of the algorithm we use for constructing a single dendritic tree is as follows

1. Start with an initial dendritic segment with length ∆L and diameter θ0.

2. For each unterminated segment:

(a) Generate a uniformly distributed random number R ∈ [0,1]

(b) If R ∈ [0, p(T |θ)∆L] then terminate the branch, return to the beginning of step 2.

(c) If R ∈ (p(T |θ)∆L,(p(T |θ)+ p(B|θ))∆L] then the segment ends in a branch point, and two new
branches are generated with lengths of ∆L, and diameters, θ1 and θ2, of

θ1 = θpar(r1 +ar2),

θ2 = θpar(r2 +ar1),

where θpar is the diameter of the parent segment, a is a constant, and r1 and r2 are drawn from a
Gaussian distribution G(µr,σr).

(d) Otherwise a new segment is added to the dendrite, with length ∆L and diameter (1− t∆L)θpar, where t
sets the tapering rate of the dendrite. A minimum diameter θmin is enforced, beyond which the dendrite
cannot taper further.

3. Repeat from the beginning of step 2 until all segments have terminated.

We repeat this for each tree required to construct a complete dendrogram for the neuron.

Morphological data

As for most neuron types, data on the diameters of dendrites at branch and termination points are not available for
MSNs and FSIs, and so we could not apply the Burke algorithm directly. Instead, we gathered morphological data
on the known properties of their dendritic trees, then searched to find the Burke algorithm parameters that result in
dendrograms fitting the gathered data.

The target data to constrain the search was found for branch order, dendritic radius, number of terminals, and
terminal diameter (Table S1). Quantitative data on striatal FSI morphology is lacking, and so we used data on
branch order and number of terminals from studies of cortical FSIs (specifically basket cells). The strong physio-
logical and morphological similarities between the two classes [1, 2], with the exception of their axon trajectories,
makes this a reasonable substitute in the absence of specific data.

We also required the number of dendritic trees to know how many times to repeat the Burke algorithm to
get a complete dendrogram, and the initial diameters θ0 to supply to the algorithm. For a MSN dendrogram we
constructed 6 trees (range 4-8 trees, [3, 8]; or 3-11 trees, [6]), each with an initial diameter of θ0 = 2µm (range
0.5−2.5µm [6, 8]). For a FSI dendrogram we constructed 5 trees (range 3-8, [12]), each with an initial diameter
of θ0 = 1.5µm [11]. To constrain the Burke algorithm, we also noted that the maximum reported radii for the
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Table S1. Bounds placed on dendrogram properties. All data obtained from the rat. Entries marked with ∗
indicate data only available from cortical FSIs.

Neuron Property Data References Bounds used in search

MSN Maximum branch order 5 [3, 4] [0,5]
Mean number of terminals ∼ 27 [3, 5, 6] [25,35]
Mean terminal diameter 0.29µm [7] [0.25,0.45]µm
Mean dendritic radius ∼ 200µm [3, 5, 8] [100,350]µm

FSI Maximum branch order∗ 4 [9] [0,4]
Number of terminals∗ 12-16 [10] [9,19]
Mean terminal diameter 0.4µm [11] [0.2,0.4]µm
Mean dendritic radius 100−200µm [12] [100,250]µm

dendrites are respectively ∼ 300µm [3] and ∼ 200µm [12–14] for MSNs and FSIs, and that the MSNs have a
maximum of 81 branch points [6] — no data on branch points are available for FSIs.

The other parameters for the Burke algorithm were set to the following values. We used a step of ∆L = 1µm.
Taper rate was t = 0.005. The minimum diameter was set to θmin = 0.2µm. Other parameter values were taken
from [15], as no other data were available, hence: a =−0.2087, µr = 0.862, σr = 0.213.

Construction of the evolutionary algorithm search
We used an evolutionary algorithm search to find two sets of parameter values for the Burke algorithm, one for
MSN and one for FSI dendrograms. Each candidate in the search comprised the 6 parameters of the probability
functions, namely k1 and k2 for each of p1(B|θ), p2(B|θ) and p(T |θ). The general form of the search is as follows:

1. Create an initial population of n0 candidates, each element of a candidate initialised within the defined range
for its corresponding parameter (see below).

2. For each member of the population, repeat the following m times

(a) Check that the element values result in valid probability distributions. First, that ∀θ ∈ [θmin,θ0],
[p(T |θ)+ p(B|θ)]∆L ≤ 1. Second, that the slope of the branching probability function is greater than
zero, specifically that p(B|θmax)− p(B|θmin)> 0.01. If either of these checks fails, then the candidate
is deemed a failure and the process returns to the beginning of step 2.

(b) Run the Burke algorithm using the element values, generating the appropriate number of dendritic trees
for the neuron class. Two running checks are made. First, that the total length of a single dendritic
tree has not exceeded some value lmax. Second, that the total number of branch points, summed over
the whole dendrogram, has not exceeded some value bmax. (These are necessary because the Burke
algorithm can run indefinitely for some combinations of parameters). If either of these checks fails,
then the candidate is deemed a failure and the process returns to the beginning of step 2.

(c) The final dendrogram produced by the Burke algorithm for those element values is evaluated against
the appropriate bounds on the morphological properties given in Table 1 (main text). If any bound is
exceeded, then the candidate is deemed a failure; otherwise it is a success.

3. The fitness of each candidate is then: (number of successes)/m.

4. If fitness is maximal (i.e. is m) or the number of generations is greater than Gmax, then the search is termi-
nated.
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5. Otherwise, the population is ranked by fitness and a new population of size n is formed by mating and
mutation of the most successful candidates (details given below) — return to the beginning of step 2.

All of our searches had the following properties. The initial population had n0 = 500 members, and the 6
elements of each candidate were initialised with a random value within the corresponding parameter bounds in
Table S2. All subsequent generations had populations of n = 100 members. The maximum number of generations
was Gmax = 600. Each member was evaluated m = 30 times. From each generation, the top 75 ranked members
were retained as the parent population: 25 new offspring were created by single-point crossover between candidate
pairs selected uniformly at random from the parent population. Every member of the parent population — other
than the most fit candidate — was subject to mutation with a probability of 0.05 per element; if selected for
mutation, an element was altered to a real number within the parameter bounds from Table S2.

The morphological parameters required for the search were set as follows. The maximum diameter (for func-
tion checks in step 2(a) above) was θmax = 3µm. The values for the running checks on the algorithm (step 2(b)
above) were set to considerably exceed the largest reported value in the literature (see Morphological data above):
hence, for MSNs, lmax = 1000µm and bmax = 100; for FSIs lmax = 750µm and bmax = 100.

Table S2. Bounds for the Burke algorithm parameters used in the evolutionary algorithm search.

k1 k2

p1(B|θ) [0.005,0.1] [10,100]
p2(B|θ) [0.0005,0.1] [0.05,1]
p(T |θ) [0.05,1] [−1−20]

Missing morphological data
The basic approach used here can be re-applied every time any of the missing data is supplied. The (incomplete)
ambitious list of this missing data is as follows.

• Branch and termination diameters for either MSNs or FSIs would allow us to apply the Burke algorithm
directly. Moreover, with that data available, we would be in a stronger position to use the second Burke
algorithm, as we would then have fewer free parameters to account for.

• The relative change in diameter of each daughter branch compared to its parent branch (Burke algorithm
parameters µr and σr).

• The relative diameters of each daughter branch compared to the other (Burke algorithm parameter a).

• Data on maximum branch order and number of terminal branches for striatal FSIs, as we have sourced this
data from cortical FSIs here.

• Any quantitative data on MSN axons that would allow either a more accurate form of Equation 3 (main text)
or, better still, a stochastic construction model akin to the Burke algorithm.

• Any quantitative data on the striatal FSI axons.

• Data on synapse distributions on MSN dendrites. This would allow us make a quantitative approximation to
the specific targets of the MSN and FSI axon collaterals. Strangely, some of this data is available for striatal
FSIs [11] despite the paucity of data on these neurons in other areas.
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