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S1 NP-hardness of the Heaviest (K1, K2)-RHS Problem

Given a set of m undirected graphs G1, . . . , Gm with the same n vertices V but different topologies
(and without self-loops), i.e., G = {G1(V,E1), . . . , Gm(V,Em)} with V = {v1, . . . , vn} and non-
negative weights aijk for edges (vi, vj) ∈ Ek in the kth graph, the (K1,K2)-RHS problem is formally
defined as follows,

Problem S1.1. Given G, the (K1,K2)-Recurrent Heavy Subgraph (RHS) problem is to determine
a subset SV ∈ V of K1 vertices and a subset SG ∈ G of K2 graphs such that the total sum of edge
weights of the subgraphs induced by SV in each graph of SG is maximized. A straightforward cubic
0-1 formulation of (K1,K2)-RHS is

max 1
2

∑n
i=1

∑n
j=1

∑m
k=1 aijkxixjyk

subject to


∑n

i=1 xi = K1∑m
i=1 yj = K2

xi ∈ {0, 1} for any 1 6 i 6 n
yj ∈ {0, 1} for any 1 6 j 6 m

(1)

Next we prove the NP-hardness of this problem.

Theorem S1.2. The (K1,K2)-recurrent heavy subgraph problem is NP-hard.

Proof. We can reduce the well-known NP-complete K-clique problem 1 (i.e., is there a clique with
K vertices in a graph? ) to this problem, and therefore prove its NP-hardness.

Let G(V,E) be an undirected unweighted graph without self-loops. We can copy this graph m
times to generate a graph set consisting of the m graphs G = {G1(V,E), . . . , Gm(V,E)} in which
all graphs have the same vertex set V and edge set E. Then the question of “is there a clique with
K vertices in G?” can be answered by solving the (K,K2)-RHS problem in the set of m graphs
G, because we can easily claim:

• If the heaviest (K,K2)-RHS found in the graph set G is a clique with K vertices recurring
in the K2 graphs, then there exist a clique with K vertices in G. This claim is obvious and
straightforward.

• If the heaviest (K,K2)-RHS found in the graph set G is not a clique with K vertices recurring
in the K2 graphs, then a clique with K vertices does not exist in G. This claim can be proved
by contradiction: supposing there exists a clique with K vertices in G, since all graphs Gi in
the graph set G were copied fromG, thisK-clique inGmust also exist at leastK2 graphs of the
graph set G. Among all (K,K2)-RHSs in m unweighted graphs, the K-cliques recurring in K2

graphs must be the (K,K2)-RHS having the largest total sum of edge weights. This K-clique
recurring in K2 graphs must be the solution of the heaviest (K,K2)-RHS. So it contradicts
with the statement “the heaviest K,K2-RHS found is not a clique with K vertices recurring
in the K2 graphs”.

Since the K-clique problem is NP-complete, the (K1,K2)-RHS problem is NP-hard.

S3



 

 

L
0.8

L
0.2

x1

x2A

 

 

L
10

L
50

L
2

x1

x2B

Figure S1. Two-dimensional contour plots of the vector norm constraints. (A) contour of the
vector norm Lp (0 < p < 1). When p→ 0, Lp → L0 and therefore Lp can make x = (x1, x2)T

sparser. (B) Contour of the vector norm Lp (p > 1). When p→∞, Lp → L∞ and therefore Lp
can make x = (x1, x2)T more even)

S2 Details of vector norms

The Lp (p > 0) norm of a vector x ∈ Rn×1 is defined as ‖x‖p = (
∑n

i=1 |xi|p)
1/p. Two extreme cases

of Lp norm is zero norm L0 = card{xi|xi 6= 0}, where card is the set cardinality (i.e., the number
of non-zero elements of x), and infinity norm (or maximum norm) L∞ = max{x1, . . . , xn}. When
the Lp vector norm is used as optimization’s constraint, the set of all vectors with norm 1 (i.e.,
Lp(x) = 1) defines the feasible region, whose two-dimensional case is shown in Figure S1. It can
be observed that the closer p is to zero, the sparser x is; while the closer p is to ∞, the smoother
or more even x is. In practice, Lp with p < 1 is often used to approximate L0, and Lp with p > 2
is often used to approximate L∞.

S3 Details of multi-stage convex relaxation method

We use our previously developed framework known as Multi-Stage Convex Relaxation (MSCR) [1]
to design the optimization protocol. In this context, concave duality will be used to construct
a sequence of convex relaxations that give increasingly accurate approximations to the original
non-convex problem. We approximate the sparse constraint function f(x) by the convex function
f̃v(x) = vTh(x)−f∗h(v), where h(x) is a specific convex function h(x) = xh (h > 1) and f∗h(v) is the
concave dual of the function fh(v) (defined as f(v) = fh(h(v))). The vector v contains coefficients
that will be automatically generated during the optimization process. After each optimization, the
new coefficient vector v yields a convex function f̃v(x) that more closely approximates the original
non-convex function f(x).

1The NP-completeness proof of the K-clique problem can be found in textbooks introducing “algorithms and
complexity” and lectures’ exercises, e.g., http://people.bath.ac.uk/masnnv/Teaching/AAlg10Sol.pdf.
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S3.1 Concave duality

Given a continuous regularization function f(x) which may be non-convex, we are interested in
rewriting it using concave duality. Detail refer to [1]. Let h(x) : Rn → Ω ⊂ Rn be a vector
function. It may not be a one-to-one map. However, we assume that there exists a function fh(u)
defined on Ω such that f(x) = fh(h(x)) holds.

We assume that we can find h so that the function fh(u) is a concave function of u on Ω.
Under this assumption, we can rewrite the regularization function f(x) as:

f(x) = inf
v∈Rn

[
vTh(x)− f∗h(v)

]
(2)

using concave duality (Page 308 in [2]). In this case, the function f∗h(v) given below is the concave
dual of fh(u):

f∗h(v) = inf
u∈Ω

[
vTu− fh(u)

]
(3)

Moreover, it is well-known that the minimum of the right hand side of Eq. (2) is achieved at

v̂ = ∇ufh(u)|u=h(x) (4)

This is a general framework. As f(x) = α||x||p + (1 − α)||x||2 for some p ∈ (0, 1), given any
h > 2, Eq. (2) holds with h(x) =

[
|x1|h, . . . , |xn|h

]
. The solution in (4) is given by,

v̂i =
α

h
(
∑
j

|xj |p)
1
p
−1|xi|p−h +

1− α
h

(
∑
j

x2
j )

1
2
−1|xi|2−h (5)

S3.2 Multi-stage convex relaxation

The solution of our tensor formulation is a stationary point of the following regularized optimization
problem:

[x̂, ŷ] = arg max
x∈Rn,y∈Rm

1
2

∑
i,j,k

aijkxixjyk − λf(x)− µg(y)

 (6)

where λ > 0 and µ > 0 are Lagrange multipliers. Since f(x) is non-convex and g(y) is convex, we
consider a numerical procedure for solving Eq. (6) with convex loss and non-convex regularization
f(x). Let h(x) =

∑
j hj(x) be a convex relaxation of f(x) that dominates f(x) (for example, the

smallest convex upperbound, i.e., the inf over all convex upperbounds). A simple convex relaxation
of Eq. (6) becomes

[x̂, ŷ] = arg max
x∈Rn,y∈Rm

1
2

∑
i,j,k

aijkxixjyk − λ
n∑
j=1

hj(x)− µg(y)

 (7)

It is possible that this simple relaxation yields a solution that is not close to the solution of (6).
However, if h satisfies the condition of Subsection S3.1, then it is possible to write f(x) as Eq. (2).
In this new representation, we can rewrite Eq. (6) as
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Inputs: tensor A = (aijk)n×n×m, initial values x(0) ∈ Rn and y(0) ∈ Rm.
Outputs: the gene membership vector x and network membership vector y
Initialize v̂j = 1.
Repeat the following two steps (a stage) until convergence:

• Step 1: let [x̂, ŷ] = arg maxx∈Rn
+,y∈Rm

+

[
1
2

∑
aijkxixjyk − λv̂Th(x)− µg(y)

]
.

• Step 2: let v̂ = ∇ufh(u)|u=h(x).

Figure S2. Multi-stage convex relaxation method for the tensor-based problem.

[x̂, ŷ, v̂] = arg max
x,v,y

1
2

∑
i,j,k

aijkxixjyk − λvTh(x) + λf∗h(v)− µg(y)

 (8)

This is clearly equivalent to Eq. (6) because of Eq. (2). If we can find a good approximation of
v̂ that improves upon the initial value of v̂ = [1, . . . , 1]T , then the above formulation can lead to a
refined problem in x that is a better relaxation than Eq. (7).

Our numerical procedure exploits the above fact, trying to improve the estimation of vj over
the initial choice of vj = 1 in Eq. (8) using an iterative algorithm. This can be done by repeatedly
applying the following two steps:

• First, optimize x and y with v fixed.

• Second, optimize v with x and y fixed. This problem has the closed form solution given by
Eq. (4).

Figure S2 presents our two-stage protocol to solve the regularized form of our problem. The
procedure can be regarded as a generalization of concave-convex programming [3], which takes
h(x) = x. By repeatedly refining the parameters in v, we can obtain better and better convex
relaxations leading to a solution superior to that of the initial convex relaxation with vj = 1. The
initial values of x and y could be uniform, randomly chosen, or taken from prior knowledge. In
practice, an appropriate solver for Step 1, the time complexity of MSCR is often linear with respect
to the total number of edges in the tensor.

Let h(x) =
[
|x1|h, . . . , |xn|h

]
and h = 2. This function is practically effective as the small convex

upperbound of f(x). The problem in Step 1 of Figure S2 can be approximately implemented by the
power method presented in Figure S3. However instead of tuning λ and µ, this is implicitly done
by using the gradient projection scheme so that the constraints f(x) = 1 and g(y) = 1 are enforced
after each iteration via normalization. The idea is to optimize x with y fixed, then normalize x
such that x satisfies the constraint f(x) = 1. Similarly, we optimize y with x fixed, then normalize
y such that y satisfies the constraint g(y) = 1. The initial values x(0) and y(0) can be the vector
with all entries one, i.e., 1 = [1, . . . , 1]T . As discussed in Section S3.1, the solution of Step 2 is
given in Eq. (5) when f(x) is relaxed to h(x).
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Inputs: tensor A = (aijk)n×n×m, vector v̂ ∈ Rn, initial values x(0) ∈ Rn and y(0) ∈ Rm

Outputs: x̂ and ŷ
Initialize x = x(0), y = y(0).
Repeat the following two updates until convergence:

• Update x: xi ←
[
xi

∑
j,k aijkxjyk

v̂i

] 1
h
, then x is normalized by xi ← xi

α||x||p+(1−α)||x||2 .

• Update y: yk ← (yk
∑

i,j aijkxixj)
1
q , then y is normalized by yk ← yk

||y||q .

Figure S3. Power method for updating x and y in Step 1 of the MSCR method shown in
Figure S2

HH
HHHHp

α
0.2 0.4 0.6 0.8

0.2 1% 1% 1% 1%
0.4 31% 29% 28% 27%
0.6 100% 100% 100% 100%
0.8 100% 100% 100% 100%

Table S1. Hits table of performing our tensor method with different p and α on all 100 sets of
networks, where hit = number of predefined patterns obtained/hit by tensor method

number of all predefined patterns . In this table, we chose
the α = 0.2 whose hitting values are always > those of other α given the same p; similarly, we
chose the p = 0.8 whose hitting values are always > those of other p given the same α. They are
highlighted by graying the first column and the last row.

S4 Simulation study

We generated 100 sets of random weighted networks with 300 genes, where each set contains 50
networks and 300 genes, and all their edges weights follow the uniform distribution in the range
[0, 1]. Then a random RHS patterns with K1 member genes and K2 member networks are generated
by making their edges weights follow the uniform distribution in the range [θ, 1]. Here, K1 is any of
the four predefined values {6, 12, 18, 24}, K2 is any of the five predefined values {5, 10, 15, 20, 25},
and θ is any of the five predefined values {0.5, 0.6, 0.7, 0.8.0.9}. Therefore, there are the total
4× 5× 5 = 100 RHS patterns generated. Each RHS pattern is then placed into a set of networks,
by randomly selecting K1/K2 genes/networks and replacing edges weights with the corresponding
RHS pattern’s edges weights. These simulated networks and patterns have taken into account of
various factors that may affect the performance. We can evaluate the performance by counting the
number of these predefined patterns found/hitted by the method with each parameter combination.

We performed our tensor method with different values of the parameters p and α on each set
of networks and obtained the result as shown in Table S1. As explained in this table, p = 0.8 and
α = 0.2 is one of the best choices.
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S5 The edge sampling procedure and its theoretical analysis

S5.1 Sampling procedure

Even though the MSCR method is efficient, its computation time can still be long for large sets of
networks with many edges. In such cases, edge sampling can provide an efficient approximation to
many graph problems [4, 5]. From the perspective of matrix or tensor computation, such sampling
methods can be also viewed as matrix/tensor sparsification [6]. As RHS patterns predominately
contain edges with large weights, we designed a non-uniform sampling method that preferentially
selects edges with large weights. Specifically, each edge aijk is sampled with probability pijk:

pijk =

{
1, if aijk > ã

p
(aijk

ã

)b
, if aijk < ã

(9)

where ã ∈ (0, 1), b ∈ [1,∞) and p ∈ (0, ãb] are constants that control the number of sampled edges.
Note that Eq. (9) always samples edges with weights > ã. It selects an edge of weight aijk < ã
with probability pijk proportional to the bth power of the weight. We choose ã = 0.6, b = 4 and
p = 0.1 as a reasonable tradeoff between computational efficiency and the quality of the sampled
tensor, meanwhile satisfying the conditions of Theorem S5.1, i.e. p 6 ãb−1 and b > 1.

Procedure Sampling(A, p, ã, b)
for each i ∈ [1, n], j ∈ [1, n], k ∈ [1,m] do
if aijk > ã then

âijk = aijk
else

âijk =

{
min(aijk

pijk
, ã), with probability pijk = p

(aijk

ã

)b
0 with probability 1− pijk

return Â = (âijk)n×n×m

Figure S4. Edge sampling procedure of the tensor A = (aijk)n×n×m.

To correct the bias caused by this sampling method, the weight of each edge is corrected by
its relative probability: âijk = aijk/pijk. The expected weight of the sampled network, E(âijk), is
therefore equal to the weight of the original network. However, in practice, when the adjusted edge
weight âijk > ã (but the original edge weight aijk < ã), we enforced it to be âijk = ã for avoiding
too large edge weights. The overall edge sampling procedure adopts the simple random-sampling
based single-pass sparsification procedure introduced in [6]. Details of the sampling procedure is
given in Figure S4. This single-pass sampling procedure’s time complexity is O(n2m). It is obvious
that the sparsification procedure in [6] is a special case of our sampling procedure when all entries
of A are non-negative and p = 1, ã = ε

n+n+m , b = 1.

S5.2 Theoretical analysis

Based on the well-known Chernoff-Hoeffding bounds [7], we gave the bound of the non-zero entries
in the corrected tensor Â after sampling in Theorem S5.1. Therefore, the computational complexity
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of the tensor MSCR algorithm on the tensor Â after sampling is linear to the number of the non-
zero entries of Â, i.e., O(Sã ), with the probability at least 1 − exp(−Ω(S′)), where S =

∑
i,j,k aijk

and S′ = p
ãb

∑
i,j,k a

b
ijk.

Theorem S5.1. Given p 6 ãb−1, b > 1 and 0 6 aijk 6 1 (for any i, j, k), with probability at least
1− exp(−Ω(S′)), the tensor Â contains at most O(Sã ) non-zero entries, where S =

∑
i,j,k aijk and

S′ = p
ãb

∑
i,j,k a

b
ijk.

Proof. This proof is similar to Lemma 1 in [6]. Since S =
∑

i,j,k aijk, the number of aijk that are
no less than ã is at most S

ã ; otherwise, the sum of all entries > ã would be greater than S. Now
consider all non-zero aijk entries that are smaller than ã.

The Chernoff bound [7] asserts that if X1, X2, . . . , XN are indicator random variables and
X =

∑
iXi with E[X] = µ, then for any δ > 0

Pr[X > (1 + δ)µ] <
(

eδ

(1 + δ)1+δ

)µ
(10)

In our case, we set up indicator random variables Xijk which are 0 or 1 depending on whether
ã = 0 or not. Then X =

∑
i,j,kXijk is the number of non-zero entries of Â, and

µ = E[X] =
∑
i,j,k

pijk =
p

ãb

∑
i,j,k

abijk = S′ (11)

Since p 6 ãb−1 and abijk 6 aijk (because b > 1 and 0 6 aijk 6 1), we have p
ãb

∑
i,j,k a

b
ijk 6

1
ã

∑
i,j,k aijk. Then, we can get

µ =
p

ãb

∑
i,j,k

abijk 6
1
ã

∑
i,j,k

aijk =
S

ã
(12)

Then we have

Pr[X 6 (1 + δ)
S

ã
] > Pr[X 6 (1 + δ)µ] > 1−

(
eδ

(1 + δ)1+δ

)µ
(13)

We use the Chernoff bound with (1 + δ) = e and arrive at the following

Pr[X 6 e
S

ã
] > 1− exp(−µ) = 1− exp(−S′) (14)

So the claim holds.

S6 Details of computing platform and running time

Since the proposed tensor method is sequential, it can be performed on only one CPU processor. The
computing platform was performed in a CPU processor of the computing node in the USC HPCC
(High Performance Computing and Communications, website is http://www.usc.edu/hpcc/systems/use-l-0/)
computing resources. This computing node consists of “Dual Quadcore Intel Xeon 2.5 GHz” and
12GB memory, and Linux OS. The memory used is about 10GB, and the running time is about
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200 hours. To make the tensor method faster, we can sample less edges with the compromise
of accuracy, because the time complexity of the tensor method is proportional to the number of
non-zero entries in the tensor.

Since the proposed tensor method identifies RHSs sequentially one by one, it has the potential
to be parallelized by simultaneously identifying multiple RHSs on multiple CPU processors. In the
future work, we will develop the parallel version of the tensor method.

S7 Details of normalization procedure of pairwise gene co-expression
correlations

We first compute the expression correlation between two genes as the minimum value of leave-one-
out Pearson correlation coefficient estimates [8]. The resulting correlation estimate is conservative
and sensitive to similarities in the expression patterns, yet robust to single experimental outliers. To
make the correlation estimates comparable across datasets, we then applied Fisher’s transform [9].
Given a correlation estimate r, Fisher’s transformation score is calculated as z = 0.5 ln

(
1+r
1−r

)
.

Because we observed the distributions of z-scores to vary from dataset to dataset, we standardized
the z-scores to enforce zero mean and unit variance in each dataset [10]. Then, the standardized
correlations r′ are obtained by inverting the z-score. Finally, the absolute value of r′ is used as the
edge weight of co-expression networks. Details of this procedure is given in Figure S5.

Input: expression profiles of n genes.
Output: estimated pairwise gene correlations r′ij for any pair of genes i and j.

Compute correlation rij of each pair of genes i and j, by firstly computing their leave-one-
out Pearson correlation coefficient estimates, then using the estimate whose absolute value is
the minimum among absolute values of all estimates as the correlation rij of these two genes.

Normalize rij for any 1 6 i, j 6 n with the following steps:

1. Apply Fisher’s z transformation to rij , i.e., zij = 0.5 ln
(

1+rij
1−rij

)
.

2. Standardize zij , i.e., z′ij = zij−µ
σ , where µ and σ are the mean and standard deviation of

zij for all 1 6 i, j 6 n.

3. Apply Fisher’s inverse transformation to z′ij , i.e., r′ij =
exp(2z′

ij)−1

exp(2z′
ij)+1

.

Return r′ij for any i, j.

Figure S5. Procedure of estimating correlations of pairwise genes.
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S8 Random network generation and comparison with real net-
works

To further evaluate the significance of RHSs discovered in real networks, we applied the proposed
method on random networks to obtain RHSs. The random network is generated by randomizing a
given network G(V,E,W ) (where V is the vertex set, E is the edge set and W is the sequence of
the edges’ weights corresponding to edges in E) with the following steps.

Given a real weighted network, the corresponding random weighted network is generated by
a random redistribution of the actual weights on the randomly generated unweighted graph. In
another words, for a real weighted network, we firstly generated a random unweighted network
by using the widely used degree-preserving randomization procedure [11] (the MATLAB code is
provided by the website http://www.cmth.bnl.gov/∼maslov/matlab.htm). Then the weights
collected from the real weighted network were randomly distributed among the edges in the random
unweighted network. This procedure is similar to our previous work [12] and is formally presented
in Figure S6.

Procedure Generate-Random-Network( G(V,E,W ) )

Generate random unweighted network: apply the degree-preserving random-
ization procedure [11] on the edge set E to obtain a randomized edge set E′ whose
nodes’ degree distribution is the same as that of E.

Randomly assign weights to edges of the random unweighted network:
randomly permutate the edge weights of the sequence W , and assign the values of
the new randomized sequence W ′ to each edge of the edge set E′.

Return the random weighted network G′(V,E′,W ′)

Figure S6. Random weighted network generation procedure.

For our case, we applied this randomization procedure to each weighted network in the sparsified
tensor Â. The resulted random tensor is denoted as Â′. We generated 100 random tensors Â′ from
the same real tensor Â, and applied the proposed RHSs discovery method on each of them to
discover the RHSs with > 5 genes, > 5 networks and “heaviness” > 0.4. Among 100 random
tensors, None of RHSs were identified in any of the 100 times. When the minimum recurrence is 4
and other other remain unchanged, only 3 RHSs were found in all 100 random tensors. In contrast,
11,394 RHSs (and 4,327 representative RHSs) were identified in the real tensor. This comparison
indicates the significance of RHSs identified in the tensor of real weighted networks.

S9 Signal extraction procedure of ENCODE data

Recently, in the ENCODE production phase (September 2007 ∼ present), there are 191 ENCODE
genome-wide tables for ChIP-seq. To perform enrichment analysis, we integrated these ChIP-seq
samples in Genome-wide ENCODE data including chromatin modification, TF binding, Methy-
lation, and chromatin accessibility. UCSC database provide the peak tables for these ChIP-Seq
data.
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However, different data types have different criterion for the significance. We used both top N
and threshold condition to select peaks as follows:

1. If the table is Methylation-Seq data, select the peaks score > 0.6;

2. Else if the peaks have p-value, select the peaks with p-value < 1E-4 and top 20K;

3. Otherwise, select the peaks with signal value > 1 and top 20K.

Then for each table, we selected the target genes whose transcriptional start site is nearby the
peaks within 5000 bases.

S10 Comparisons with unweighted networks

The weighted networks were transformed to unweighted networks by dichotomizing edges with an
expression correlation cutoff of 0.6. The proposed tensor method was then applied to both weighted
and unweighted networks. We compared rates of protein complex/pathway/transcriptional factor
homogeneity detected in the top K = 200, 400, · · · , 2000 modules, ranked by recurrences or average
heaviness in their datasets of occurrence. Figure S7 and S8 demonstrated that weighted graph
analysis consistently outperforms unweighted graph analysis

S11 Detailed information of modules in the regulatory network
reconstructed in Figure 9 of the manuscript

Please see Table S2 for details.

Table S2. Member genes of RHSs/modules in the regulatory network reconstructed on the basis
of the derived transcription networks in Figure 10 of the manuscript.

from rep-
resentative
RHS/module

member genes of the module

M1307 RPL37, RPS25, RPL17, RPL31, RPS8, RPS20, RPS27, RPS6, RPS15A,
SRP14, RPS7, RPS23, RPS17

M1640 RPL17, RPS6, RPS3A, RPL30, PHB2, RPS7, RPL11, PFDN5, GDI2,
UQCRQ, SNRPD2, NDUFA1

M823 RPS27, RPS17, GAPDH, RPS29, RPS16
M1222 RUVBL2, MCM2, CCNB2, MCM5, DDX39
M143 RPL3, RPL9, RPS3A, RPS2, RPS12, RPL8, RPL11, RPL7, RPL12, RPS10,

RPS4X, RPS8, FAU, RPL31, RPS21, RPL10A
M2140 RPL39, RPS20, RPL27, RPS23, RPL13
M2075 PHB2, RPS8, EEF2, RPS2, RPL19, RPL27, RPL17, RPS15, RPL11, RPS17,

RPS21, FAU, RPL30, RPL29, RPS20
M10 RPS3A, EEF1A1, RPL41, TPT1, RPS27, RPS29, RPL9, RPS4X, RPS12,

RPS13, RPL7, RPS6, RPS15A, FAM131B, CYP2C18, PPP2R5E
Continued on next page
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Table S2 – continued from previous page
from rep-
resentative
RHS/module

member genes of the module

M3295 MDH1, HAX1, NDUFB1, NDUFAB1, UQCRQ
M3768 NDUFB5, COX7C, ATP5H, ATP5L, PARK7
M1301 HMMR, KIF11, TTK, KIAA0101, ZWINT, RRM1, DLGAP5, H2AFZ, KIF2C,

GINS1, KIF14, CYP2C18, PPP2R5E, FAM131B, ZPBP
M3332 CKS2, TPX2, SNRPD1, PTTG1, CCNB1
M1838 RPL13, RPS19, RPL4, RPS9, RPS16
M2524 MAD2L1, MCM6, HMGB2, HSPD1, RBMX
M564 RPS9, RPS15, RPL19, RPL27, RPS21, RPS23, RPS2, RPS27, RPS13, RPS8
M867 RPS8, RPL7, RPL30, RPS25, RPL11, RPS27A, RPS6, RPL9, EIF3H,

RPL10A, RPL27, RPS3A, RPL35
M1294 RPL17, RPL12, RPS23, PPIA, OAZ1
M20 PSMD14, PSMA3, VBP1, PSMA4, SNRPG, H2AFZ, HAT1, COPS5, RAN,

MRPL3, C11orf58, SRP9, HNRNPA2B1
M1712 RPL10A, RPL29, PFDN5, RPL12, RPS19, RPS10, RPL11, RPL8, FAU,

RPS12
M1661 CHAF1A, SPAG5, MCM3, MCM4, HMMR, CDC6, MCM7, FEN1, FANCI,

KIFC1, NCAPD2, LMNB2, WHSC1, LMNB1, FAM131B, CYP2C18
M1472 RPL19, RPS12, RPL10A, RPS20, RPS29, UBB, RPS6, RPL27, RPS27, RPS17
M932 RPS13, RPS15A, RPS6, RPL12, RPL11
M1585 CKS2, TRIP13, MKI67, FOXM1, BIRC5, KIF2C, AURKB, ESPL1, STMN1,

TK1, PPP2R5E, ZPBP, CYP2C18
M441 RPL29, RPS3A, RPL11, RPS8, PFDN5, RPL31, RPS10, RPL3, RPS6, RPS17,

RPS7, RPL10A, NACA, RPL17, RPL9
M32 MAD2L1, H2AFZ, RRM1, HMGB2, MCM6, DEK, HAT1, SFRS3, PPP2R5E
M1731 ATP5L, RPS21, FAU, RPS29, RPS13, COX7A2, RPS25, ATP5I, RPS12,

RPS17, RPS27A, EIF3F, RPL31, RPS23, RPS10, RPS15A, EIF3H, RPS27
M2001 RPL10, GNB2L1, RPS20, RPS6, RPS4X, RPL9, GNAS, PPP2R5E
M3676 COX7B, DBI, CYCS, COX6C, HSPE1
M1666 RPL13, PTMA, RPS2, RPL19, RPS16
M1464 RPS11, RPS15A, RPL29, RPL10A, RPS27
M2589 NASP, SMC4, POLD1, MCM2, HPRT1
M1739 RPLP1, RPL17, RPL13, RPS15, RPL4
M1604 BUB1, CENPE, PLK4, CENPF, GTSE1, KIF11, POLD1, PTTG1, FANCI,

KIF23, NCAPD2, AURKA, MYBL2, KIFC1, CENPA, FAM131B
M709 ILF3, MCM7, SSRP1, NONO, PTBP1, MCM3, MCM2, PPP2R5E
M1468 RPS9, RPS21, RPL10A, RPS19, RPL27
M1121 RPS12, RPL4, RPS13, EIF3E, RPS20
M3718 NDUFB5, NDUFB6, ATP5J2, COX7B, NDUFB3

Continued on next page
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Table S2 – continued from previous page
from rep-
resentative
RHS/module

member genes of the module

M426 RPS7, HNRNPA1, NACA, SNRPE, RPL17, TOMM20, RBMX, EIF3H,
EIF3E, UBA2

M115 RPS20, RPL30, RPS27, RPL11, RPS13, RPS12, FAU, RPL31, RPS8, RPS21,
RPL24, RPL9, RPS4X, RPS3A, RPS16

M1084 RPL27, RPS13, NPM1, RPL30, RPS25, RPS24
M1617 RUVBL2, CKS1B, TRIP13, TUBB2C, SNRPA, KIF2C, MKI67
M3308 TRIM28, FBL, SNRPB, SNRPA, FARSA
M898 COX6B1, NDUFAB1, UQCRQ, COX8A, ATP5L, COX7A2
M1137 BTF3, COX7C, RPL11, RPL7, RPL10A, RPS7, RPL9, RPS3A, COX7A2L,

RPL24
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Figure S7. Comparison between weighted and unweighted network analysis in terms of protein
complex and pathway homogeneity.
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Figure S8. Comparison between weighted and unweighted network analysis in terms of
transcriptional homogeneity.
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