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The moments of the mRNA probability distribution

We start by considering the same mechanism as in the text (see figure 1), in which the promoter switches between one active and one inactive state. There are only two stochastic variables in the model: the number of mRNA transcripts per cell (m), and the state of the promoter which reflects which transcription factors are bound where. The promoter state is always a discrete and finite stochastic variable (s) (for an example, see figure 1a). The example in figure 1a illustrates the simplest model of transcriptional activation by a transcription factor. 
When the activator is bound to the promoter (state 1) mRNA is synthesized at rate 
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. When the activator is not bound (state 2) mRNA is synthesized at a lower rate . The promoter switches stochastically from state 1 to state 2 with rate 
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, and from state 2 to state 1 with rate 
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. Each mRNA molecule is degraded with rate 
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The time evolution for the joint probability of having the promoter in states 1 or 2, with 

 mRNAs in the cell (which we write as 
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pm

 and 
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, respectively), is given by a master equation, which we can build by listing all possible reactions that lead to a change in cellular state, either by changing 

 or by changing 

 (figure 1b). The master equation takes the form:
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Inspecting this system of equations, we notice that by defining the vector:
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and the matrices
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we can rewrite the system of equations (1) in matrix form. 
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This approach can be generalized to any mechanism of transcriptional regulation at the promoter level. The only difference between the mechanisms rests on the particular dimensionality and form of the three matrices defined above. Examples of those matrices for all of the architectures and mechanisms investigated on this paper are given in Table S1 in Text S1. In steady state, the left hand side of equation (4) is equal to 0:
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In order to find the first two moments of the steady state mRNA probability distribution, we follow the same strategy as in references [1,2]: we multiply both sides of equation (5) by 
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 and 
[image: image20.wmf]2

m

respectively, and then sum over all values of 
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, from 0 to
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. We start from the first moment of the mRNA distribution, which requires us to multiply equation (5) by 

 and then sum: 
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Since none of the three matrices
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are functions of m, they can be taken out of the sums, and we find: 
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It will be convenient in what follows to define the following vectors of partial moments of the mRNA probability distribution: 
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The usefulness of these vectors of partial moments of the mRNA distribution lies in the fact that they are related to the moments of the probability distribution. For instance, the mean mRNA is given by 
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If we define, again for convenience, the vector 
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 . Following this example, it is also straightforward to prove that the second moment of the mRNA distribution is given by: , we find that the mean of the mRNA distribution is related to the vectors of partial moments by 
Given these definitions, we return to equation (7) which we can now write as:
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We can re-arrange terms in the last two sums so that we write them as operations on the vectors of partial moments of the probability distributions. For instance, by making the change of variables: 
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, and taking into account the fact that the number of mRNA molecules inside the cell can never fall below 0 (so that  ), we find:
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Similarly, by making the change of variables 
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, the last sum takes the simpler form:
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Entering these results into equation (10), we finally find:
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The vector of partial moments 

 is therefore the solution to the matrix equation:
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The final step is to multiply both sides of equation (14) by the vector 
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. Therefore, multiplying 
on the left by the vector 

 leads us to: 
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Knowing that the mean of the mRNA distribution is related to the vector of partial moments by:  
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Note that, by definition, 
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In other words, the first element of vector 
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 is the steady state probability to find the promoter in state 1, and the second element is the steady state probability to find the promoter in state 2. This vector is straightforward to obtain by summing equation (5) over all m, and it is the solution of  
, normalized so that 
[image: image82.wmf](1)(2)1

pp

+=

.
In order to find the second moment, we just multiply equation (5) by 
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 and sum over all m from 0 to . As a result of this manipulation, we find: 
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The last two terms of the right hand side of equation (18) can be simplified by writing the two sums in terms of the vectors of partial moments.  In order to do that, we must make the same changes of variables that we invoked above when dealing with the mean. First, the change of variables 
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Finally, the change of variables [image: image91.wmf]1
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, allows us to re-write the last sum as:
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Entering these last two sums in equation (18), we find: 
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As we did before, we can transform this equation into an equation for the moments of the mRNA distribution by multiplying both sides of this equation on the left by the vector 

. Performing these operations, we find:
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Therefore, the second moment of the mRNA distribution in steady state is given by:
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Using the fact that the first moment is given by: 

[image: image98.wmf](0)

 

  .

rm

m

g

=

rr











       MACROBUTTON MTPlaceRef \* MERGEFORMAT (24)

We can further simplify the second moment as:
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Therefore, the normalized variance can be written as:
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The moments of the protein probability distribution

We can use the same method to compute the normalized variance of the protein distribution. We will start from a promoter that is constitutively active, and then extend our analysis to a promoter that switches between two or more active and inactive states. We assume that each transcription event leads to the production of multiple proteins (a “burst”). The number of proteins produced per mRNA (which we denote as 
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As discussed above, the first sum can be further simplified to:
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As a result, the master equation takes the form:
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In steady state, the right hand side of equation (29) is equal to 0, and we have:
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The first two moments of the steady state protein distribution 
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can be obtained, in exactly the same way we used to find out the moments of the mRNA distribution in the previous section: by multiplying both sides of equation (30) by 
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We can do the same for the second sum, and we find:
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Likewise, it will be necessary to recall from the first section of this supplement, that the sum 
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With these results in hand, we can finally solve the first two moments of the protein distribution 
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Solving this equation, we find that the mean protein per cell is equal to:
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For the second moment, we find:
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Solving this last equation, we find that the second moment of the protein distribution is equal to:
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Therefore, the normalized variance of the protein distribution for a constitutive promoter takes the form:
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If now we consider that the promoter can exist in two states, characterized by having different rates of transcription, then the cell’s state is characterized not only by the number of proteins present, but also by the state of the promoter. Therefore, the master equation must consider two   variables: one characterizing the state of the promoter (s), and one representing the number of proteins per cell (n). By analogy with the mRNA master equation, and the master equation for the protein distribution of a constitutive promoter, the two-state master equation for the protein distribution can be written as:
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Just as we did in order to compute the moments of the mRNA distribution, we can define the vector 
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. By doing so, we will be able to re-write the master equation (39) as a matrix equation, that will be applicable to any promoter with any number of states. This matrix equation can be written in terms of exactly the same matrices we used for the mRNA probability distribution. We find:
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In steady state, the left side of equation (40) is equal to 0, and the master equation has the form:
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Just as we did in order to calculate the moments of the mRNA distribution, it will be convenient to define the vectors of partial moments:
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It is straightforward to see that the vector
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 is exactly identical to the vector 
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and


[image: image157.wmf](

)

222

0010

(2)(2)(3)(3)(2)(1)(2)(1)(0)

(2)

ˆˆˆˆˆ

0 ()()()(1) (1)

1

ˆˆˆˆˆ

       22(12)

11

ˆˆ

   

n

nnn

b

nKRnIpnRnhpnnnIpn

b

bb

KnRnInInnnRnbnbbn

bb

KnI

b

dbbd

dd

d

¥¥¥

====

éù

=--+-++×+=

êú

+

ëû

æö

=--+-+++++=

ç÷

++

èø

=+

åååå

rrr

rrrrrrrrr

r

(

)

(

)

(

)

(

)

(2)(1)(1)(0)

(2)(1)(0)

ˆ

22(12)

ˆˆˆˆˆ

   22(12)   .

nnRbnbbn

KInIbRnbbRn

dd

-++++=

=-++++

rrrr

rrr

             MACROBUTTON MTPlaceRef \* MERGEFORMAT (44)

Now by multiplying the vector 
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and:
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Thus, we find analytical equations for the first two moments of the protein distribution:
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Where 
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 is the solution of equation (43):
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Armed with these equations, we can finally compute the stationary variance of the protein distribution:

[image: image165.wmf](

)

(

)

2

(1)

2

(1)

222

 

1

  

1

()1

  .

d

d

×

++-

+

æö

==+-

ç÷

èø

rr

rr

brn

bnn

brn

b

Varn

n

n

nnn




     MACROBUTTON MTPlaceRef \* MERGEFORMAT (50)

Exploration of the space of parameter values

In order to test how some of the key qualitative and quantitative conclusions discussed in the main text depend on choice of rate constants that characterize the different architectures, we computed the Fano factor for a large set of parameter values drawn randomly from the space of possible values. The results of these calculations are shown in figures S2, S3, and S4. 
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Figure 1. Cartoon depiction of the construction of kinetic rate matrices and vectors. (A) Cartoon representation of the kinetic rate matrix 
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. The diagonal elements represent the net rate at which the promoter abandons each state. For instance, element 
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 is the rate at which the promoter abandons state 1 due to stochastic association of the activator with the promoter: 
, and element  
 is the rate of dissociation of the activator from the promoter, abandoning state 2. The non-diagonal element 
 is the rate at which the promoter makes a transition from state 1 to state 2 (by dissociation association of one activator to the promoter), and the non-diagonal element 
 is the rate at which the promoter makes a transition from state 2 to state 1 (by dissociation of the activator). (B) The transcription rate matrix contains, in its diagonal elements, the net rate of transcription at each promoter state. Element 
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 is the rate of transcription in promoter state 2. (C) The vector  
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 .contains the rates of transcription at states 1 and 2, and is identical to the diagonal of matrix 
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Figure 2. Effect of parameter choice on Fano factor for independent and cooperative repression architectures. We sample the parameter space by randomly selecting 10,000 different values for the mean mRNA 
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(from 0.001 to 1). The Fano factor is calculated for both independent and cooperative repression architectures, when the mean is the same for both. In the X axis we plot the Fano Factor for independent repression. In the Y axis we plot the Fano factor for cooperative repression. As is the case throughout the paper, we assume that we vary the mean by titrating the amount of repressor inside the cell. Each point in the figure corresponds to two architectures with the same mean. We find that cooperative binding always results in larger cell-to-cell variability than non-cooperative binding. The red solid line marks the region where the Fano factor is the same for both architectures.
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Figure 3. Simple activation tends to be noisier than simple repression at low expression levels. We follow the same procedure as in figure S1, and sample the parameter space by randomly selecting 1,000 different values for the mean mRNA 
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, the enhancement factor 
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 (from 10 to 100). For each one of these 10,000 sets of parameters, we compute the Fano factor for the simple activation and the simple repression architectures. We plot the ratio between the Fano factor for simple activation and repression as a function of the mean. We find that at low mRNA levels 
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, the simple activation architecture is noisier than the simple repression architecture in over 99% of the sets of rates tested here. In contrast, at high mRNA levels, it is the other way around. In order for the comparison between both architectures to be meaningful, we have assumed that the repressor and the activator have the same affinity for their operators (even if we vary this affinity over 4 orders of magnitude). The red solid line marks the region where the Fano factor is the same for both architectures (and thus the ratio between the two is 1)

[image: image1.wmf]1

r


Figure 4. Effect of parameter choice on Fano factor for the repression by DNA looping architecture We sample the parameter space by randomly selecting 10,000 different values for the mean mRNA 
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(from 0.01to 100), and the parameter characterizing the rate of dissociation in the presence of the auxiliary operator, relative to that in its absence (c). We first assume that c = 1 for all parameter sets (A), and then we randomly sample it within 1 and 10 (B).  In the X axis we plot the Fano Factor for simple repression. In the Y axis we plot the Fano factor for repression by DNA looping. As is the case throughout the paper, we assume that we vary the mean by titrating the amount of repressor inside the cell. Each point in the figure corresponds to two architectures with the same mean. We find that whether DNA looping enhances or diminishes noise depends on the value of c. If c = 1, meaning that DNA looping does not affect the rate of dissociation of the repressor from the operator, the Fano factor for the DNA looping architecture is larger than the Fano factor for the simple repression architecture. On the other hand, if 
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, DNA looping may decrease noise (as observed for ~40% of the parameters chosen). The red solid line marks the region where the Fano factor is the same for both architectures.
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Table S1: Kinetic rate matrices for all mechanisms in the text. In the first column, we represent the kinetic mechanisms of gene regulation for all of the architectures considered in the text. In the second and third columns, we show the corresponding promoter kinetic transition rate matrices 
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Table S2: Fold-change in noise for different promoter architectures. The fold-change in promoter noise is shown as a function of the different kinetic parameters corresponding to each promoter architecture considered throughout the text. Refer to Table I for the definition and value of each rate.
A





B








[image: image212.png]


_1337064582.unknown

_1337244670.unknown

_1348395644.unknown

_1349696570.unknown

_1349696947.unknown

_1350370014.unknown

_1350370068.unknown

_1350389535.unknown

_1350390175.unknown

_1350370038.unknown

_1349697193.unknown

_1349697609.unknown

_1349696615.unknown

_1349696665.unknown

_1349696598.unknown

_1349695952.unknown

_1349696058.unknown

_1349696130.unknown

_1348399565.unknown

_1348395655.unknown

_1342883642.unknown

_1348395514.unknown

_1348395601.unknown

_1348395631.unknown

_1348395588.unknown

_1348395326.unknown

_1348395337.unknown

_1342883657.unknown

_1337254097.unknown

_1340128572.unknown

_1340128580.unknown

_1340128907.unknown

_1337254147.unknown

_1337254172.unknown

_1337254187.unknown

_1337254167.unknown

_1337254118.unknown

_1337253882.unknown

_1337253902.unknown

_1337245033.unknown

_1337243351.unknown

_1337243894.unknown

_1337244611.unknown

_1337244657.unknown

_1337244581.unknown

_1337244608.unknown

_1337243375.unknown

_1337243406.unknown

_1337243363.unknown

_1337064941.unknown

_1337065282.unknown

_1337065367.unknown

_1337065418.unknown

_1337168338.unknown

_1337065312.unknown

_1337065062.unknown

_1337065209.unknown

_1337065241.unknown

_1337065066.unknown

_1337065037.unknown

_1337064690.unknown

_1337064902.unknown

_1337064668.unknown

_1337064674.unknown

_1337064658.unknown

_1337002675.unknown

_1337064275.unknown

_1337064446.unknown

_1337064538.unknown

_1337064562.unknown

_1337064568.unknown

_1337064549.unknown

_1337064518.unknown

_1337064526.unknown

_1337064455.unknown

_1337064369.unknown

_1337064421.unknown

_1337064429.unknown

_1337064381.unknown

_1337064285.unknown

_1337064289.unknown

_1337064280.unknown

_1337004020.unknown

_1337064047.unknown

_1337064208.unknown

_1337064248.unknown

_1337064225.unknown

_1337064078.unknown

_1337064099.unknown

_1337064073.unknown

_1337064063.unknown

_1337005217.unknown

_1337063226.unknown

_1337063984.unknown

_1337005828.unknown

_1337005860.unknown

_1337004059.unknown

_1337004661.unknown

_1337004045.unknown

_1337003411.unknown

_1337003792.unknown

_1337004013.unknown

_1337003726.unknown

_1337002856.unknown

_1337002935.unknown

_1337002773.unknown

_1336286428.unknown

_1336989414.unknown

_1336991181.unknown

_1336991453.unknown

_1337000219.unknown

_1337000354.unknown

_1337000778.unknown

_1337000956.unknown

_1337000237.unknown

_1336999491.unknown

_1337000162.unknown

_1337000146.unknown

_1336991494.unknown

_1336999406.unknown

_1336991225.unknown

_1336991238.unknown

_1336991214.unknown

_1336989469.unknown

_1336990468.unknown

_1336991088.unknown

_1336989557.unknown

_1336989437.unknown

_1336989455.unknown

_1336987593.unknown

_1336987728.unknown

_1336988135.unknown

_1336988324.unknown

_1336988049.unknown

_1336987647.unknown

_1336286805.unknown

_1336286829.unknown

_1336987497.unknown

_1336286773.unknown

_1336283680.unknown

_1336285531.unknown

_1336285728.unknown

_1336286023.unknown

_1336285606.unknown

_1336283688.unknown

_1336283689.unknown

_1336283681.unknown

_1336283676.unknown

_1336283679.unknown

_1336283675.unknown

