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Text S1: Figures, Mathematical Modeling 

Supplemental Figures 

Fig. 1: Representative cases of individual intracellular calcium signals vs. time graphs for cells addressed with 
periodic carbachol stimulation (C = 25 nM, D = 24 s, R = 24 s). I/I0 is the normalized FRET ratio of the intracellular 
calcium signals, as was used in Fig. 1. The ‘(-)’ symbols denote skipped beats, based upon the criteria explained in 
detail in the Materials and Methods Section. Sub-threshold spikes are apparent in a majority of the graphs.  
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Fig. 2: Representative cases of individual intracellular calcium signals vs. time graphs for cells addressed with 
periodic carbachol stimulation (C = 10 nM, D = 24 s, R = 24 s). I/I0 is the normalized FRET ratio of the intracellular 
calcium signals, as was used in Fig. 1. The ‘(-)’ symbols denote skipped beats, based upon the criteria explained in 
detail in the Materials and Methods Section. Sub-threshold spikes are apparent in a majority of the graphs. A greater 
proportion of cells exhibit skipped beats compared to Text S1 Fig. 1, since the stimulant concentration is lower.
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Fig. 3: Phase-locking behaviors: experimental results (a, b) and theoretical results (c-h) for the Chay et al. model (c, 
f), the positive feedback Politi et. al. (d, f) (middle column) and the revised Politi et al. model (basal PLC activity = 
0.3 µM/s ) (e, g) when stimulant concentration (C) and stimulation duration (D) were varied. a) Phase-locking ratio 
vs. C, with D and R = 24 s. b) Phase-locking ratio vs. D, with C = 10 nM and R = 24 s. c)-e) Phase-locking Ratio vs. 
Stimulant Concentration. In c) the stimulant concentration has units of 1/s and represents the rate of receptor-
mediated G-protein activation. For d) and e) the stimulant concentrations have units of µM/s and represent the 
maximal rate of IP3 production. For c)-e), D = 10 s and R = 50 s. f)-h) Phase-locking ratio vs. D with R fixed at 60 
s. For f) C = 0.03 1/s, for g) C = 0.8 µM/s, and for h) C = 0.3 µM/s. Bars indicate the S.E.M., representative of three 
experiments for each experimental condition; for each experiment, the responses of least 20 cells were recorded. All 
pairs of experimental conditions were statistically significant as determined by the Student t-test (p<0.05). 
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Fig. 4: a) Continuous stimulation of the Chay et al. model with Hill coefficients less than 3.5 for Gq-mediated PLC 
activation. The system does not exhibit any calcium oscillations under this condition. b) For Hill coefficients 
between 3.5 and 4, sub-threshold spikes are not observed upon periodic stimulation. Depicted is a representative 
trace of calcium concentration vs. time under periodic stimulation conditions (C = 0.02 1/s , D = 50 s, R = 50 s, Hill 
Coefficient = 3.5). For all conditions tested, the original model parameters were used. 
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Fig. 5: IP3 recovery dynamics for the positive feedback Politi et al. model (purple), for the Chay et al. model (red), 
and the former model with basal PLC activity (blue). The times and magnitudes of the IP3 curves have been offset 
for easier comparison. For each curve, the stimulation duration was 10 s and the rest period was 500 s. The stimulant 
concentration was 0.05 1/s for the Chay et al. model, 1.2 μM/s for the Politi et al. model, and 0.3 μM/s for the latter 
model with basal IP3 production. Basal IP3 production was set at 0.3 μM/s. 
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Fig. 6: Phase-locking analysis of the Chay et al. (left) and Politi et al. (right) models supplemented with ligand, 
receptor, and G-protein dynamics. a) Calcium oscillation period vs. C (stimulant concentration). b) Phase-locking 
ratio vs. C, with D = 25 s and R = 25 s. c) Phase-locking ratio vs. D, with C = 55 nM (left), 15 nM (right) and R = 
25 s. d) Phase-locking ratio vs. R, with C = 55 nM (left), 15 nM (right) and D = 25 s. e) Individual calcium signal 
vs. time graphs, with C = 55 nM (left), 15 nM (right), D = 25 s, and R = 25 s. Parameter values and rate equations 
for the ligand, receptor, G-protein dynamics were taken from [1,2]. Notably, the behaviors of the Chay et al. and 
Politi et al. models with enhanced biochemical detail under periodic stimulation are similar to the original models 
(Fig. 3 and Text S1 Fig. 3). 
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Fig. 7: Phase-locking analysis of the Cuthbertson and Chay model. a) Calcium oscillation period vs. C (stimulant 
concentration). b) Phase-locking ratio vs. C, with D = 25 s and R = 25 s. c) Phase-locking ratio vs. D, with C = 
0.015 1/s and R = 25 s. d) Phase-locking ratio vs. R, with C = 0.015 1/s and D = 25 s. e) Individual calcium signal 
vs. time graph with the following periodic stimulation parameters: C = 0.015 1/s, D = 25 s, and R = 25 s. In d), the 
phase-locking ratio decreases for increases in rest period, and in e), there is an absence of sub-threshold spikes. 
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Fig. 8: Phase-locking analysis of the Atri et al. model. a) Calcium oscillation period vs. C (stimulant concentration). 
b) Phase-locking ratio vs. C, with D = 10 s and R = 3 s. c) Phase-locking ratio vs. D, with C = 0.57 and R = 3 s. d) 
Phase-locking ratio vs. R, with C = 0.57 and D = 10 s. e) Individual calcium signals vs. time graph, with the 
following periodic stimulation parameters: C = 0.57, D = 10 s, and R = 3 s. The model predicts all the correct 
behaviors seen experimentally under periodic stimulation, with the caveat that the calcium oscillation dynamics are 
much faster than what was observed experimentally.  
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Fig. 9: Phase-locking analysis of the Li and Rinzel Model (a version adapted for the study by Sneyd et al. [3]). a) 
Calcium oscillation period vs. C (stimulant concentration). b) Phase-locking ratio vs. C, with D = 20 s and R = 20 s. 
c) Phase-locking ratio vs. D, with C = 0.4 µM/s and R = 20 s. d) Phase-locking ratio vs. R, with C = 0.4 µM/s  and D 
= 20 s. e) Individual calcium signal vs. time graph, with the following periodic stimulation parameters: C = 0.4, 
µM/s D = 20 s, R = 20 s. In b) and c), the phase-locking ratio decreases with increases in C and D, opposite of what 
was observed experimentally.  
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Fig. 10: Phase-locking analysis of the Dupont et al. model. a) Calcium oscillation period vs. C (stimulant 
concentration). b) Phase-locking ratio vs. C, with D = 1 s and R = 2 s. c) Phase-locking ratio vs. D, with C = 0.28 
and R = 2 s. d) Phase-locking ratio vs. R, with C = 0.28 and D = 1 s. e) Individual calcium signal vs. time graph, 
with the following stimulation parameters: C = 0.28 1/s, D = 1 s, and R = 2 s. In d), the phase-locking ratio 
decreases with increases in R, which was not observed experimentally. 
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Fig. 11: Phase-locking analysis of the Kummer et al. model. a) Calcium oscillation period vs. C (stimulant 
concentration. b) Phase-locking ratio vs. C, with D = 4 units and R = 1 unit. c) Phase-locking ratio vs. D, with C = 
1.3 units and R = 1 unit. d) Phase-locking ratio vs. R, with C = 1.3 units and D = 4 units. e) Individual calcium 
signal vs. time graph, with the following stimulation parameters: C = 1.3 units, D = 5.5 units, R = 1 unit. In b), the 
phase-locking ratio remains constant with increases in C, which was not observed experimentally; in d), the phase-
locking ratio decreases to zero and then increases with increases in R, which was also not observed experimentally.
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Fig. 12: Phase-locking analysis of two models of Circadian rhythms: the Tyson et al. model [4] and the Goldbeter 
model [5]. a) Plotting the phase-locking ratio vs. R for the Tyson et al. model revealed that for small stimulation 
durations (D), the phase-locking ratio increased, then decreased to zero. The stimulation parameters used to generate 
this graph were: C = 1 Cm/hr and D = 2 hrs. For larger D, it was found that the phase-locking ratio increased, and 
remained at the value one, suggesting that the recovery properties of the Tyson et al. model depend partly on D. b) 
For the Goldbeter model, an increase in R resulted in a corresponding increase in the phase-locking ratio for both 
small and large D. These results suggest that the recovery properties of the Goldbeter model do not depend on D. 
The following stimulation parameters were used to generate the graph depicted: C = 2 μM/hr and D = 2 hrs. 
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Mathematical Modeling 

The following section contains all the model equations, parameters, and initial conditions for the 9 mathematical 

models of oscillatory calcium signaling analyzed in this study; also included are brief descriptions of each model. 

Additional model details can be found in the original publications; references are provided to direct the reader to 

these works. The model equations, parameters, and initial conditions for the two circadian models analyzed in this 

study are also provided in this section.  

A. Chay et al. model (Reference [6]) 

i. Model Description: 

The Chay et al. model is based on experimental observations that calcium oscillation periods vary from seconds to 

minutes and the amplitude of the calcium signals does not change drastically with changes in stimulant 

concentration. Calcium oscillations result from a feedback loop involving build-up of activated G-proteins, switch-

like PLC activation, IP3/diacylglycerol release, calcium release, followed by negative feedback by DAG upon G-

protein activation. It was the first model to be used to theoretically analyze the effect of periodic stimulation upon 

calcium signaling.  

ii. Model equations: 

(1)  

d[G ∝ GTP]
dt

=  (kg + basal) ∗ (G0 − [G ∝ GTP] − 4 ∗ [PLC]) − 4 ∗ kp ∗ [G ∝ GTP]4 ∗ (P0 − PLC) − hg
∗ [G ∝ GTP] 

 
(2) 

d[IP3]
dt

= kd ∗ [PLC] − hd ∗ [IP3] + ld 

(3) 

d[Ca2+]
dt

=  ρkc ∗ (
[IP3]3

Ks3 + [IP3]3) − ρ ∗ [Ca2+] + ρlc 

(4) 

d[PLC]
dt

= kp ∗ [G ∝ GTP]4 ∗ (P0 − PLC) − hp ∗ [PLC] 

(5) 

kn = kn′ ∗ �
[DAG]2

Kd2 + [DAG]2� ;   where kn = kp, hp, kd 

Rate equations for the ligand/receptor dynamics used for Text S1 Fig. 6: 
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(6) 
d[R]

dt
= kr ∗ [LR] − hr ∗ (R0 − [LR]) ∗ L 

 
(7) 

d[LR]
dt

= hr ∗ (R0 − [LR]) ∗ L − kr ∗ [LR] 

The equation describing activated G-protein dynamics was changed to the following: 

(8) 

d[G ∝ GTP]
dt

= kg2 ∗ ([LR] + basal2) ∗ (G0 − [G ∝ GTP] − 4 ∗ [PLC]) − 4 ∗ kp ∗ [G ∝ GTP]4 ∗ (P0 − PLC) − hg

∗ [G ∝ GTP] 

[G ∝ GTP] = activated G-protein; [IP3] = inositol triphosphate; [Ca2+] = intracellular calcium; [PLC] = 

phospholipase C; [R] = receptor; [LR] = ligand-receptor complex; [DAG] = diacylglycerol = [IP3] (in the original 

publication, it was assumed that these two components are produced in equimolar quantities)  

iii. Parameter Table: 

Parameter Description Value 

kg G-protein activation rate constant (activated receptor 

contribution) 

Varied (units: 1/s) 

hg G-protein hydrolysis rate constant 0 (units: 1/s) 

hd  IP3 hydrolysis rate constant 100 1/s 

ld IP3 leak rate  250 nM/s 

ρkc  Calcium activation rate by IP3  9*104 nM/s 

ρhc  Calcium removal rate constant 1 1/s 

ρlc  Calcium leak rate  200 nM/s 

Ks Half-activation constant for IP3 300 nM 

Kd Half-activation constant for DAG  25 nM 

basal Basal G-protein activation rate  0.005 1/s 
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G0 Total G-protein Concentration 200 nM 

P0 Total PLC Concentration 10 nM 

R01 Total Receptor Concentration 2000 nM 

kd’ DAG-mediated PLC activation rate constant 700 1/s 

kp’ DAG-mediated G-protein/PLC dissociation rate constant 2*10-7 1/(nM4*s) 

hp’ DAG-mediated PLC deactivation rate constant 0.5 1/s 

kr2  Ligand-receptor dissociation rate constant 0.5 1/s 

hr2 Ligand-receptor association rate constant 0.004 1/(nM*s) 

kg21 G-protein activation rate from ligand-receptor contribution 3.9*10-5 1/(nM*s)  

basal21 Basal ligand-receptor concentration 130 nM 

1 values not in original model; Note: multiplication of parameters ‘kg2’ and ‘basal2’ yield a basal stimulation term 

with the same value and units as the parameter ‘basal’ from the original publication.  

2 values taken from [1] 

iv. Initial Conditions: 

[G ∝ GTP](0) = 0; [IP3](0) = 0; [Ca2+](0) = 200 nM; [PLC](0) = 0; [R](0) = 0; [LR](0) = 0 

For the original Chay et al. model, the parameter ‘kg’ was used to represent the stimulant concentration ‘C’ (as was 

done in the original publication). For the Chay et al. model that included ligand-receptor dynamics, the parameter 

‘L’ represented ‘C’. 

B. Politi et al. model (Reference [7]) 

i. Model Description: 

The Politi et al. is able to produce calcium oscillation periods on the order of seconds to minutes, similar to what 

was observed experimentally in our studies. The model features calcium feedback upon IP3 metabolism, a key 

feature that was found to expand the range of oscillation periods. Oscillations in this model are produced by a 

feedback scheme whereby IP3 results in calcium release, and calcium then enhances its own release and IP3 

production, but at high concentrations, calcium inhibits its own release. Several features of the model were 

experimentally validated.  

ii. Model Equations: 
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(1) 

νplc = (Vplc + basal) ∗ �
[Ca2+]2

Kplc2 + [Ca2+]2� 

(2)  

νdeg = (k5p + k3k ∗ �
[Ca2+]2

K3k2 + [Ca2+]2�) ∗ [IP3] 

(3) 

νrel = �k1 ∗ �[IP3r] ∗
[Ca2+]

Ka + [Ca2+] ∗
[IP3]

Kp + [IP3]�
3

+ k2� ∗ ([Ca2+(ER)] − [Ca2+]) 

(4) 

νserca = Vserca ∗ �
[Ca2+]2

Kserca2 + [Ca2+]2� 

(5) 

νin =  ν0 + ∅ ∗ Vplc ∗ (
1

k3k + k5p
) 

(6) 

νout = Vpm ∗ �
[Ca2+]2

Kpm2 + [Ca2+]2� 

(7) 

d[IP3]
dt

=  νplc − νdeg 

(8) 

d[Ca2+]
dt

=  νrel − νserca + ε ∗ (νin − νout) 

(9) 

d[Ca2+(ER)]
dt

= �
1
β
� ∗ (νserca − νrel) 

(10) 
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d[IP3r]
dt

= �
1
Τr
� ∗ (1 − [IP3r] ∗

Ki + [Ca2+]
Ki

) 

Ligand/Receptor/G-protein dynamics for this model (used in Text S1 Fig. 6) were taken from [2]:  

(11) 

d[LR]
dt

= k1′ ∗ [R] ∗ [L] − k2′ ∗ [LR] 

(12) 

[R] = [R(total)] − [LR] 

(13) 

d[G ∝ GTP]
dt

= k3 ∗ [G] − k4 ∗ [G ∝ GTP] + k5 ∗ [G] ∗ [LR] − k6 ∗ [PLC] ∗ [G ∝ GTP] 

(14) 

d[G ∝ GDP]
dt

= k4 ∗ [G ∝ GTP] + k4 ∗ [PLC(active)] − k7 ∗ [G ∝ GDP][βγ] 

(15) 

[G] = [G(total)] − [G ∝ GTP] − [G ∝ GDP] − [PLC(active)] 

(16) 

[βγ] = [G ∝ GTP] + [G ∝ GDP] + [PLC(active)] 

(17) 

d[PLC(active)]
dt

= k6 ∗ [PLC] ∗ [G ∝ GTP] − k4 ∗ [PLC(active)] 

(18) 

[PLC(total)] = [PLC] + [PLC(active)] 

(19) 

Vplc = k8 ∗ [PLC(active)] 

[IP3] = inositol triphosphate; [Ca2+] = intracellular calcium; [Ca2+(ER)] = endoplasmic reticulum calcium; [IP3r] = 

inositol triphosphate receptors not inactivated by calcium; [LR] = ligand-receptor complex; [GαGTP] = activated G-
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protein; [GαGDP] = inactivated G-protein; [G] = non-activated/non-inactivated G-proteins; [βγ] = G-protein [βγ] 

subunits; [PLC(active)] = activated phospholipase C; vplc = rate of IP3 synthesis by PLC; vdeg = rate of IP3 

degradatin by IP3 3-kinase and/or IP3 5-phosphatase; vrel  = calcium flux through IP3 receptors; vout = rate of 

active transport of calcium across the plasma membrane; vserca = rate of active transport of calcium across the ER; 

vin = calcium influx due to stimulation and leaking 

iii. Parameter Table for the Politi et al. model: 

Parameter Description Value 

Vplc Activated PLC-mediated IP3 production rate constant Varied for original 

model (units: µM/s) 

K3k Half-activation constant of IP3K 0.4 µM 

k5p IP3 dephosphorylation rate constant 0.66 1/s 

β Ratio of effective volumes of the ER/cytosol 0.185 

Kserca Half-activation constant for SERCA pump 0.1 µM 

Kpm Half-activation constant for PMCA pump 0.12 µM 

ϕ Stimulation-dependent influx 0.0047 1/s 

Ctot Total Calcium concentration 2 µM 

k2 Calcium leak 0.0203 1/s 

Ki Calcium binding to inhibiting site 0.4 µM 

Tr Characteristic time of IP3r inactivation 12.5 s 

k3k  IP3 phosphorylation rate constant 0 

Kplc Half-activation constant of PLC 0.2 µM 

Vserca Maximal SERCA pump rate 0.9 µM/s 

Vpm Maximal PMCA pump rate 0.01 µM/s 

ν0 Basal calcium flux  0.0004 µM/s 

ε Calcium flux strength 5  
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k1 Maximal rate of calcium release 1.11 1/s 

Ka Calcium binding to activating site 0.08 µM 

Kp IP3 binding 0.13 µM 

basal1 Basal IP3 production rate by PLC  0.3 µM/s 

k1’1 Ligand-receptor association rate constant  4 1/(µM*s) 

k2’1 Ligand-receptor dissociation rate constant  5 1/s 

k3 Basal exchange rate of GTP for GDP on Gα subunit 0.01 1/s 

k4 Rate constant for hydrolysis of GαGTP to GαGDP 2.5 1/s 

k5 Encounter rate constant for ligand-receptor complex and G-

protein 

2*10-5 1/s 

k6 Encounter rate constant for PLC and GαGTP 2*10-5 1/s 

k7 Encounter rate constant for βγ and GαGDP 1*10-5 1/s 

k82 Rate constant for IP3 formation by PLC 700 1/s 

1 values not in the original model 

2 value averaged from original model value and literature values 

iv. Initial Conditions for the Politi et al. model (with ligand/receptor/G-protein dynamics): 

[IP3](0) = 0; [Ca2+](0) = 0.055µM ;  [Ca2+(ER)](0) = 10.76µM ; [IP3r](0) = 0; [LR](0) = 0; [GαGTP] = 0; 

[GαGDP] = 0; [PLC(active)] = 0 

For the Politi et al. model, the parameter ‘Vplc’ represented the stimulant concentration ‘C’. For the Politi et al. 

model that included ligand-receptor dynamics, ‘L’ represented ‘C’. 

C. Atri et al. model (Reference [8]) 

i. Model Description: 

In the Atri et al. model, similar to the Politi et al. model, calcium modulates its release in a biphasic manner; further 

IP3 receptors (which mediate calcium release) are inactivated on a slower time scale than their activation. 

Collectively, these features result in calcium oscillations with periods on the order of seconds to 20 seconds (with 

constant IP3 levels). The model is able to reproduce several key features of calcium signaling in Xenopus laevis 

oocytes, despite only incorporating a single pool of calcium.  
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ii. Model equations: 

(1) 

IP3rinf = 1 −
[Ca2+]2

k22 + [Ca2+]2 

(2) 

Jch = k�lux ∗ µ ∗ [IP3r] ∗ �b +
V1 ∗ [Ca2+]
k1 + [Ca2+]� 

(3) 

Jpump =
γ ∗ [Ca2+]

kγ + [Ca2+] 

(4) 

Jleak =  β 

(5) 

d[Ca2+]
dt

= Jch − Jpump + Jleak 

(6) 

d[IP3r]
dt

= �
1
τ
� ∗ (IP3rinf − [IP3r]) 

[Ca2+] = intracellular calcium; [IP3r] = inositol triphosphate receptors not inactivated by calcium; IP3rinf = 

proportion of IP3 receptors not activated by calcium at steady state; Jch = calcium flux through the IP3 receptor; 

Jpump = calcium flux due to calcium-dependent pumping of calcium out of the cytosol; Jleak = calcium flux due 

calcium leaking into the cytosol 

iii. Parameter Table: 

Parameter Description Value 

µ Proportion of IP3 receptors that have their IP3 binding domain 

activated 

Varied (unitless) 

k1 Half-activation constant for IP3 receptor-mediated calcium 0.7 µM 
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release 

γ Maximum rate of calcium pumping 2 µM/s 

b Proportion of IP3 receptors that are activated in absence of 

calcium binding 

0.111 

V1 Proportion of IP3 receptors that are activated by calcium binding 0.889 

β Calcium leak rate 0.02 µM/s 

τ Time constant for IP3r inactivation 2 s 

kγ Half-activation constant calcium pumping 0.1 µM 

k2 Half-activation constant for IP3 receptor activation 0.7 µM 

kflux Maximum total calcium flux through all IP3 receptors 8.1 µM/s 

 

iv. Initial Conditions: 

[Ca2+] (0) = 0; [IP3r] (0) = 0 

For the Atri et al. model, the parameter ‘µ’ represented the stimulant concentration ‘C’. 

D. Li and Rinzel model (Reference [9]) 

i. Model Description: 

The Li and Rinzel model represents a reduced version of the DeYoung and Keizer model [10], whereby elaborate 

IP3 receptor gating dynamics are greatly simplified based upon assumptions about the time scales of its activation 

and inactivation (similar to what was described for the Atri et al. model). The calcium oscillation periods produced 

this model are generally on the order of seconds, which is below what was observed experimentally. A version of 

the Li and Rinzel model that produced oscillations with periods on the order of hundreds of seconds was analyzed in 

the study by Sneyd et al. [3], and used here. In this version of the model, calcium feedback upon the IP3 receptor is 

omitted and calcium feedback upon IP3 metabolism is included.  

ii. Model equations: 

(1) 

Jin = ∝ 1+∝ 2 ∗ [IP3] 

(2) 
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[Ca2+(ER)] =
[Ca2+(total)] − [Ca2+]

σ
 

(3) 

h =
Kd

[Ca2+] + Kd
 

(4) 

d[Ca2+]
dt

=
�i
Vi
∗ (�L + P ∗ �

[IP3] ∗ [Ca2+] ∗ h
([IP3] + Ki) ∗ ([Ca2+] + Ka)�

3

� ∗ ([Ca2+(ER)] − [Ca2+]) − �
Ve ∗ [Ca2+]2

Ke2 + [Ca2+]2� + ε

∗ (Jin − �
Vp ∗ [Ca2+]2

Kp2 + [Ca2+]2�) 

(5) 

d[IP3]
dt

= v4 ∗ �
[Ca2+] + (1−∝) ∗ k4

[Ca2+] + k4
� − ir ∗ [IP3] 

(6) 

d[Ca2+(total)]
dt

=
�i
Vi
∗ ε ∗ (Jin − �

Vp ∗ [Ca2+]2

Kp2 + [Ca2+]2�) 

[Ca2+] = intracellular calcium; [IP3] = inositol triphosphate; [Ca2+(total)] = total cellular calcium; h = IP3 

receptors not inactivated by calcium; Jin = calcium flux into cytosol 

iii. Parameter Table: 

Parameter Description Value 

v4 IP3 production rate constant Varied (units: µM/s) 

α Calcium feedback strength on IP3 formation  0.97 

k4 Half-activation constant for IP3 production 1.1 µM 

ir IP3 degradation rate constant 0.08 1/s 

α1 Basal calcium influx 400 µM/s 

α2 Calcium influx activation rate constant 100 1/s 
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ε Calcium flux strength at plasma membrane 0.01 

fi Calcium flux scaling factor 0.01 

Vi Calcium flux scaling factor 4 

Vp Maximum rate of calcium release from PMCA pump 2000 µM/s 

L Calcium leak rate constant 0.37 1/s 

P Calcium release rate constant from IP3 receptors 26640 1/s 

Ki Calcium binding to inhibiting site 1 µM 

Ka Calcium binding to activating site 0.4 µM 

Ve Maximum rate of calcium release from SERCA pump 400 µM/s 

Ke Half-activation constant for SERCA pump 0.2 µM 

Kd Half-activation constant for activate IP3 receptors 0.4 µM 

σ Ratio of effective volumes of the ER/cytosol 0.185 

Kp Half-activation constant for PMCA pump 0.3 µM 

 

iv. Initial Conditions: 

[Ca2+] (0) = 0.15 µM; [IP3] (0) = 0; [Ca2+(total)](0) = 72.178 µM 

For the Li and Rinzel model, the parameter ‘v4’ was used to represent the stimulant concentration ‘C’.  

E. Dupont et al. model (Reference [11]) 

i. Model description: 

The Dupont et al. model is based upon experimental observations that IP3 metabolism, specifically from IP3-3 

kinase and IP3-5 phosphatase, significantly affect calcium signaling dynamics. In this model, external stimulation 

leads to IP3 release, which then results in calcium release. Calcium then engages the two aforementioned enzymes, 

which result in reduced IP3 levels. This feedback mechanism results in calcium oscillations, and is able to reproduce 

several experimentally observed calcium signaling behaviors.  

ii. Model equations: 
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(1) 

k+ =
k−

�kinh �
4 

(2) 

d[R]
dt

= (k+ ∗ [Ca2+]4) ∗

⎝

⎛ 1 − [R]

1 + �[Ca2+]
kact �

3

⎠

⎞ − k− ∗ [R] 

(3) 

d[Ca2+]
dt

= k1 ∗ (b + Ira) ∗ �[Ca2+(total)] − [Ca2+] ∗ (∝ +1)� − Vmp ∗
[Ca2+]np

Kpnp + [Ca2+]np 

 (4) 

Irable = (1 − [R]) ∗
[IP3]

kip + [IP3] 

 (5) 

Ira = Irable ∗
1

1 + � kact
[Ca2+]�

3 

 (6) 

d[IP3]
dt

= vplc − v3k − v5p 

 (7) 

vplc =  γ ∗ Vplc 

 (8) 

v3k = Vk ∗
[IP3]

Kk + [IP3] ∗
[Ca2+]nd

Kdnd + [Ca2+]nd 

(9) 

v5p = Vp1 ∗
[IP3]

Kp1 ∗ �1 + �[IP4]
Kp2 �� + [IP3]
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 (10) 

d[IP4]
dt

= v3k − v5p′ − k ∗ [IP4] 

(11) 

v5p′ =  Vp2 ∗
[IP4]

Kp2 ∗ �1 + �[IP3]
Kp1 ��+ [IP4]

 

[Ca2+] = intracellular calcium; [R] = fraction of desensitized IP3 receptor; [IP3] = inositol triphosphate; [IP4] = 

inositol tetrakisphosphate; Irable = fraction of activable IP3 receptors; Ira = fraction of activated IP3 receptors; vplc 

= rate of IP3 metabolism by PLC; v3k = rate of IP3 metabolism by IP3 3-kinase; v5p = rate of IP3 metabolism by 

IP3 5-phosphatase; v5p’ = rate of IP4 metabolism by IP4 5-phosphatase; k+ = association rate constant of calcium 

for the IP3 receptor 

 
iii. Parameter Table: 

Parameter Description Value 

γ Level of external stimulation Varied (unitless) 

kact Calcium binding to activating site 0.56 µM 

kinh  Calcium binding to inhibiting site 0.15 µM 

k1 Maximum total calcium flux through all IP3 receptors 2.57 1/s 

k− IP3 receptor dissociation rate constant 0.5 1/s 

Vplc Maximal velocity of IP3 synthesis 1.3 µM/s 

Vk Maximal velocity of IP3 3-kinase 0.5 µM/s 

Kk Michaelis constant of IP3 3-kinase 1 µM 

Kd Threshold for IP3 3-kinase activation by calcium 0.3 µM 

nd Hill coefficient for IP3 3-kinase activation by calcium 2 

Vp1 Maximal velocity of 5-phosphatase (IP3 substrate) 5 µM/s 

Kp1 Michaelis constant of 5-phosphatase (IP3 substrate) 10 µM 
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Vp2 Maximal velocity of 5-phosphatase (IP4 substrate) 0.2 µM/s 

Kp2 Michaelis constant of 5-phosphatase (IP4 substrate) 2 µM 

k Rate constant of linear degradation of IP4 0.01 1/s 

ni Hill coefficient for inactivation of the IP3 receptor by calcium 4 

na Hill coefficient for activation of the IP3 receptor by calcium 3 

k1 Calcium transfer rate between intracellular stores and cytosol 2.57 µM/s 

α Ratio of the volumes of the intracellular stores and the cytosol 0.1 

Vmp Maximal velocity of calcium pumping  4 µM/s 

Kp Half-activation constant for calcium pumping 0.35 µM 

np Hill coefficient for calcium pumping 2 

Kip Dissociation constant between IP3 and IP3 receptor 1 µM 

[Ca2+ (total)] Total cellular calcium 80 µM 

 

iv. Initial Conditions: 

[R] (0) = 0 µM; [Ca2+] (0) = 0 µM; [IP3](0) = 0; [IP4](0) = 0 

For the Dupont et al. model, the parameter ‘γ’ was used to represent the stimulant concentration ‘C’.  

F. Kummer et al. model (Reference [12]) 

i. Model description: 

The Kummer et al. model considers G-protein and PLC dynamics in the context of generation of calcium 

oscillations. In particular, the model consists of negative feedback by calcium and PLC on receptor-mediated G-

protein activation. In addition, the nature of G-protein activation can be modulated by changing receptor relevant 

parameters. The model is able to display regular calcium oscillation patterns as well as chaotic calcium bursting 

upon constant stimulation.  

ii. Model equations: 

d[G ∝ GTP]
dt

= k1 + k2 ∗ [G ∝ GTP] −
k3 ∗ [G ∝ GTP] ∗ [PLC]

1 + K4
−

k5 ∗ [G ∝ GTP] ∗ [Ca2+]
[G ∝ GTP] + K6
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d[PLC]
dt

= k7 ∗ [G ∝ GTP] −
k8 ∗ [PLC]
[PLC] + K9

 

d[Ca2+]
dt

= k10 ∗ [Ca2+] ∗ [PLC] ∗
[Ca2+(ER)]

[Ca2+(ER)] + K11
+ k12 ∗ [PLC] + k13 ∗ [G ∝ GTP] − k14 ∗

[Ca2+]
[Ca2+] + K15

− k16 ∗
[Ca2+]

[Ca2+] + K17
 

d[Ca2+(ER)]
dt 

=  −k10 ∗ [Ca2+] ∗ [PLC] ∗
[Ca2+(ER)]

[Ca2+(ER)] + K11
+ k16 ∗

[Ca2+]
[Ca2+] + K17

 

[G ∝ GTP] = activated G-protein; [PLC] = phospholipase C; [Ca2+] = intracellular calcium; [Ca2+(ER)] = 

endoplasmic reticulum calcium  

iii. Parameter Table: 

Parameter Description Value (all unitless) 

k2 G-protein activation rate constant Varied 

k1 Spontaneous G-protein activation rate 0.09 

k3  Maximum PLC-mediated G-protein inactivation rate constant 0.64 

K4 Half-activation constant for PLC-mediated G-protein inactivation 0.19 

k5 Maximum calcium-mediated G-protein inactivation rate constant 4.88 

K6 Half-activation constant for calcium-mediated G-protein 

inactivation 

1.18 

k7  G-protein-mediated PLC activation rate constant 2.08 

k8 Maximum PLC inactivation rate constant 32.24 

K9 Half-activation constant for PLC inactivation 29.09 

k10  Maximum IP3 production rate constant 5 

K11 Half-activation constant for IP3 production 2.67 

k12  IP3-mediated calcium influx  0.7 

k13 G-protein-mediated calcium influx  13.58 
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k14 Maximum rate of calcium release from SERCA pump 153 

K15 Half-activation constant for SERCA pump 0.16 

k16 Maximum rate of calcium release from PMCA pump  4.85 

K17 Half-activation constant for PMCA pump 0.05 

iv. Initial Conditions for the Kummer et al. model (all unitless): 

[G ∝ GTP] (0) = 0.01; [PLC] (0) = 0.01; [Ca2+] (0) = 0.01; [Ca2+(ER)] (0) = 20 

For the Kummer et al. model, the parameter ‘k2’ was used to represent the stimulant concentration ‘C’.  

G. Cuthbertson and Chay model (Reference [13]) 

i. Model Description: Mechanistically the Cuthbertson and Chay model is very similar to the Chay et al. 

model described previously.  

 

ii. Model equations: 

(1) 

d[G ∝ GTP]
dt

= kg ∗ (G0 − [G ∝ GTP] − 4 ∗ [PLC]) − 4 ∗ kp ∗ [G ∝ GTP]4 ∗ (P0 − PLC) − hg ∗ [G ∝ GTP] 

(2) 

d[IP3]
dt

= kd ∗ [PLC] − hd ∗ [IP3] + ld 

(3) 

d[Ca2+]
dt

=  ρkc ∗ (
[IP3]3

Ks3 + [IP3]3) − ρ ∗ [Ca2+] + ρlc 

(4) 

d[PLC]
dt

= kp ∗ [G ∝ GTP]4 ∗ (P0 − PLC) − hp ∗ [PLC] 

(5) 

kn = knprime ∗ �
[IP3]2

Kd2 + [IP3]2� ;   where kn = kp, hp, kd 
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[G ∝ GTP] = activated G-protein; [IP3] = inositol triphosphate; [Ca2+] = intracellular calcium; [PLC] = 

phospholipase C 

iii. Parameter Table: 

Parameter Description Value 

kg G-protein activation rate constant (activated receptor 

contribution) 

Varied (units: 1/s) 

hg G-protein hydrolysis rate constant 0 (units: 1/s) 

hd  IP3 hydrolysis rate constant 100 1/s 

ld IP3 leak rate  250 nM/s 

ρkc  Calcium activation rate by IP3  9*104 nM/s 

ρhc  Calcium removal rate constant 1 1/s 

ρlc  Calcium leak rate  200 nM/s 

Ks Half-activation constant for IP3 300 nM 

Kd Half-activation constant for DAG  25 nM 

basal Basal G-protein activation rate  0.005 1/s 

G0 Total G-protein Concentration 200 nM 

P0 Total PLC Concentration 10 nM 

kdprime DAG-mediated PLC activation rate constant 700 1/s 

kpprime DAG-mediated G-protein/PLC dissociation rate constant 2*10-7 1/(nM4*s) 

hpprime DAG-mediated PLC deactivation rate constant 0.5 1/s 

 

iv. Initial Conditions: 

[G ∝ GTP](0) = 0; [IP3](0) = 0; [Ca2+](0) = 200 nM; [PLC](0) = 0 

For the Cuthbertson and Chay model, the parameter ‘kg’ was used to represent the stimulant concentration ‘C’.  
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H. Tyson et al. model (Circadian model- Reference [4]) 

i. Rate equations for the Tyson et al. model (Circadian model): 

(1) 

q =
2

1 + (1 + 8 ∗ Keq ∗ [Protein])0.5 

(2) 

d[mRNA]
dt

=
vm

1 + �[Protein] ∗ 1 − q
2 ∗ Pcrit�

2 − km ∗ [mRNA] 

(3) 

d[Protein]
dt

= vp ∗ [mRNA] − �
kp1 ∗ [Protein] ∗ q + kp2 ∗ [Protein]

Jp + [Protein]
� − kp3 ∗ [Protein] 

[mRNA] = PER/TIM mRNA; [Protein] = PER/TIM protein; q = fraction of protein monomer 

ii. Parameter table: 

Parameter Description Value* 

vm Maximum mRNA synthesis rate Varied (Cm/hr) 

km First-order rate constant for mRNA degradation 0.1 1/hr 

vp Rate constant for translation of mRNA 0.5 Cp/(Cm*hr) 

kp1 Vmax for monomer phosphorylation 10 Cp/hr 

kp2 Vmax for dimer phosphorylation 0.03 Cp/hr 

kp3 First-order rate constant for proteolysis 0.1 1/hr 

Keq Equilibrium constant for dimerization 200 1/Cp 

Pcrit Dimer concentration at the half-maximum transcription rate 0.1 Cp 

Jp Michaelis constant for protein kinase (DBT) 0.05 Cp 

* Cm and Cp represent characteristic concentrations for mRNA and protein respectively (as presented in the original 

publication) 

iii. Initial Conditions: 
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[mRNA](0) = 0; [Protein](0) = 0 

For the Tyson et al. model, the parameter ‘vm’ was used to represent the stimulant ‘C’.  

I. Goldbeter model (Circadian model- Reference [5]) 

i. Model equations: 

(1) 

dM
dt

= vs ∗ �
Ki4

Ki4 + Pn4
� − vm ∗ (

M
Km + M

) 

(2) 

dP0
dt

= ks ∗ M − v1 ∗ �
P0

K1 + P0
� + v2 ∗ (

P1
K2 + P1

) 

(3) 

dP1
dt 

= v1 ∗ �
P0

K1 + P0
� − v2 ∗ �

P1
K2 + P1

� − v3 ∗ �
P1

K3 + P1
� + v4 ∗ �

P2
K4 + P2

� 

(4) 

dP2
dt

=  v3 ∗ �
P1

K3 + P1
� − v4 ∗ �

P2
K4 + P2

� − k1 ∗ P2 + k2 ∗ Pn − vd ∗ �
P2

Kd + P2
� 

(5) 

dPn
dt

= k1 ∗ P2 − k2 ∗ Pn 

M = PER mRNA concentration; P0 = unphosphorylated PER protein concentration; P1 = monophosphorylated PER 

protein concentration; P2 = bisphosphorylated PER protein concentration; Pn = nuclear bisphosphorylated PER 

protein concentration 

ii. Parameter Table: 

Parameter Description Value 

vs Maximum mRNA cytosolic transport rate Varied (units: µM/hr) 

vm Maximum mRNA degradation rate 0.65 µM/hr 

Km Half-activation of mRNA degradation 0.5 µM 



32 
 

ks mRNA translation rate constant 0.38 1/hr 

vd Maximum bisphosphorylated PER protein degradation rate 0.95 µM/hr 

k1 Bisphosphorylated PER protein nuclear transport rate constant 1.9 1/hr 

k2 Nuclear bisphosphorylated PER protein concentration degradation 

rate constant 

1.3 1/hr 

Ki Half-activation of nuclear bisphosphorylated PER protein-induced 

mRNA production 

1 µM 

Kd Half-activation of bisphosphorylated PER protein degradation 0.2 µM 

K1  Half-activation of kinase activity for unphosphorylated PER protein 2 µM 

K2 Half-activation of phosphatase activity for monophosphorylated PER 

protein 

2 µM 

K3 Half-activation of kinase activity for monophosphorylated PER 

protein 

2 µM 

K4 Half-activation of phosphatase activity for bisphosphorylated PER 

protein 

2 µM 

v1 Maximum kinase activity rate for unphosphorylated PER protein 3.2 µM/hr 

v2 Maximum phosphatase activity rate for monophosphorylated PER 

protein 

1.58 µM/hr 

v3 Maximum kinase activity rate for monophosphorylated PER protein 5 µM/hr 

v4 Maximum phosphatase activity rate for bisphosphorylated PER 

protein 

2.5 µM/hr 

 

iii. Initial Conditions: 

M(0) = 1 µM; P0(0) = 0; P1(0) = 0, P2(0) = 0; Pn(0) = 0 

For the Goldbeter Model, the parameter ‘vs’ was used to represent the stimulant concentration ‘C’.  
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	,,Ca-2+.. = intracellular calcium; ,R.=fraction of desensitized IP3 receptor; ,IP3. = inositol triphosphate; [IP4] = inositol tetrakisphosphate; Irable = fraction of activable IP3 receptors; Ira = fraction of activated IP3 receptors; vplc = rate of IP...

