Table S1

## Table S1A. Rate Model summary

| Type | Wilson Cowan |
| :--- | :--- |
| Transfer function | Sigmoid logistic function $S(x)=\frac{1}{1+e^{-p(x-\theta)}}, p=1.2, \theta=2.8$ |
| maximum rates | $k_{A}=k_{B}=0.97$ |
| refractoriness | $r_{A}=r_{B}=10^{-3}$ |
| learning rates | $a_{A}=a_{B}=0.15$ |

## Table S1B. SNN Model summary

| Populations | two: excitatory neurons (EXC), inhibitory neurons (INH) |
| :--- | :--- |
| Topology | none |
| Connectivity | Random divergent connections prescribed by experimental findings |
| Neuron model | Leaky-integrate-and-fire, fixed threshold, absolute refractory period (2ms) |
| Channel models | - |
| Synapse models | Conductance-based difference of exponentials (AMPA, GABA $\left.A_{A}\right)$ |
| Plasticity | CS and contextual projections onto EXC neurons |
| Input | all neurons: conditioned stimulus (CS), background input (BKG), |
|  | EXC receive in addition contextual (CTX) input |
| Measurements | Membrane potential, spike rates |

Table S1C. Populations

| Name | Elements | Size |
| :--- | :--- | :--- |
| EXC | LIF neuron | 3400 |
| INH | LIF neuron | 600 |

Table S1D. Topology
none

Table S1E. Connectivity

| Projection | Type | Connection probability |
| :--- | :--- | :--- |
| EXC to EXC | Divergent connections | 0.01 |
| EXC to INH | Divergent connections | $0.15(0.5)$ |
| INH to EXC | Divergent connections | $0.15(0.5)$ |
| INH to INH | Divergent connections | $0.1(0.1-0.9)$ |
| Weights |  | - |
| EXC to EXC,INH | Static, drawn from normal distribution with $\mu=1.25 \mathrm{nS}$ and $\sigma=0.1 \mathrm{nS}$ | - |
| INH to EXC,INH | Static, drawn from normal distribution with $\mu=2.5 \mathrm{nS}$ and $\sigma=0.1 \mathrm{nS}$ | - |
| CS/CTX to EXC | Plastic, drawn from normal distribution with 1 nS and $\sigma=0.1 \mathrm{nS}$ | - |
| CS to INH | Static, drawn from normal distribution with 1 nS and $\sigma=0.1 \mathrm{nS}$ | - |
| Delays |  |  |
| All connections | Fixed, drawn from normal distribution with $\mu=2 \mathrm{~ms}$ and $\sigma=0.1 \mathrm{~ms}$ |  |

## Table S1F. Neuron Model

| Name | LIF neuron |
| :--- | :--- |
| Type | Leaky integrate-and-fire, conductance based synapses |
| Subthreshold dynamics | $\tau_{m} \frac{d V}{d t}=\left(E_{0}-V\right)+g_{e x}\left(E_{e x}-V\right)+g_{\text {inh }}\left(E_{\text {inh }}-V\right)$ |
|  | If $\mathrm{V}(\mathrm{t}-)<\theta \wedge \mathrm{V}(\mathrm{t}+)>\theta$, |
| Spiking | 1. set $\mathrm{t}^{*}=\mathrm{t}$ |
|  | 2. emit spike with time-stamp $t^{*}$ |
|  | 3. reset $V(t)=E_{K}$ |
|  | 4. clamp $\mathrm{V}(\mathrm{t})$ for 2 ms |

Table S1G. Synapse Models
AMPA/GABA $A \quad g(t)=g_{\text {peak }} \frac{e^{-t / \tau_{1}-e^{-t / \tau_{2}}}}{e^{-t_{\text {peak }} / \tau_{1}}-e^{-t_{\text {peak }} / \tau_{2}}}$

## Table S1H. Plasticity

| Description | Phenomenological rule of synaptic weight modification |
| :---: | :---: |
| Update rule | $\begin{aligned} & w_{+}=w_{-}+\alpha_{1} h m\left\|w_{\max }-w_{-}\right\| c, \text { if } \mathrm{h}>0 \\ & w_{+}=w_{-}-\alpha_{2} m\left\|w_{\min }-w_{-}\right\| c, \text { if } \mathrm{h}=0 \end{aligned}$ |
| Variables | $\begin{aligned} & \dot{c}=-\frac{c}{\tau_{c}}+A \delta\left(t_{p r e}\right) \\ & \dot{h}=-\frac{h}{\tau_{h}}+B \delta\left(t_{p r e}\right) \end{aligned}$ |
|  | m : (non-specific) neuromodulator $\mathrm{m}=1$ : neuromodulator present |
| Parameters | $\mathrm{m}=0$ : neuromodulator absent learning rates $a_{1}=a_{2}=16 * 10^{-4}$ $\left(w_{\max }-w_{-}\right):$step-size increase |

## Table S1I. Input

| Type | Description |
| :--- | :--- |
| CS to EXC/INH | One Poisson generator per neuron in EXC and INH, phasic drive: 50 ms , spiking rate: 500 Hz |
| CTX to EXC/INH | One Poisson generator per neuron in EXC, tonic drive, spiking rate: 300 Hz |
| BKG to EXC | Current injection: $D C=330 \mathrm{pA}, A C=85 \mathrm{pA}$ |
| BKG to INH | Current injection: $D C=220 \mathrm{pA}, A C=110 \mathrm{pA}$ |

Table S1J. Measurements

