Table S3 – Hb binding strengths

<u>rable 55</u> – 110 billuling strengths					
Model	3A3X, 2H	6B2H_lacZ ^b	6B1H_lacZ	$2x(6B1H)$ _lacZ ^e	4B1H_lacZ ^f
Experiment	WT	pThb5	pThb1,6,9	pThb8	pThb2
Position of	47	46	43	49	40
boundary (%EL)					
Sharpness (degrees)	83 (protein) 84 ^a (mRNA)	78	71	75	52
1^{st} Hb bind $(k_3, M^{-1} s^{-1})$	4e6	4e6	4e6 ^d	4e6	4e6
2^{nd} Hb (k_6)	1e8	1e8 ^c			

Unbinding rates, k_4 and k_7 , are set to 1/s.

^a WT protein sharpness is fit to data, mRNA sharpness is a model prediction. Hb diffusivity D_{Hb} =0.3 μ m²/s (equal to the nuclear-resolution value measured in [41]) gives the best fit to experimental sharpness.

^bExpression levels for simulations with Hb sites were higher, but never more than twice, that of 6B0H (Table S1).

^c The transcription rate (k_5) was dropped from 3.1 (WT) to 0.4, to match the loss of sharpness observed in this construct. Sharpnesses for the other constructs are model predictions.

^d This value set by matching the posterior shift compared to hb^{14F} .

^e 6th Bcd binding (k_{26}) set to 1e9, to match experimental posterior shift with construct doubling. ^f This construct has a truncated hb promoter: 1st Bcd (A₁) binds at 2.8e7 (k_{11}); 2nd Bcd (A₂), 3.6e7 (k_{14}); 3rd Bcd (X₁), 2.5e7 (k_{17} ; slightly stronger than in 4X, to match position); 4th Bcd (X₂), 1.4e8 (k_{20} ; as in 4X and WT).