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1 Deterministic models

In this section we consider the mean field descriptions at the steady state of the three networks in analysis:
a TF-gene linear circuit without any post-transcriptional control, an incoherent miRNA-mediated FFL
and an open circuit. As we will show the open circuit is built in order to have the same mean levels of
molecular species (in particular of target proteins) that are obtained with the FFL. This feature makes the
open circuit a suitable null model in order to disentangle the topology contribution to noise buffering. In
this section the variables that describe the state of the system ( {w, q, r, s, p} for the FFL) are continuous
variables.

1.1 The TF-gene linear circuit

Figure 1. Scheme of a TF-gene linear circuit. Rectangles represent DNA-genes, from which RNAs
(w, r) are transcribed and eventually degraded (broken lines). RNAs can be translated into proteins (q
is the copy number of TFs while p of target proteins) symbolized by circles, and proteins can be
degraded (broken circles). Rates of each process (transcription, translation or degradation) are depicted
along the corresponding black arrows. Regulations are represented in red, with arrows indicating
activation by TFs.

A deterministic description of the scheme in Fig.1 is given by the equations:

dw

dt
= kw − gww

dq

dt
= kqw − gqq

dr

dt
= kr(q) − grr

dp

dt
= kpr − gpp, (1)

where the rate of transcription of the target mRNAs (r) is a Hill function of the number of TFs (q):
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kr(q) =
krq

c

hc
r + qc

. (2)

At the steady state, where dxi/dt = 0 ∀xi ∈ {w, q, r, p}, the system of equations can be solved, ending
up with:

wss =
kw

gw

qss =
kqkw

gqgw

rss =
k2

qkrk
2
w

gr(g2
qg2

wh2
r + k2

qk2
w)

pss =
kpk

2
qkrk2

w

gpgr(g2
qg2

wh2
r + k2

qk2
w)

, (3)

where the subscript ss indicates the evaluation at the steady state and we assumed c = 2.

1.2 The FFL

Figure 2. Scheme of a miRNA-mediated incoherent FFL. Notations are the same of Fig.1. The only
difference with respect to Fig.1 is the presence of the miRNA gene, activated by the TF (red arrow).
MiRNA regulation of the target (red rounded end line) makes its rate of translation a function of
miRNA concentration.

A deterministic description of the scheme in Fig.2 is given by the equations:
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dw

dt
= kw − gww

dq

dt
= kqw − gqq

ds

dt
= ks(q) − gss

dr

dt
= kr(q) − grr

dp

dt
= kp(s)r − gpp. (4)

The transcription rates of the miRNA gene and of the target gene are Hill functions of the number
of TFs (q), while the translation rate of the target gene is a repressive Hill function of the number of
miRNAs (s):

kr(q) =
krq

c

hc
r + qc

ks(q) =
ksq

c

hc
s + qc

kp(s) =
kp

1 + ( s
h )c

. (5)

For simplicity we use the same Hill coefficient c for each Hill function, but the analysis can be
straigthforwardly generalized to the case of Hill functions with different steepness.
At the steady state, where dxi/dt = 0 ∀xi ∈ {w, q, s, r, p}, the system of Eqs.4 can be solved (we assume
again c = 2), ending up with:

wss =
kw

gw

qss =
kqkw

gqgw

sss =
k2

qksk
2
w

gs(g2
qg2

wh2
s + k2

qk2
w)

rss =
k2

qkrk
2
w

gr(g2
qg2

wh2
r + k2

qk2
w)

pss =
h2kpk

2
qkrk

2
w

gpgr(g2
qg2

wh2
r + k2

qk2
w)

(

h2 +
k4

qk2
sk4

w

g2
s(g2

qg2
wh2

s+k2
qk2

w)2

) . (6)

The results for wss, qss, rss coincide with the corresponding ones of the TF-gene linear cascade (see
Eqs.3). sss and rss have the same functional dependence on the input parameters (except for the obvious
substitutions kr ↔ ks, gr ↔ gs and hr ↔ hs) as their expression depends on the amount of TFs in the
same way. On the contrary p has a different expression with respect to the linear circuit TF-gene, as in
this case additional terms, related to miRNA repression, appear.
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Figure 3. Scheme of an open circuit that can lead to the same mean concentrations of molecular
species of the FFL. The notation is the same of Fig.1. Unlike the FFL case, here the miRNA and the
target gene are activated by two indipendent TFs, present in copy numbers q and q′.

1.3 The open circuit

A deterministic description of the scheme in Fig.3 is given by the equations:

dw

dt
= kw − gww

dq

dt
= kqw − gqq

dw′

dt
= kw − gww′

dq′

dt
= kqw

′ − gqq
′

ds

dt
= ks(q) − gss

dr

dt
= kr(q

′) − grr

dp

dt
= kp(s)r − gpp. (7)

The presence of two independent TFs (copy numbers q and q′) that regulate respectively the tran-
scription of s and r does not change the expression of pss previously obtained in the FFL case, as long as
their rate of transcription, translation and degradation are the same of that of the single TF in the FFL
and assuming that the Hill functions of activation of the target gene and the miRNA gene are exactly
the same. The solutions of Eqs.7 at equilibrium (with c = 2) are:
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wss = w′

ss =
kw

gw

qss = q′ss =
kqkw

gqgw

sss =
k2

qksk
2
w

gs(g2
qg2

wh2
s + k2

qk2
w)

rss =
k2

qkrk
2
w

gr(g2
qg2

wh2
r + k2

qk2
w)

pss =
h2kpk

2
qkrk

2
w

gpgr(g2
qg2

wh2
r + k2

qk2
w)

(

h2 +
k4

qk2
sk4

w

g2
s(g2

qg2
wh2

s+k2
qk2

w)2

) . (8)

Therefore, this open circuit allows the same setting of the concentration of target proteins. As
mentioned above, this feature makes the open circuit a good null model for comparison with the FFL:
as the mean field description is the same, any difference between the two will be due to stochastic
fluctuations.

2 Stochastic Models

We present the master equations for the three circuits discussed in the previous section (Fig.1,2,3), keeping
into account the discrete and stochastic nature of chemical reactions. The strategy to find the expression
of < p > and CVp at the steady state is the method of the moment generating function (as discussed in
the main text). In this section the variables describing the system ({w, q, r, s, p} for the FFL) are discrete
and represent the actual number of molecules at a specific time. The notation < xi > indicates the mean
value at the steady state for the variable xi.

2.1 Linearization of Hill functions

As a first step, following [1,2] we linearize Hill functions in Eqs.5. This is a commonly used approximation
[1,2] and it is based on the idea that at the steady state the distributions of regulators (TFs or miRNAs)
have a finite width and sample only small regions of the domains of the corresponding Hill functions. We
may therefore approximate Hill functions by their linearizations about mean values of the regulators q or
s:

kr(q) ∼ kr(q)|<q> + ∂qkr(q)|<q>(q− < q >)

ks(q) ∼ ks(q)|<q> + ∂qks(q)|<q>(q− < q >)

kp(s) ∼ kp(s)|<s> + ∂skp(s)|<s>(s− < s >). (9)

Defining:
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k0
r = kr(q)|<q> − ∂qkr(q)|<q> < q >

k1
r = ∂qkr(q)|<q>

k0
s = ks(q)|<q> − ∂qks(q)|<q> < q >

k1
s = ∂qks(q)|<q>

k0
p = kp(s)|<s> − ∂skp(s)|<s> < s >

k1
p = −∂skp(s)|<s>, (10)

and substituting in Eqs.9 we obtain Eqs.4 of the main text:

kr(q) ∼ k0
r + k1

rq

ks(q) ∼ k0
s + k1

sq

kp(s) ∼ k0
p − k1

ps. (11)

2.2 The TF-gene linear circuit

The master equation that describes the circuit in the scheme of Fig. 1 is:

∂Pw,q,r,p

∂t
= kw(Pw−1,q,r,p − Pw,q,r,p) + kqw(Pw,q−1,r,p − Pw,q,r,p)

+kr(q)(Pw,q,r−1,p − Pw,q,r,p) + kpr(Pw,q,r,p−1 − Pw,q,s,r,p)

+gw

[

(w + 1)Pw+1,q,r,p − wPw,q,r,p

]

+ gq

[

(q + 1)Pw,q+1,r,p − qPw,q,r,p

]

+gr

[

(r + 1)Pw,q,r+1,p − rPw,q,r,p

]

+ gp

[

(p + 1)Pw,q,s,r,p+1 − pPw,q,s,r,p

]

. (12)

Introducing the moment generating function as:

F (z1, z2, z3, z4) =
∑

w,q,r,p

zw
1 zq

2 zr
3 zp

4 Pw,q,r,p, (13)

and using the linearized form of Hill functions in Eq.11, we can convert Eq.12 into a first order partial
differential equation (PDE):

∂tF = kw(z1F − F ) + kqz1(z2∂z1
F − ∂z1

F ) + k0
r(z3F − F )

+k1
rz2(z3∂z2

F − ∂z2
F ) + kpz3(z4∂z3

F − ∂z3
F )

+gw(∂z1
F − z1∂z1

F ) + gq(∂z2
F − z2∂z2

F )

+gr(∂z3
F − z3∂z3

F ) + gp(∂z4
F − z4∂z4

F ). (14)

This equation cannot be solved exactly but it is not difficult to extract the first two moments of the
probability distributions Pw,q,r,s at the steady state, thus allowing to obtain a close expression for p and
CVp = σp/ < p >.
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2.2.1 Moments of the distribution

These moments can be evaluated by deriving Eq.14 at the steady state (∂tF = 0) and using the following
properties of the moment generating function: F |1 = 1; Fi =< xi >; Fii =< x2

i > − < xi > (with the
notation Fi = ∂xi

F ), where |1 means evaluation of F at xi = 1 for all i. We only discuss here the
derivatives which are needed to obtain F3 =< p > and F3,3 − F 2

3 + F3 = σ2
p.

F1 = kw/gw

F2 =
kqF1

gq

F3 =
k0

r + k1
rF2

gr

< p >= F4 =
kpF3

gp

F1,1 =
kwF1

gw

F1,2 =
kqF1 + kwF2 + kqF1,1

gq + gw

F1,3 =
k0

rF1 + kwF3 + k1
rF1,2

gr + gw

F1,4 =
kwF4 + kpF1,3

gp + gw

F2,2 =
kqF1,2

gq

F2,3 =
k0

rF2 + k1
rF2 + kqF1,3 + k1

rF2,2

gq + gr

F2,4 =
kqF1,4 + kpF2,3

gp + gq

σ2
p− < p > + < p >2= F3,3 =

k0
rF3 + k1

rF2,3

gr

F3,4 =
kpF3 + k0

rF4 + k1
rF2,4 + kpF3,3

gp + gr

F4,4 =
kpF3,4

gp
. (15)

2.3 The FFL

The master equation describing the circuit in the scheme of Fig. 2 is:
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∂Pw,q,s,r,p

∂t
= kw(Pw−1,q,s,r,p − Pw,q,s,r,p) + kqw(Pw,q−1,s,r,p − Pw,q,s,r,p)

+kr(q)(Pw,q,s,r−1,p − Pw,q,s,r,p) + ks(q)(Pw,q,s−1,r,p − Pw,q,s,r,p)

+kp(s)r(Pw,q,s,r,p−1 − Pw,q,s,r,p) + gw

[

(w + 1)Pw+1,q,s,r,p − wPw,q,s,r,p

]

+gq

[

(q + 1)Pw,q+1,s,r,p − qPw,q,s,r,p

]

+ gr

[

(r + 1)Pw,q,s,r+1,p − rPw,q,s,r,p

]

+gs

[

(s + 1)Pw,q,s+1,r,p − sPw,q,s,r,p

]

+ gp

[

(p + 1)Pw,q,s,r,p+1 − pPw,q,s,r,p

]

. (16)

Introducing the moment generating function:

F (z1, z2, z3, z4, z5) =
∑

w,q,s,r,p

zw
1 zq

2 zs
3 zr

4 zp
5 Pw,q,s,r,p, (17)

and using the linearization in Eqs.9, we can convert Eq.26 into a PDE that is of second order in this
case:

∂tF = kw(z1F − F ) + kqz1(z2∂z1
F − ∂z1

F ) + k0
r(z4F − F )

+k1
rz2(z4∂z2

F − ∂z2
F ) + k0

s(z3F − F ) + k1
sz2(z3∂z2

F − ∂z2
F )

+k0
pz4(z5∂z4

F − ∂z4
F ) − k1

pz3z4(z5∂z3,z4
F − ∂z3,z4

F )

+gw(∂z1
F − z1∂z1

F ) + gq(∂z2
F − z2∂z2

F ) + gs(∂z3
F − z3∂z3

F )

+gr(∂z4
F − z4∂z4

F ) + gp(∂z5
F − z5∂z5

F ). (18)

As mentioned in the main text, even if we linearized the Hill functions in the master equation (Eq.26),
the term related to the translation of the regulated target keeps a nonlinear contribution due to the
product k1

psr. This has the effect of making Eq.18 a second order PDE.
Remarkably enough one can nevertheless obtain closed analytical expressions for < p > and CVp. The
only additional complication, with respect to TF-gene case discussed in the previous section is that the
calculation of some fourth moments is required. We do not report here the expression of all the moments
for the sake of shortness but they can be easily derived with tedious but straightforward algebra.

2.4 The open circuit

The master equation describing the circuit in the scheme of Fig. 3 is:
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∂Pw,q,w′,q′,s,r,p

∂t
= kw

[

(Pw−1,q,w′,q′,s,r,p − Pw,q,w′,q′,s,r,p)

+(Pw,q,w′−1,q′,s,r,p − Pw,q,w′,q′,s,r,p)
]

+kq

[

w(Pw,q−1,w′,q′,s,r,p − Pw,q,w′,q′,s,r,p)

+w′(Pw,q,w′,q′−1,s,r,p − Pw,q,w′,q′,s,r,p)
]

+kr(q)(Pw,q,w′,q′,s,r−1,p − Pw,q,w′,q′,s,r,p)

+kp(s)r(Pw,q,w′,q′,s,r,p−1 − Pw,q,w′,q′,s,r,p)

+ks(q
′)(Pw,q,w′,q′,s−1,r,p − Pw,q,w′,q′,s,r,p)

+gs

[

(s + 1)Pw,q,w′,q′,s+1,r,p − sPw,q,w′,q′,s,r,p

]

+gw

[

(w + 1)Pw+1,q,w′,q′,s,r,p − wPw,q,w′,q′,s,r,p

]

+gq

[

(q + 1)Pw,q+1,w′,q′,s,r,p − qPw,q,w′,q′,s,r,p

]

+gw

[

(w′ + 1)Pw,q,w′+1,q′,s,r,p − w′Pw,q,w′,q′,s,r,p

]

+gq

[

(q′ + 1)Pw,q,w′,q′+1,s,r,p − q′Pw,q,w′,q′,s,r,p

]

+gr

[

(r + 1)Pw,q,w′,q′,s,r+1,p − rPw,q,w′,q′,s,r,p

]

+gp

[

(p + 1)Pw,q,w′,q′,s,r,p+1 − pPw,q,w′,q′,s,r,p

]

. (19)

Introducing the moment generating function:

F (z1, z2, z3, z4, z5, z6, z7) =
∑

w,q,w′,q′,s,r,p

zw
1 zq

2 zw′

3 zq′

4 zs
5 zr

6 zp
7 Pw,q,w′,q′,s,r,p, (20)

and using the linearization in Eqs.9 we can convert Eq.19 into a second order PDE analogous to
Eq.18. The expression of < p > and CVp can be obtained as in the FFL case differentiating up to fourth
moments.

2.5 Numerical definition of the steady-state time-threshold

To perform Gillespie simulations in order to check the analytical results, we must define the time tc at
which the system can be considered at the steady state. In previous papers [1, 2] the steady state was
assumed to be reached at a time equal to ten times the protein half-life. We tried to slightly improve this
definition.
For each circuit in analysis, we evaluated numerically the deterministic dynamics for the set of parameter
values chosen for the simulations, assuming the initial conditions xi = 0 ∀i. Then we defined tc as the
value above which the difference between p(tc) and its asymptotic value pss (in units of pss) becomes
smaller than a given threshold ǫ.

pss − p(tc)

pss
= ǫ. (21)

We report in fig.4 an example of this calculation in the case of the FFL circuit (details on the
parameters and initial conditions are reported in the caption). Setting as threshold ǫ = 0.05 (which,
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2000 4000 6000 8000
t

200

400

600

800

p

Figure 4. Deterministic evolution toward the steady state. We report in blue the numerical solution of
Eqs.4 for p with initial conditions xi = 0 ∀i. The red line represents the number of protein at
equilibrium given by Eq.6. The dashed orange line represents the time tc that satisfies Eq.21. At time
tc = 5000s, resulting from Eq.21 with ǫ = 0.05, the curves are almost indistinguishable. The rate of
transcription of the TF is kw = 0.06s−1 and of translation kq = 0.04s−1. Proteins degrade with a
probability gq = gp = 0.002s−1 while mRNAs and miRNAs with probability gw = gr = gs = 0.006s−1.
The parameters in the Hill functions (Eqs.5) are as follows. Maximum rate of transcription for mRNAs:
kr = 0.8s−1, while for miRNAs: ks = 0.5s−1; maximum rate of translation of the target: kp = 0.04s−1;
dissociations constants: hs = 200, hr = 200, h = 60. The Hill coefficients are always c = 2.

given the size of the fluctuations which we are interested in, turns out to be a rather conservative value)
we found for this particular circuit tc ∼ 5000s, which corresponds to about 14 times the protein half-life.

This procedure allows us to treat the different circuits on the same ground and eliminates a possible
source of numerical bias.

2.6 Robustness of our results with respect to changes in the values of the

input parameters

2.6.1 Constraints imposed on the FFLs by the requirement of sensitivity to changes in the

master TF concentration.

Functional FFLs can be defined as those in which a change in the master TF concentration can cause
a change in the concentration of target proteins and miRNAs [3]. While the issue of the trade-off
between sensitivity to signals and noise control is discussed in detail in Section 7, in the following we
shall define more simply the conditions on parameters that ensure a sufficient dependence of miRNA and
target mRNA levels on the TF concentration. Noise propagation requires a target dependence on TF
concentration, therefore only in this case noise buffering can be functional. In our contest this dependence
implies that the Hill functions of activation by the TF and of repression by the miRNA should not be
saturated at the steady state. Indeed, in conditions of complete saturation, signals and fluctuations
cannot propagate from the master TF to the target (even in absence of miRNA regulation), therefore a
noise control lose any functionality. On the other hand, in the unsaturated regime a change in the number



13

of TFs can alter in a significant way the number of target proteins in the cell together with the number
of miRNAs, generating the correlated fluctuations needed for noise buffering. If the TF concentration
is too high (with respect to hr and hs), the expression rates of the target and miRNA genes become
insensitive to variations in TF concentration (unless they are so large that can escape from the region of
saturation) limiting the sensitivity of the FFL to upstream signals. The same considerations hold for the
target repression. If there are too many miRNAs (with respect to h), the target expression is drastically
shut down and again the system becomes insensitive to changes in the number of TFs. Accordingly
we excluded from our analysis the parameter sets for which: < q >≪ hr(hs) or < q >≫ hr(hs) and
< s >≪ h or < s >≫ h. In other words, the circuit functionality imposes that concentrations of
regulators must be placed not far from the linear region of the corresponding Hill functions. A high
sensitivity corresponds also to an overexposure to noise, in fact noise amplification and sensitivity are
correlated quantities [4,12] (see also Section 7). Since the aim of our study is to prove the noise buffering
role of miRNA-mediated incoherent FFL, considering the parameter space that strongly exposes to noise
makes clearly sense and it seems not a limitation.
With the conditon of unsaturated regulations satisfied, the qualitative results in the article apply for
virtually all parameter choices. As a partial proof, in the next two sections we shall discuss a few
different combinations of parameters. As we shall see our results turn out to be remarkably robust with
respect to changes in the allowed (unsaturated) region of parameters.

2.6.2 Target and miRNA genes differentially expressed

In this section we present the target noise strength for the three circuits as a function of the ratio
between the maximum rate of transcription of miRNA gene (ks) and target gene (kr), keeping fixed the
TF concentration (< q >) and miRNA repression strength (1/h). The aim is to show that the noise
buffering role of the mixed FFL shows only a weak dependence on the characteristics of miRNA and
target promoters. In the upper part of Fig.5 we plot the target noise strength as a function of kr/ks.
One can see that in the whole range of values the mixed FFL shows the largest noise reduction effect
and in particular that the noise buffering role of the FFL does not require an equal rate of transcription
of miRNAs and mRNAs. Indeed, as discussed in the main text, the noise attenuation is due to the
correlation of fluctuations in the number of mRNAs and miRNAs and not to their absolute values.
Different maximum rates of transcription (kr and ks) only change the height of peaks in mRNA and
miRNA trajectories, without affecting their correlation.

2.6.3 mRNAs and miRNAs with different stability

Another important robustness test is the dependence of the FFL noise buffering efficiency on the ratio
of decay constants gr/gs. In principle one could expect a reduction in the FFL efficiency when gr 6= gs

due to the fact that with different values of gr and gs the mRNA and miRNA trajectories could start to
fluctuate out of phase due to different relaxation times. To answer this question we calculated the CVp

for the three circuits as a function of the ratio gr/gs. The results are reported in the lower part of Fig.5.
As in the previous case, we find that in the whole range of gr/gs that we studied the mixed FFL gives

the largest noise reduction effect.
These two tests together show that noise buffering is a generic feature of mixed FFLs and that there

is no need to fine tune the half-life and/or the transcription rate of miRNAs and mRNAs to obtain a
mixed FFL that efficiently reduces fluctuations.

2.6.4 Optimal TF concentration tuning kw instead of kq

In the main text we discussed the dependence of the noise strength CVp on the copy number of TFs
present at the steady state (Fig.6C of the main text). The parameter chosen to tune < q > was the
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Figure 5. (A) CVp as a function of the transcription rate ratio kr/ks. (B) CVp as a function of gr/gs.

rate of translation kq. For the sake of completeness we report here the same plot obtained by varying kw

instead of kq. Also with this alternative protocol the FFL outperforms the other circuits in noise control
for intermediate concentration of the TF. This is a further proof of the robustness of our results.

2.6.5 Results for another set of parameters

As a final test of robustness we solved the master equations for the three circuits with a choice of input
parameters (reported in the caption of Fig.7A) leading to sizeable fluctuations in the number of master
TFs (CVq ∼ 0.4). This should be compared with the values of the case dicussed in the main text (whose
parameter set is reported in the caption of Fig.4) for which the noise in the number of TFs was only
CVq ∼ 0.17. Also in this case the TF fluctuations are efficiently attenuated by the FFL, leading to a
final value of the noise strength in the target protein of CVp = 0.25 to be compared with CVp = 0.38 for
the direct TF-gene regulation and CVp = 0.46 for the open circuit (see the histograms in Fig.7A). These
values agree with the observation reported in the main text that the noise attenuation effect due to the
FFL circuit becomes larger and larger as the size of TF fluctuations increases. The U-shaped profile of
CVp for the FFL steps out also for this parameter set, further supporting the idea that this property does
not depend on their particular choice but is a generic feature of the model (see Fig.7B).
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2.7 Testing the effect of Hill function linearization

Besides the robustness against the choice of input parameters another important issue which one would
like to address is the effect of the linearization of the Hill functions. This can be easily achieved by
comparing analytical versus numerical (Gillespie) results for the noise reduction. Since this is the only
approximation that we made in our analysis it is important to understand which is the range of parameters
in which we can trust our analytical results not only qualitatively but also quantitatively. It is easy to
guess that the linear approximation should give sizeable errors only when the fluctuations in the variables
become large enough to cover a wide portion of the Hill function thus exploring also its non-linear part.
A good example to discuss this issue is given by the set of input parameters discussed in the previous
section. In this case, even if the analytical solution still captures qualitatively the main features of
the systems, it is less precise in its quantitative predictions. This is clearly visible in Fig.7B where
analytical predictions are compared with the results of Gillespie simulations (which keep into account
the full non linear dynamics of the FFL) as a function of the inverse of repression strength h. While
for the value of h discussed above (h = 30) the agreement is very good, as h decreases the gap between
the two curves becomes larger and larger. This is a consequence of the linearization of Hill functions
and shows that if fluctuations are too large, as it happens in the strong repression regime, the linear
approximation may become too crude. It is interesting to study how the approximation breaks down
since it is a typical example of the subtle effects which the two step nature of gene expression may have
on noise propagation. With the choice of parameters of the figure, the q fluctuations cover a wide region
of the domain of kr(q) and ks(q) (Fig.7C), but the line tangent in < q > still captures quite well the Hill
function trend, with only a slight overestimation (< r >=< s >= 20 from simulations, compared to the
predicted value of 21). On the other hand, the large fluctuations in s (CVs = 0.48) make the linearization
of kp(s) a poor approximation (Fig.7D). The s distribution spreads on a domain region where the Hill
function widely changes its curvature, therefore the tangent line introduces in many trajectories a sizeable
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Figure 7. (A)The probability distribution of target protein number for the three circuits in analysis.
The parameter values are: kw = 0.01s−1; kq = 0.3s−1; gw = gr = gs = 0.006s−1; gq = gp = 0.002s−1;
kr = ks = 0.3s−1; ; hs = hr = 200; c = 2; h = 30. Histograms are the result of Gillespie simulations
with the full nonlinear dynamics, while continuous lines are empirical distributions (gaussian for the
FFL and gamma for the TF-gene and the open circuit) with mean and variance predicted by the
analytical model. (B) The coefficient of variation of the target protein CVp as a function of the inverse
of repression strength h for the three circuits. (C) The Hill function of transcriptional activation of the
target gene (blue line). The red line represents the mean number of TFs < q > at equilibrium, while
the shaded region corresponds to intervals [q − σq, q + σq] and [q − 2σq, q + 2σq]. The orange line
represents the linearized function used for the analytical solution. (D) The Hill function of translational
repression of the target gene (blue line) by the miRNA, in the strong repression region (h = 10). The
red line represents the mean number of miRNAs < s > at equilibrium, while the shaded region
corresponds to intervals [s − σs, s + σs] and [s − 2σs, s + 2σs]. The orange line represents the linearized
function used for the analytical solution.

underestimation of the rate of target translation. As a result we have < p >= 43 from simulations while
only < p >= 28 from the analytical model. In a similar way also the standard deviation turns out to
be uncorrectly estimated by the analytical solution. These disagreements explain the displacement of
analytical curves in Fig.7B with respect to simulations. This example shows however that, despite its
quantitative failure, the analytical model describes fairly well the qualitative behaviour of the system
even in presence of large fluctuations and, as mentioned above, it becomes more and more precise when
fluctuations around steady state values cover a domain where the Hill functions are approximately linear
(which is the usual assumption in literature).
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3 MiRNA-mediated promotion of mRNA degradation

Figure 8. Scheme of a miRNA-mediated incoherent FFL, where the miRNA performs its repressive
function by promoting mRNA degradation. The notation is the same of Fig.1. The red arrow starting
from s represents the regulation of the rate of degradation gr(s), which in this case is a non-linear
increasing function of miRNA concentration.

By base pairing to mRNAs, miRNAs can mediate translational repression or mRNA degradation [5–7].
As discussed in the main text, we developed our model considering the miRNA action as repressing the
target translation, making the rate of mRNA translation a nonlinear decreasing function of the number
of miRNAs. In this section we will prove the validity of our results even in the case of miRNA repression
based on promotion of target mRNA degradation. In this case we can introduce the miRNA action
adding to the basal rate of mRNA degradation gr (in absence of miRNAs) an increasing Hill function of
the copy number of miRNAs:

gr(s) = gr +
gmaxsc

hc
deg + sc

, (22)

where gmax represents the maximum possible increase of the degradation rate in case of high miRNA
concentration (if s → ∞, gr(s) → gr + gmax); hdeg is the dissociation constant of miRNA-mRNA inter-
action; c is the Hill coefficient.
The stochastic models built on this assumptions cannot be solved with the same strategy explained in
section 2. The closure of equations for < p > and σp would require further linearizations. However, we
ran simulations for the alternative mechanism of miRNA-mediated promotion of target mRNA degrada-
tion to check the robustness of our results. Strikingly enough these simulations can be fit quite well with
the analytical predictions based on the assumption of a miRNA-mediated repression of translation.
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3.1 Deterministic model

The TF-gene linear circuit is modelled as previously shown. We present here only the deterministic
equations for the FFL, since the open circuit case can be easily obtained from the FFL description
following the same steps discussed above for the translational repression case. The mean field description
of the system in Fig.8 is:

dw

dt
= kw − gww

dq

dt
= kqw − gqq

ds

dt
= ks(q) − gss

dr

dt
= kr(q) − gr(s)r

dp

dt
= kpr − gpp, (23)

where ks(q) and kr(q) are the Hill functions of activation shown in Eqs.5, while the form of gr(s) is
shown in Eq.22.
Assuming c = 2 the expressions at steady state of wss, qss, sss are the same of Eqs.6, as nothing is changed
in their dynamics, while the expressions of rss and pss become:

rss =
k2

qkrk
2
w(g4

qg2
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wh2
degh
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s + 2g2
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sh2
deg + (gr + gmax)k2
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pss = rsskp/gp. (24)

3.2 Comparison with miRNA-mediated repression of mRNA translation

In order to compare in an unbiased way the noise properties of the mixed FFL with different mechanisms
of miRNA action, we set up the parameters of the two alternative models (Fig.2 and 8) so as to achieve
the same final levels of the target protein pss. This can be obtained by choosing the same parameters
for the two models except those involved in the miRNA regulation. These last may then be fixed by
equating the values of pss in Eq.6 and 24. As show in Fig.9 the result of this comparison is that a mixed
FFL with a degradation-based repression gives essentially the same results of the corresponding circuit
with a translation-based repression.

In particular, we show in Fig.9A the analogous (for the present repression scheme) of the histograms
of Fig.3C and 4C of the main text. As in the translational repression case also in this model the noise
buffering effect of the FFL is clearly visible thus suggesting that the inchoerent FFL loop performs equally
well its noise buffering function with either type of repression mechanism. Superimposing the distributions
with mean and variance calculated analytically for the miRNA-mediated repression of translation we find
again a very good agreement, apart from a slight disagreement in the strong repression regime (small
h). In conclusion, all the results presented in the main paper hold despite the mechanism of miRNA
repression and even if the analytical predictions are based on the assumption of a miRNA-mediated
repression on mRNA translation, they can be applied also to this case.
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Figure 9. Attenuation of noise by a FFL with a miRNA promoting degradation. (A) The probability
distribution of target protein number for the three circuits in analysis. Histograms are the result of
Gillespie simulations with the nonlinear dynamics depicted in Fig.8. Continuous lines are empirical
distributions (gaussian for the FFL and gamma for the TF-gene and the open circuit) with mean and
variance predicted by the analytical stochastic model shown in section 2.3. The parameter values are
those explained in caption of Fig.4. Even if the analytical model is built on the hypothesis of repression
of mRNA-translations, it fits equally well the distributions resulting from simulations based on
miRNA-mediated promotion of mRNA degradation. (B) Same histograms of A with a stronger
repression (h = 20, all other parameters as stated before). In the regime of strong repression the
analytical model tends to overestimate the variance σp. (C) The coefficient of variation of the target
protein CVp as a function of the inverse of repression strength h for the three circuits. The figure shows
the presence of an optimal repression strength even in the case of a degradation-based miRNA
repression. Dots are the results of Gillespie simulations with the hypothesis of a miRNA-mediated
promotion of mRNA degradation, while thick lines are analytical predictions. Apart from the
mentioned overestimation in the strong repression region the model fits quite well Gillespie simulations.

4 Stoichiometric mechanism of repression

Regulatory small noncoding RNAs (sRNAs) play a crucial role also in prokaryotes gene regulation. In
particular, the class of trans-acting sRNAs has many features in common with miRNAs in eukaryotes:
most of them bind to the UTR of the target mRNAs through base-pairing (often imperfect) recognition
to prevent their translation or to promote their degradation. However, as discussed in [8], unlike their
eukaryotic counterpart they usually act stoichiometrically on their targets, since a given sRNA molecule
is often degraded along with its target, instead of being used to regulate other targets. Different au-



20

thors [8–10] studied the peculiar features of this noncatalytic sRNA-mediated regulation, developing a
simple kinetic model for sRNA gene silencing.
In this section we shall study the noise buffering properties of incoherent FFL motifs assuming a stoi-
chiometric modality of repression, and compare our results with the previously discussed catalytic case.

Figure 10. Scheme of a miRNA-mediated incoherent FFL, where pairing of miRNA and mRNA
exposes both molecules to co-degradation. The coupled degradation of the miRNA-mRNA pair is
described through a second-order kinetic constant krs .

4.1 Deterministic model

The scheme of a mixed FFL in which the coupling between sRNAs (s) and mRNAs (r) is stoichiometric
is depicted in Fig.10. Following [8–10], we assume that both sRNA and mRNA are co-degraded when
paired with a rate that depends on the sRNA-mRNA interaction strength krs. The mean field kinetic of
our system can be described by the equations:

dw

dt
= kw − gww

dq

dt
= kqw − gqq

ds

dt
= ks(q) − gss − krsrs

dr

dt
= kr(q) − grr − krsrs

dp

dt
= kpr − gpp. (25)

The stationary solutions (dtxi = 0 ∀i ∈ {w, q, s, r, p}) can be easily calculated (not reported).
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4.2 Comparison with catalytic repression

In this section we will explore the consequences of the nature of sRNA-mRNA interaction (stoichiometric
or catalytic) on the noise properties of the mixed FFL. In analogy to section 3.2, we shall compare the
two models choosing the parameters so as to obtain the same pss with both types of sRNA action. As
can be seen comparing the schemes in Fig.3 and Fig.10, in order to have the same number of target
proteins at equilibrium we set equal rates of production and degradation of each molecular species and
then find the relation between krs in the stoichiometric model and h in the catalytic model by equating
the expression for pss in Eqs.6 and in the solution of Eqs.25.

We ran simulations for the FFL, TF-gene direct regulation and the open circuit for catalytic and
stoichiometric action (Fig.11). The noise filtering effect is robust with respect to the mechanism of
miRNA-mRNA interaction, but a catalytic interaction makes the FFL more efficient in buffering fluc-
tuations (compare the histograms in Fig.11A and B). The U-shaped profile of the noise strength CVp

of a target controlled by a FFL (discussed in the main text for catalytic repression) is recovered also
in the stoichiometric case. We report in Fig.11C and D the CVp as a function of the inverse of repres-
sion strength for two different sets of parameter values. The maximum of attenuation is achieved for
approximately the same value of h of the catalytic case but the size of noise reduction is smaller with a
stoichiometric repression.

As reported in [9] and [11], in the stoichiometric model described by Eqs.25 the mean protein num-
ber exhibits a threshold linear behaviour as a function of the ratio kr/ks with the threshold in 1 [9].
Following [8], protein expression can be classified into three regimes: repressed (kr/ks ≪ 1), crossover
(kr/ks ≈ 1) and expressing (kr/ks ≫ 1). A threshold linear behaviour implies ultrasensitivity in the
crossover regime and as a consequence the noise is enhanced near the threshold due to critical fluctua-
tions ( [8] and references therein). However, this threshold-linear response is expected if the mRNA-sRNA
interaction is strong, while for a weaker repression the threshold smoothly disappears (see Fig.12) and
the three regimes become indistinguishable. The analysis presented in Fig.11 shows that the attenuation
of fluctuations by a mixed FFL is observable in a regime of weak repression, corresponding to krs ∼ 10−4

in Fig.12, where the crossover regime is vanishing and the raise in fluctuation in kr/ks = 1 is negligible.
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Figure 11. Attenuation of noise by a FFL mediated by a sRNA that acts stoichiometrically on its
mRNA target. We chose the same parameter set described in the caption of Fig.4. In the upper part of
the figure we show the probability distribution of the target protein number for the three circuits in the
case of stoichiometric action (A) and catalytic action (B). Although in both cases the FFL reduces
relative fluctuations with respect to the direct TF regulation and the open circuit, the catalytic
modality turns out to be more efficient than the stoichiometric one. For the same set of parameters we
report in (C) the CVp as a function of the inverse of the repression strength h. In the stoichiometric
case CVp is actually a function of krs which however can be expressed as function of h (see the text).
To allow a simpler comparison of the various plots we plotted the stoichiometric results directly as
function of h. Dots are the result of simulations based on the hypothesis of a catalytic sRNA action
while the x-shaped points derive from simulations with a stoichiometric action. For each regulatory
modality we report the FFL and the open circuit data (which can be recognized because are always
higher than the FFL ones). Even if the qualitative behaviour is the same (in both cases a maximum of
noise attenuation appears) the figure clearly shows that the catalytic modality is more efficient than the
stoichiometric one in reducing the noise. (D) Same as (C) but for the alternative set of parameters
discussed in the caption of Fig.7.

5 Purely transcriptional incoherent FFLs

5.1 Stochastic model

The master equation describing a purely transcriptional incoherent FFL (depicted in the scheme of Fig.
13) is:
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Figure 12. We report the response (p) of the FFL as a function of kr/ks for different values of
miRNA-mRNA interaction strength. The red dot represents the protein production in absence of
miRNA regulation. The threshold linear response is evident only for strong repression, while for
krs = 10−4, compatible with a fine tuning regulation, the response is almost purely linear.

∂Pw,q,s,j,r,p

∂t
= kw(Pw−1,q,s,j,r,p − Pw,q,s,j,r,p) + kqw(Pw,q−1,s,j,r,p − Pw,q,s,j,r,p)

+ks(q)(Pw,q,s−1,j,r,p − Pw,q,s,j,r,p) + kjs(Pw,q,s,j−1,r,p − Pw,q,s,j,r,p)

+kr(q, j)(Pw,q,s,j,r−1,p − Pw,q,s,j,r,p) + kpr(Pw,q,s,j,r,p−1 − Pw,q,s,j,r,p)

+gw

[

(w + 1)Pw+1,q,s,j,r,p − wPw,q,s,j,r,p

]

+ gq

[

(q + 1)Pw,q+1,s,j,r,p − qPw,q,s,j,r,p

]

+gs

[

(s + 1)Pw,q,s+1,j,r,p − sPw,q,s,j,r,p

]

+ gj

[

(j + 1)Pw,q,s,j+1,r,p − jPw,q,s,j,r,p

]

+gr

[

(r + 1)Pw,q,s,j,r+1,p − rPw,q,s,j,r,p

]

+ gp

[

(p + 1)Pw,q,s,j,r,p+1 − pPw,q,s,j,r,p

]

. (26)

The protein j represses target transcription, which is also activated by the master TF q; consequently
the rate kr(q, j) is represented as a function of the concentration of both regulators. In particular, we
model the rate of target transcription as a product of Hill functions:

kr(q, j) = kr
qc

hc
r + qc

1

1 + ( j
hj

)c
. (27)

While the linearization of the Hill function ks(q) is the one presented in Eq.9, we have to introduce
the linearization of kr(q, j):

kr(q, j) ∼ kr(q, j)|<q>,<j> + ∂qkr(q, j)|<q>,<j>(q− < q >)

+ ∂jkr(q, j)|<q>,<j>(j− < j >). (28)
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Figure 13. Scheme of a purely transcriptional incoherent FFL. Notations are the same of Fig.2. The
only difference with respect to Fig.2 is the presence of a protein in the indirect pathway from the TF to
target gene, therefore there are the additional reactions: translation of the protein j from its mRNAs s
with rate kj , and their degradation with rate gj. The repressive action on the target is at the level of
transcription in this case (represented by the red rounded end line), resulting in a rate of target
transcription kr(q, j) which is a function of the number of proteins j and master TFs q.

Therefore we can define:

k0
r = kr(q, j)|<q>,<j> − ∂jkr(q, j)|<q>,<j> < j > −∂qkr(q)|<q>,<j> < q >

k1
r = ∂qkr(q, j)|<q>,<j>

k2
r = ∂jkr(q, j)|<q>,<j>. (29)

Using the linearization just defined and the method of moment generating function described in section
2, the analytical expression of < p > and CVp can be obtained.

5.2 Constraints on parameters for a comparison with miRNA-mediated FFLs

As stated in the main text, in order to make an unbiased comparison of the noise properties of these two
circuits, the corresponding models must be constrained to produce the same amount of target proteins.
There are several possible ways of putting this constraint, due to the fact that there are two additional
parameters in the transcriptional FFL (kj and gj) and therefore two supplementary degrees of freedom.
In fact, a constraint can be inserted for example in the Hill function of target activation (tuning hj) or
in the rate of s transcription ks(q), choosing accordingly the values of kj and gj . This variety of options
introduces some arbitrariness in the comparison. Our criterion is to keep the shared parameters to the
same values (i.e. repression/activation efficiencies and production/degradation rates) and choose the two
additional ones to make equal the average amount of repressor proteins < j > in the transcriptional case
to the average amount of miRNAs < s > in the mixed circuit. With this choice we end up with the
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same average amount of repressors in the two circuit versions (< j >=< s >), with the same efficiency of
repression (hj = hp), and therefore with same impact on the target expression (making equal the amount
of target proteins produced by the two circuits). To implement this constraint, in the transcriptional
FFL the rate of translation kj must simply equal the rate of degradation gj (that we assume equivalent
to the other protein degradation rates gj = gq = gp). As a result, the average number of proteins j which
is produced from a single mRNA is forced to b = kj/gs = gj/gs. b represents the translational burst size
and, as discussed in the main text, it is a critical quantity in determining the noise level. As reported
in [1], the fluctuations in the concentration of a single gene product can be expressed as:

CV 2 =
1

< p >

(

b

1 + η
+ 1

)

. (30)

Therefore, the noise level is dependent on the translational burst size (where η is the ratio of protein
to mRNA lifetime).
We report the parameter values used in the analysis summarized in Figure 8 of the main text: kj =
gj = gq = gp = 0.002; gw = gs = gr = 0.006, kr = 0.8; ks = 0.5; c = 2; hr = 200; hs = 200; kp =
0.04. For these values, the translational burst size b, compatible with constraints, is b = 0.33, which
is considerably smaller than expected in eukaryotes. In conclusion, to satisfy the constraints we are
probably underestimating the noise introduced by the supplementary translation step required in a purely
transcriptional FFL. This is why we expect that a miRNA-mediated FFL can overcome in noise-buffering
efficiency its purely transcriptional counterpart even more than reported in Figure 8 of the main text.

6 Cross-talk between miRNA targets

6.1 Stoichiometric vs catalytic model of miRNA action

We start from a mass-action model for miRNA-mediated FFLs where we introduce explicitily a para-
menter α representing the degree of catalyticity of miRNA action on targets. This type of description was
introduced by Levine et al [9] and it will be straightforwardly applied to the FFL case in the following:

dw

dt
= kw − gww

dq

dt
= kqw − gqq

ds

dt
= ks(q) − gss − (k+rs − k−c) + (1 − α)βc

dr

dt
= kr(q) − grr − (k+rs − k−c)

dc

dt
= (k+rs − k−c) − βc

dp

dt
= kpr − gpp, (31)

where c is the concentration of miRNA-mRNA complexes, k+ is the probability of miRNA-mRNA
association, k− the probability of dissociation of the complex c, which can degrade with rate β. The
parameter α represents the probability that degradation of the mRNA in the complex is accompained
by degradation of the miRNA. As discussed in [9], it is a measure of how much the miRNA action
is catalytic. In this section, the variables that describe the state of the system ( {w, q, r, s, c, p}) are
continuous variables, representing the average number of the various molecular species (we are omitting
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the notation < .. > for averages). Since we are interested in steady state properties, we can simplify the
model equilibrating the c complex dynamics:

dw

dt
= kw − gww

dq

dt
= kqw − gqq

ds

dt
= ks(q) − gss − αγrs

dr

dt
= kr(q) − grr − γrs

dp

dt
= kpr − gpp, (32)

where γ = βk+/(k− + β). The limit of α = 0 implies that for each degradation event of c complexes,
none of the miRNAs is lost. This corresponds to a simplification of the model presented in section 3 of
Text S1: the rate of mRNA degradation is supposed to be a linear function of miRNA concentration,
instead of a nonlinear Hill function. The opposite situation of p = 1 reproduces the stoichiometric model
presented in Eq.25 (apart from the sostitution γ → krs).
It is straightforward to generalize this description to the case of two miRNA targets, adding an equation
describing the dynamics of a second target which is independently transcribed:

dw

dt
= kw − gww

dq

dt
= kqw − gqq

ds

dt
= ks(q) − gss − α(γ1rs + γ2r2s)

dr

dt
= kr(q) − grr − γ1rs

dr2

dt
= kr2

− gr2
r2 − γ2r2s

dp

dt
= kpr − gpp. (33)

The analytical solutions can be found easily at the steady state. This is the complete effective model
presented partially in the main text. In the following the coupling constants between miRNAs and the
mRNAs transcribed from the two target genes will be assumed equal (γ1 = γ2 = γ).

6.2 Details on the model setting

In this section we present a detailed view of the model setting and parameter values used for the anal-
ysis regarding the target cross-talk presented in the main text. We focus specifically on the minimal
assumptions and on the parameter values used to achieve the results in Figure 9.

6.2.1 Setting for Figure 9 B

The solution for < p > of Eqs. 33 at the steady state depends on α. Therefore, in order to evaluate the
impact of the dilution effect for different mechanisms (stoichiometric/catalytic) of miRNA repression, we
choose for each α the corresponding γ value that leads to the same mean amount of target proteins < p >.



27

Qualitatively, in a catalytic model (α = 0) the miRNAs are more efficient since they can affect several
target mRNAs without being degraded. Consequently, as α decreases the γ value must be decreased so as
to mantain the same target level expression. This is the constraint that makes unique the starting point
(for kr2

= 0) of the curves corresponding to different α values in Fig. 9 of the main text. Concerning the
other parameter values, in Fig. 9 they are fixed to: kq = 0.19s−1; gq = gp = 0.002s−1; gw = gr = gs =
gr2

= 0.006s−1; kw = 0.0126s−1; kr = ks = 0.8s−1; kp = 0.04s−1; c = 2; hr = hs = 200, while the value
of γ = 0.00011s−1 is assigned to the catalytic model (α = 0) - and it corresponds approximately to the
optimal buffering value-, while the γ values for the other α models can be calculated as described above.

6.2.2 Setting for Figure 9 C

As a first approximation we assume, for the sake of simplicity, that the expression of the second target
is not regulated by any TF. Therefore, it is a simple birth-death process, with transcription rate kr2

and
degradation rate gr2

(assumed unique for both targets gr2
= gr). Since the target embedded in the FFL

is regulated by the TFs q, kr(< q >) can be used as the effective rate of transcription, to be compared
with kr2

of the second target. Indeed, kr(< q >) represents the average rate at which the joint target is
transcribed.

6.2.3 Setting for Figure 9 D

In this subsection we shall introduce a simple strategy to tune the second target fluctuations and analyze
their impact on noise buffering efficiency. The proposed strategy is in perfect analogy with the one
explained in section “The incoherent feedforward loop is effective in reducing extrinsic fluctuations” of
the main text. In brief, we add an independent TF q′ which activates the transcrition of the second target.
Its rates of transcription k′

w and translation k′

q are chosen so as to produce the same mean amount of
protein of the other activator (< q >=< q′ >). Therefore, the effective mean rates of transcription of
both miRNA targets turn out to be equal. Changing the ratio k′

w/k′

q while keeping costant the product
k′

wk′

q allows us to vary the second target fluctuations without altering its mean level.

7 Noise reduction and signaling sensitivity

Biological systems present the apparently contraddictory need for both high sensitivity to external signals
both homeostatic controls, depending on the specific function in analysis. Indeed, while one essential
feature of signal transduction systems is the amplification of small changes in input signals [12], the reliable
celullar functioning in a fluctuating environment lays on multiple homeostatic controls (the most evident
is temperature control in mammals). Similarly, at the level of genetic networks there is an interplay
between sensitivity to changes in the input signal and the ability to buffer stochastic fluctuations. An
increase in sensitivity to a signal results in an elevated exposure to its fluctuations, as shown for linear
cascades of regulations [12, 13]. More recently the sensitivity/noise-buffering analysis has been extended
to small genetic circuits, including feedback and feedforward loops [4]. The working hypothesis of the
authors is that the main function of a genetic circuit is to maximize the amplification of input signals.
We argue that while this can be often the case, some circuits can have evolved to mantain reliably a
functional steady state, even at the expense of a loss of sensitivity (and even thanks to that loss), to
implement in other words a homeostatic control.

Following [4], the steady state sensitivity can be defined as the relative response in output that follows
a change in the input. In the contest of incoherent FFLs (scheme in Fig. 2) we can consider as input the
mean number of TFs < q > and as output the consequent level of target proteins < p >. Following these
definitions, the susceptibility takes the form:
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Figure 14. (A) Noise amplification versus susceptibility for the three circuits: a miRNA-mediated
incoherent FFL, a TF-target regulation and an open circuit. The parameter values that are fixed are
those reported in caption of Fig.3 of the main text (unless kq = 0.19s−1 higher than in Fig.3 to increase
the TF fluctuations). (B) The upper panel shows the fold change in the target level in response to a
fold change in the TF level for the miRNA-mediated incoherent FFL and the TF-target linear circuit.
Continuous lines represent the behaviour of mean values while dashed lines are depicted at a distance
from the mean equal to one standard deviation. In the lower panel the noise reduction CVp/CVp0

is
depicted in same range of < q >.(C) The probability distribution of protein number for the two circuits
(miRNA-mediated FFL and TF-gene). In this case the two regulative circuits are constrained to
produce an equal mean amount of target proteins. The same steady state is achieved with a strikingly
different control of fluctuations by the two circuitries. Histograms are the result of Gillespie simulations
while continuous lines are empirical distributions (gaussian for the FFL and gamma for the TF-gene)
with mean and variance predicted by the analytical model.

susceptibility =
< q >

< p >

d < p >

d < q >
=

d ln(< p >)

d ln(< q >)
. (34)

As a measure of the quantity of noise propagating through the circuit, the noise amplification measure
η can be introduced [4]:

η =
CVp

CVq
, (35)
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defined as ratio between output and input noise. As shown in Fig. 14 A, the incoherent miRNA-
mediated FFL presents an interplay between noise amplification and susceptibility very similar to that
of a gene only activated by a TF, while the same fine-tuning implemented using an independent miRNA
would imply a more severe interplay. Therefore, the noise buffering function demonstrated in this paper
is achieved at the expense of steady-state sensitivity: given a fixed value of susceptibility, the FFL and
the TF-gene linear circuit lead to a similar degree of noise amplification, while when the noise is buffered
by the FFL there must be a loss of target susceptibility. Indeed, the fold change in target expression, that
follows a change in the TF mean level < q >, is reduced precisely in the region where the noise control
is implemented (see Fig.14 B). However, we propose that this is precisely the behaviour needed for a
homeostatic control. The output is highly sensitive to changes in the input concentration until a finely
tuned steady state is reached, then this functional steady state is kept robust to input fluctuations even
if at the expense of a sensitivity loss. The same steady state could be reached more simply without any
miRNA regulation, tuning the TF concentration in a TF-gene circuit, so as to conserve a high sensitivity.
However, in this case the equilibrium level would be affected by strong fluctuations propagating from the
upstream factor, as clearly shown in Fig. 14 B.
In conclusion, if the sensitivity is the function that have to be maximized, as it is probably the case
in signaling systems, incoherent FFLs (and miRNA mediated ones) are outperformed by other circuits
(like those making use of positive feedbacks loops [4]) that support less noise amplification at a fixed
susceptibility. However, in different biological contests a high sensitivity could be important only until a
functional steady state is reached. Then a homeostatic control can be required for keeping the reached
level constant in presence of noisy upstream regulators and miRNA-mediated FFLs seems properly de-
signed for this aim. The proposed functioning is also in agreement with the idea of fine-tuning: when the
target expression is switched on by a rise in TF concentration, the maintenance of its level into a narrow
functional range can be more important than a reliable transmission of further incoming small signals. A
role of miRNA regulation in homeostasis is in line with the observation that miRNAs are often involved
in signaling networks to ensure homeostatic controls (see for example [14]).

8 Effects of possible delays in miRNA production.

The common lore is that a RNA based post-transcriptional regulation can have a faster action on a target
gene expression with respect to TF regulation [20, 21]. Indeed, a TF must be transported back to the
nucleus and find its target promoter to exert its regulative role. However there is a lack of data to support
quantitatively this assumption and the biogenesis of miRNA actually requires several processing steps.
The time needed for the miRNA to be processed, loaded in RISC and in general to become active can
introduce a delay between its transcription and its effect on targets. Therefore it could be interesting
to consider possible effects of this time delay on the noise buffering function of mixed FFLs. While in
the model presented in the main text the miRNA is supposed to act on its target instantaneously, in
this section we present results of simulations performed taking into account the time-delay that can arise
from miRNA processing. More specifically the time-delay has been inserted in the Hill function of regu-
lation of the target translation, mimicking the time required for miRNA activation. With this simulation
procedure, for each chosen set of parameter values it is possible to establish the threshold in delay time
below which the circuit is able to reduce target fluctuations.
In Figure 15 the noise reduction achieved with a FFL (CVp/CVp0

) is reported as a function of the time
required for miRNA activation. The time-delay is expressed in unit of protein half-life, chosen as a
reference since it represents the longest time-scale in the system. The ability of the circuit in filtering
out fluctuations relies on the correlation between miRNA and target mRNA fluctuations, therefore an
eventual time-delay in miRNA action can negatively affect the noise buffering. More specifically, with
the parameter values of Fig.3-4 of the main text, the incoherent FFL is no more able to reduce target
fluctuations if the delay is longer than approximately 3 protein half-life (see Fig 15). As the processing



30

0 5 10 15 20

Delay

Τ1�2

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

CVP

CVP0

Figure 15. The effect on noise-buffering efficiency of a time-delay between miRNA transcription and
miRNA repressive action. The values of parameters are the ones in caption of Figure 3 in the main
text. The target noise reduction CVp/CVp0

is measured as a function of the length of the time-delay
expressed in unit of protein half-life τ1/2. CVp0

is the constitutive noise of a TF-gene circuit without the
miRNA regulation. Until the delay length approaches approximately 3 protein half-lives, the FFL is
still able to filter out fluctuations. After that the noise level tends to the value achieved with an open
circuit (dashed orange line) in which miRNAs and target mRNAs have uncorrelated fluctuations in
their level. Dots are the result of Gillespie’s simulations with the full nonlinear dynamics.

time becomes longer and longer, miRNA fluctuations lose any correlation with the target ones and the
target noise approches the value corresponding to the open circuit case (dashed orange line in Fig. 15).
In conclusion we showed that a significant time-delay between miRNA transcription and target repres-
sion can compromise the noise-buffering function. When quantitative measures of the time required for
transport and processing of miRNAs and proteins will be available, it will be possible to precisely evalu-
ate the degree of reduction of target fluctuations inserting the appropriate delays in the Hill function of
regulations of our theoretical model (even if at the expense of its analytical tractability).

9 Bioinformatical analysis of miRNAs involved in FFLs in the

human mixed network.

Although miRNA mediated FFLs have been shown to be overrepresented in real mixed networks with
respect to randomized networks [15–18], it is equally important to establish the numerical fraction of
miRNAs and miRNA targets that are actually involved in these circuits, to better highlight the effec-
tive biological relevance of miRNA-mediated FFLs. To this aim we take advantage of the genome-wide
survey of human miRNA-mediated FFLs previously developed by our group [18], based on a search for
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overrepresented motif in human and mouse promoters and 3’-UTRs. Of the 464 miRNAs annotated as
KNOWN-KNOWN in the Ensembl database (release 46) [19], using the filters and the software setup
of [18] 193 were selected to form the post-transcriptional network (miRNA-target interactions). Integrat-
ing this network with the transcriptional one (with TF-target and TF-miRNA interactions), 133 miRNA
have been significantly associated to at least one (usually more than one) of the 5030 mixed FFLs found
in the human regulatory network (see [18] for more details). Therefore miRNAs, at least in the database
considered, seem often involved in FFL circuits. Since each miRNA can regulate hundreds of targets it
is also interesting to evaluate what fraction of its targets are part of FFLs. The results of this analysis
are reported in the following Table where the total number of targets and the number of targets in a
FFL is presented for each miRNA embedded in a FFL . While some miRNAs preferentially regulate
genes through a FFL topology this is clearly not a general trend, further confirming the importance of
considering the possible cross-talk between miRNA targets (as discussed in the main text).
However it is important to notice that the proposed results suffer some limitations. Firstly we cannot
distinguish incoherent from coherent FFLs since sequence analysis allows the identification of putative
interactions but cannot establish if they are positive or negative. Secondly the proposed regulations
should be considered as potential interactions because they represent purely bioinformatic predictions
and furthermore the miRNA and its targets could be expressed preferentially in different tissues or at
different times. In this case the eventual cross-talk would be limited among co-expressed targets. In spite
of the reported limitations, the data presented here point out that miRNA-mediated FFLs can actually
represent an often exploited regulative circuitry, further suggesting their importance in real networks of
gene regulations.
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miRNA gene Num. of targets Num. of targets in FFLs Percentage

hsa-miR-129 44 36 81.8 %
hsa-miR-148b 127 84 66.1 %
hsa-miR-149 55 36 65.5 %
hsa-miR-449b 55 34 61.8 %
hsa-let-7a 83 51 61.4 %
hsa-miR-199a* 138 84 60.9 %
hsa-miR-125b 150 90 60.0 %
hsa-miR-199a 41 24 58.5 %
hsa-miR-101 105 61 58.1 %
hsa-miR-205 38 22 57.9 %
hsa-miR-31 35 20 57.1 %
hsa-miR-203 51 29 56.9 %
hsa-miR-30c 155 87 56.1 %
hsa-miR-425-3p 50 28 56.0 %
hsa-miR-9 106 59 55.7 %
hsa-miR-296 69 38 55.1 %
hsa-miR-194 90 49 54.4 %
hsa-miR-181d 120 64 53.3 %
hsa-miR-219 123 65 52.8 %
hsa-miR-32 148 78 52.7 %
hsa-miR-9* 100 52 52.0 %
hsa-miR-148a 91 47 51.6 %
hsa-miR-24 107 54 50.5 %
hsa-miR-133b 40 20 50.0 %
hsa-miR-499 40 20 50.0 %
hsa-miR-30a-3p 48 23 47.9 %
hsa-miR-218 83 39 47.0 %
hsa-miR-375 113 53 46.9 %
hsa-miR-223 145 67 46.2 %
hsa-miR-100 46 21 45.7 %
hsa-miR-214 62 28 45.2 %
hsa-miR-10a 39 17 43.6 %
hsa-miR-1 46 20 43.5 %
hsa-miR-130a 127 55 43.3 %
hsa-miR-30a-5p 155 67 43.2 %
hsa-miR-802 76 31 40.8 %
hsa-miR-26a 129 52 40.3 %
hsa-miR-23a 152 60 39.5 %
hsa-miR-99a 46 18 39.1 %
hsa-miR-126* 181 70 38.7 %
hsa-miR-330 50 19 38.0 %
hsa-miR-135b 103 39 37.9 %
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miRNA gene Num. of targets Num. of targets in FFLs Percentage

hsa-miR-133a 40 15 37.5 %
hsa-miR-155 100 37 37.0 %
hsa-miR-126 109 40 36.7 %
hsa-miR-140 106 38 35.8 %
hsa-miR-506 127 45 35.4 %
hsa-miR-99b 46 16 34.8 %
hsa-miR-202 88 30 34.1 %
hsa-miR-135a 103 35 34.0 %
hsa-let-7f 83 28 33.7 %
hsa-miR-16 57 19 33.3 %
hsa-let-7d 90 29 32.2 %
hsa-let-7e 127 40 31.5 %
hsa-miR-542-3p 39 12 30.8 %
hsa-miR-206 46 14 30.4 %
hsa-miR-34b 55 16 29.1 %
hsa-miR-34c 55 16 29.1 %
hsa-miR-342 49 14 28.6 %
hsa-miR-363 84 24 28.6 %
hsa-miR-365 46 13 28.3 %
hsa-miR-27a 104 29 27.9 %
hsa-miR-29a 115 32 27.8 %
hsa-miR-19a 145 39 26.9 %
hsa-miR-152 127 34 26.8 %
hsa-miR-199b 41 11 26.8 %
hsa-miR-141 146 38 26.0 %
hsa-miR-212 58 15 25.9 %
hsa-miR-302c* 93 24 25.8 %
hsa-miR-106a 126 32 25.4 %
hsa-miR-17-5p 126 32 25.4 %
hsa-miR-30e-5p 155 39 25.2 %
hsa-miR-495 123 31 25.2 %
hsa-miR-144 146 36 24.7 %
hsa-miR-7 89 22 24.7 %
hsa-miR-20b 126 31 24.6 %
hsa-miR-20a 132 32 24.2 %
hsa-miR-103 97 23 23.7 %
hsa-miR-106b 132 31 23.5 %
hsa-miR-367 111 26 23.4 %
hsa-miR-34a 43 10 23.3 %
hsa-miR-193a 112 26 23.2 %
hsa-miR-200c 143 33 23.1 %
hsa-miR-189 35 8 22.9 %
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miRNA gene Num. of targets Num. of targets in FFLs Percentage

hsa-miR-93 83 19 22.9 %
hsa-miR-202* 49 11 22.4 %
hsa-miR-451 45 10 22.2 %
hsa-miR-221 50 11 22.0 %
hsa-miR-222 50 11 22.0 %
hsa-miR-138 60 13 21.7 %
hsa-miR-302b 134 29 21.6 %
hsa-miR-302c 134 29 21.6 %
hsa-miR-302d 134 29 21.6 %
hsa-miR-299-5p 108 23 21.3 %
hsa-miR-182 80 17 21.2 %
hsa-miR-142-5p 57 12 21.1 %
hsa-miR-369-3p 101 21 20.8 %
hsa-let-7b 83 17 20.5 %
hsa-miR-494 122 24 19.7 %
hsa-miR-183 92 18 19.6 %
hsa-miR-505 51 10 19.6 %
hsa-miR-377 82 16 19.5 %
hsa-miR-96 133 26 19.5 %
hsa-miR-195 57 11 19.3 %
hsa-miR-497 57 11 19.3 %
hsa-miR-30e-3p 48 9 18.8 %
hsa-miR-381 165 31 18.8 %
hsa-miR-142-3p 127 23 18.1 %
hsa-miR-139 34 6 17.6 %
hsa-miR-30b 155 27 17.4 %
hsa-miR-30d 155 27 17.4 %
hsa-miR-302b* 76 13 17.1 %
hsa-miR-487b 83 14 16.9 %
hsa-miR-369-5p 90 15 16.7 %
hsa-miR-409-5p 80 13 16.2 %
hsa-miR-410 133 21 15.8 %
hsa-miR-329 93 14 15.1 %
hsa-miR-151 70 10 14.3 %
hsa-miR-412 42 6 14.3 %
hsa-miR-25 74 10 13.5 %
hsa-miR-192 45 6 13.3 %
hsa-miR-496 113 14 12.4 %
hsa-miR-153 100 9 9.0 %
hsa-miR-15a 57 5 8.8 %
hsa-miR-217 102 9 8.8 %
hsa-miR-323 57 5 8.8 %
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miRNA gene Num. of targets Num. of targets in FFLs Percentage

hsa-miR-484 100 6 6.0 %
hsa-miR-26b 129 7 5.4 %
hsa-miR-146b 40 2 5.0 %
hsa-miR-200a* 90 3 3.3 %
hsa-miR-200a 146 3 2.1 %
hsa-miR-200b 143 2 1.4 %
hsa-miR-429 108 1 0.9 %
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