CV of $E_{int}^{*}(t)$ and $I_{int}(t)$ for WT and Transgenic Mice for $\tau_{R;eff} = 40 \text{ ms}$ and $\nu_{RG} = 575 \text{s}^{-1}$

Figure S1. Comparing the CVs of the total activated effectors $E_{int}^*(t) = \int_0^t E^*(s)ds$ at time t with the CVs of the total relative charge $I_{int}(t) = \int_0^t I(s)ds$ up to time t. All simulations assume both the sojourn time and the number of R^* shutoff steps as random (Case 3 of Test Cases). The CVs of both $E_{int}^*(t)$ and $I_{int}(t)$ stabilize asymptotically for three or more phosphorylation sites (3P-6P). A CV of about 60% for $E_{int}^*(t)$ at times past the peak time is reduced to a CV of about 40% for the corresponding photocurrent $I_{int}(t)$. This points to an intrinsic variability reduction effect of the diffusion part of the process. The simulation is conducted with the parameters shown in Table S2 with $\tau_{R^*} \approx 40ms$ and $\nu_{RG} \approx 575s^{-1}$.