Table S3 – Hb binding strengths | <u>rable 55</u> – 110 billuling strengths | | | | | | |---|--|------------------------|------------------|-------------------------------|------------------------| | Model | 3A3X, 2H | 6B2H_lacZ ^b | 6B1H_lacZ | $2x(6B1H)$ _lacZ ^e | 4B1H_lacZ ^f | | Experiment | WT | pThb5 | pThb1,6,9 | pThb8 | pThb2 | | Position of | 47 | 46 | 43 | 49 | 40 | | boundary
(%EL) | | | | | | | Sharpness (degrees) | 83 (protein)
84 ^a (mRNA) | 78 | 71 | 75 | 52 | | 1^{st} Hb bind $(k_3, M^{-1} s^{-1})$ | 4e6 | 4e6 | 4e6 ^d | 4e6 | 4e6 | | 2^{nd} Hb (k_6) | 1e8 | 1e8 ^c | | | | Unbinding rates, k_4 and k_7 , are set to 1/s. ^a WT protein sharpness is fit to data, mRNA sharpness is a model prediction. Hb diffusivity D_{Hb} =0.3 μ m²/s (equal to the nuclear-resolution value measured in [41]) gives the best fit to experimental sharpness. ^bExpression levels for simulations with Hb sites were higher, but never more than twice, that of 6B0H (Table S1). ^c The transcription rate (k_5) was dropped from 3.1 (WT) to 0.4, to match the loss of sharpness observed in this construct. Sharpnesses for the other constructs are model predictions. ^d This value set by matching the posterior shift compared to hb^{14F} . ^e 6th Bcd binding (k_{26}) set to 1e9, to match experimental posterior shift with construct doubling. ^f This construct has a truncated hb promoter: 1st Bcd (A₁) binds at 2.8e7 (k_{11}); 2nd Bcd (A₂), 3.6e7 (k_{14}); 3rd Bcd (X₁), 2.5e7 (k_{17} ; slightly stronger than in 4X, to match position); 4th Bcd (X₂), 1.4e8 (k_{20} ; as in 4X and WT).