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Supporting Text S3. Description of the nonparametric model used to ground 
fitting results 
We use a monotonic increasing P-splines model (Eilers and Marx, 1996). P-splines 
consist in a least squares regression with an excessive number of univariate B-splines 
and an additional discrete penalty to correct for overfitting. 
Given an interval ( )maxmin ,kk  with a grid of q points ki  (called interior knots),  a B-

spline of degree q consists of q+1 polynomial components of degree q joined 
smoothly at the knots, and taking positive values over each component interval 
( )ii kk ,1−  and a value of zero outside the boundaries. To use B-splines in a 

nonparametric regression, we construct a B-splines basis, given by a family of r 
overlapping B-splines. The B-splines basis plays the same role as the predictor matrix 
in a classical regression model. 
In order to select the appropriate number r of B-splines, we consider a very large 
number of B-splines, with a smoothness penalty consisting of the integrated squared 
second-order derivative of the fitted curve, in order to correct for overfitting. Finally, 
to obtain an monotonic (model (Bollaerts et al., 2006), we add a discrete penalty on n-
th order differences, reflecting the hypothesized nonparametric functional form.  
Let ˆ y (α)i be the fitted values depending on a set of coefficients α  for the B-splines 
basis to be estimated. In particular λ  represents the smoothness parameter (the 
smaller λ , the higher the degree of smoothness) and ∆2α j  the second-order 

differences that have the purpose to penalise the overfitting. Let moreover w(α) j  be 

the asymmetric weight, equal to 1 in case the n-th order differences ∆nα j  are negative 

(in case of monotonic increasing models). The score function is given by: 
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where the first term represents the mean square error of the spline regression, the 
second term represents the penalizing factor for overfitting, and the third one, 
depending on the n-th order differences, the penalizing factor for having the 
hypothesized (nonparametric) monotonic functional form. 
Setting κ =106, we use a Newton-Raphson algorithm to estimate the coefficients α  
of the model, while the optimal smoothness parameter λ  can be chosen from a grid of 
values using methods like generalized cross-validation or the AIC. 
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