Table S1A. Rate Model summary

Type	Wilson Cowan
Transfer function	Sigmoid logistic function $S(x) = \frac{1}{1+e^{-p(x-\theta)}}, p = 1.2, \theta = 2.8$
maximum rates	$k_A = k_B = 0.97$
${ m refractoriness}$	$r_A = r_B = 10^{-3}$
learning rates	$a_A = a_B = 0.15$

Table S1B. SNN Model summary

Populations	two: excitatory neurons (EXC), inhibitory neurons (INH)
Topology	none
Connectivity	Random divergent connections prescribed by experimental findings
Neuron model	Leaky-integrate-and-fire, fixed threshold, absolute refractory period (2ms)
Channel models	-
Synapse models	Conductance-based difference of exponentials (AMPA, $GABA_A$)
Plasticity	CS and contextual projections onto EXC neurons
Input	all neurons: conditioned stimulus (CS), background input (BKG),
	EXC receive in addition contextual (CTX) input
Measurements	Membrane potential, spike rates

Table S1C. Populations

Name	Elements	Size
\mathbf{EXC}	LIF neuron	3400
INH	LIF neuron	600

Table S1D. Topology

none

Table S1E. Connectivity

$\underline{Projection}$	Type	Connection probability
EXC to EXC	Divergent connections	0.01
EXC to INH	Divergent connections	$0.15\ (0.5)$
INH to EXC	Divergent connections	0.15 (0.5)
INH to INH	Divergent connections	$0.1 \ (0.1-0.9)$
$\underline{\text{Weights}}$		
EXC to EXC,INH	Static, drawn from normal distribution with $\mu = 1.25 \text{ nS}$ and $\sigma = 0.1 \text{nS}$	-
INH to EXC, INH	Static, drawn from normal distribution with $\mu=2.5~\mathrm{nS}$ and $\sigma=0.1\mathrm{nS}$	-
CS/CTX to EXC	Plastic, drawn from normal distribution with 1 nS and $\sigma=0.1\mathrm{nS}$	-
CS to INH	Static, drawn from normal distribution with 1 nS and $\sigma=0.1\mathrm{nS}$	-
$\underline{\text{Delays}}$		
All connections	Fixed, drawn from normal distribution with $\mu = 2ms$ and $\sigma = 0.1ms$	

Table S1F. Neuron Model

Name	LIF neuron
Type	Leaky integrate-and-fire, conductance based synapses
Subthreshold dynamics	$\tau_m \frac{dV}{dt} = (E_0 - V) + g_{ex}(E_{ex} - V) + g_{inh}(E_{inh} - V)$
	$\mathrm{If} \stackrel{\frown}{\mathrm{V}}(\mathrm{t} ext{-}) < heta \wedge \mathrm{V}(\mathrm{t} ext{+}) > heta,$
	1. set $t^* = t$
$\operatorname{Spiking}$	2. emit spike with time-stamp t^*
	3. reset $V(t) = E_K$
	4. clamp $V(t)$ for 2 ms

Table S1G. Synapse Models

$\mathrm{AMPA}/\mathrm{GABA}_A$	$g(t) = g_{peak} \frac{e^{-t/\tau_1} - e^{-t/\tau_2}}{e^{-t_{peak}/\tau_1} - e^{-t_{peak}/\tau_2}}$

Table S1H. Plasticity

Description	Phenomenological rule of synaptic weight modification
Update rule	$\begin{split} w_{+} &= w_{-} + \alpha_{1} h m \left w_{max} - w_{-} \right c, \text{ if } h{>}0 \\ w_{+} &= w_{-} - \alpha_{2} m \left w_{min} - w_{-} \right c, \text{ if } h{=}0 \end{split}$
Variables	$\dot{c} = -\frac{c}{\tau_c} + A \delta(t_{pre})$ $\dot{h} = -\frac{h}{\tau_h} + B \delta(t_{pre})$
	m: (non-specific) neuromodulator
Parameters	m=1: neuromodulator present m=0: neuromodulator absent
	learning rates $a_1 = a_2 = 16 * 10^{-4}$
	$(w_{max} - w_{-})$: step-size increase

Table S1I. Input

Type	Description
CS to EXC/INH	One Poisson generator per neuron in EXC and INH, phasic drive: 50ms, spiking rate: 500 Hz
CTX to EXC/INH	One Poisson generator per neuron in EXC, tonic drive, spiking rate: 300 Hz
BKG to EXC	Current injection: $DC = 330 \text{ pA}$, $AC = 85 \text{ pA}$
BKG to INH	Current injection: $DC = 220 \text{ pA}$, $AC = 110 \text{ pA}$

Table S1J. Measurements

Membrane potential V and spike times for randomly selected neurons in EXC and INH