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1. Sample Progression Discovery (SPD) results on cell cycle time series 
 
In cell cycle time series data, the correct order of the samples during the progression of cell cycle 
was known but not used in SPD. Our goal was to test whether SPD could recover the progression 
among the samples, and identify genes that reflect the progression. We applied SPD to only 
samples in one cell cycle, because we did not want SPD to make inference based on the cyclic 
behavior of cell cycle regulated genes.  
 
Five cell cycle time series are available in (Whitfield et al. 2002). A brief summary of the five 
time series can be found in the following table.  
 
 
Datasets Total number 

of samples  
Number cell 
cycles covered 

Number of samples 
in the first cycle 

1 12 2 7 
2 26 3 15 
3 48 3 17 
4 19 2 11 
5 9 1 8 

Table S1. Summary of the five cell cycle time series in (Whitfield et al. 2002). 
 
 
For each of the five datasets, feature selection was performed based on the standard deviation (SD) 
of each gene. An SD threshold was chosen such that ~3000 genes passed the threshold. SPD 
clustered genes into co-expressed modules, using an iterative consensus k-means approach. One 
minimum spanning tree (MST) was constructed based on each module. By evaluating the 
statistical fit between the modules and the MSTs, SPD constructed a similarity matrix that 
described the progression similarity between modules, i.e. Figure 2 (a, b) in the main text. Based 
on the progression similarity matrix, similar modules that shared common progression were 
identified. SPD then constructed an overall MST to describe the common progression supported 
by the identified modules. The common progression pattern and the supporting modules are 
the outputs of the SPD framework. 
 
In the following, SPD results of the five time series are shown in an order according to the 
number of samples in the first cycle.  



1.1. SPD applied to cell cycle dataset 3 
 
Dataset 3 contained the largest number of samples in the first cell cycle, 17 samples. We chose an 
SD threshold to obtain about ~3000 high variance genes. The SD threshold for this dataset was 
0.3, and 3196 genes passed the threshold. Clustering parameters were L=200, c_1=0.7, c_2=0.9. 
SPD recovered the correct time order, and nine associated gene modules. The identified 
progression order and the mean expression of the nine modules were shown in the main text. We 
used MSigDB (Subramanian et al. 2005) to annotate the identified modules, as shown in Table S2, 
where we observed enrichment of cell cycle, E2F targets, etc. 
 
Modules geneset name p value 
all 9 modules SERUM_FIBROBLAST_CELLCYCLE 8.77E-38 
 BRENTANI_CELL_CYCLE 3.69E-26 
 LEE_TCELLS2_UP 3.97E-26 
 BRCA_ER_NEG 3.09E-23 
 CELL_CYCLE 3.48E-23 
 HSA04110_CELL_CYCLE 3.86E-23 
 CELL_CYCLE_KEGG 1.68E-19 
 LEI_MYB_REGULATED_GENES 2.52E-17 
 CROONQUIST_IL6_RAS_DN 8.68E-15 
 CELLCYCLEPATHWAY 2.52E-13 
   
Module-3 SERUM_FIBROBLAST_CELLCYCLE 1.22E-34 
 HOFFMANN_BIVSBII_BI_TABLE2 2.66E-23 
 LEE_TCELLS3_UP 1.60E-21 
 TARTE_PLASMA_BLASTIC 4.52E-20 
 BRENTANI_CELL_CYCLE 3.79E-19 
 LEE_TCELLS2_UP 5.33E-19 
 CROONQUIST_IL6_STARVE_UP 5.50E-18 
   
Module-4 AD12_48HRS_DN 3.02E-18 
 AD12_ANY_DN 1.00E-17 
 AD12_24HRS_DN 7.53E-17 
 AD12_32HRS_DN 2.90E-15 
 BRCA_ER_NEG 5.62E-13 
 BREAST_CANCER_ESTROGEN_SIGNALING 3.81E-12 
   
Module-5 DOX_RESIST_GASTRIC_UP 1.39E-07 
 CELL_CYCLE 9.95E-07 
 SERUM_FIBROBLAST_CELLCYCLE 4.44E-06 
 REN_E2F1_TARGETS 7.21E-05 
 LEE_MYC_E2F1_UP 9.38E-05 
   
Module-6 BOQUEST_CD31PLUS_VS_CD31MINUS_UP 6.05E-08 
 CMV_HCMV_TIMECOURSE_ALL_DN 6.15E-07 
 BROCKE_IL6 9.47E-07 
 KRETZSCHMAR_IL6_DIFF 9.47E-07 
 UVB_NHEK1_C2 2.61E-06 
   
Module-10 V$E2F1_Q6_01 1.18E-07 
 V$E2F1DP1RB_01 4.05E-07 
 V$E2F1_Q3 4.05E-07 
 SGCGSSAAA_V$E2F1DP2_01 4.05E-07 
 V$E2F_Q6 1.14E-06 
 V$E2F1_Q6 1.14E-06 

Table S2. Gene set annotations of the modules identified by SPD.  
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1.2. SPD applied to cell cycle dataset 2 
 
The second largest dataset contained 15 samples in the first cell cycle. We used SD threshold 0.4, 
and obtained 3449 high variance genes. Clustering parameters were L = 200, c_1 = 0.7, c_2 =0.9.  
 
SPD identified five modules that supported a common progression shown in Figure S1. From the 
middle to the upper right corner, time points 0 ~ 9 were arranged in the correct order. Time point 
10 ~ 15 were roughly aligned from the upper left corner to the middle. It appeared that an edge 
between samples t=9 and t=10 was missing.  
 
Since the samples represented one cell cycle, the starting and ending time points were similar, 
which explained why samples t=0 and t=15 were connected. Since MST did not allow circles, 
SPD chose to break the edge between t=9 and t=10 in this example. Therefore, we consider the 
identified progression tree roughly correct. 

 

 
Figure S2. Average expression of the SPD identified modules using data from three cell cycles. 

Figure S1. Sample progression order identified by SPD. 



 
The MSigDB annotations of the identified modules were listed in Table S3. We again observed 
enrichment of cell cycle and E2F targets. This was quite consistent with the gene set enrichment 
result in the previous dataset.  
 
all 5 modules SERUM_FIBROBLAST_CELLCYCLE 2.10E-30 
 CELL_CYCLE 2.88E-25 
 HSA04110_CELL_CYCLE 4.43E-24 
 CELL_CYCLE_KEGG 6.20E-23 
 BRENTANI_CELL_CYCLE 1.28E-21 
 GAY_YY1_DN 6.83E-20 
 IDX_TSA_UP_CLUSTER3 5.17E-18 
 TARTE_PLASMA_BLASTIC 9.83E-18 
   
module 1 BRENTANI_CELL_CYCLE 3.90E-16 
 SERUM_FIBROBLAST_CELLCYCLE 1.85E-15 
 GOLDRATH_CELLCYCLE 3.67E-12 
 TARTE_PLASMA_BLASTIC 2.82E-11 
 CELL_CYCLE 2.75E-09 
 CELL_CYCLE_KEGG 4.47E-09 
   
module 5 V$E2F1_Q6_01 1.07E-19 
 CMV_IE86_UP 1.20E-18 
 V$E2F_Q3 2.21E-18 
 CELL_CYCLE 2.86E-18 
 V$E2F1DP1RB_01 3.19E-18 
 V$E2F1_Q6 3.59E-18 
 V$E2F_Q6 3.59E-18 
   
module 10 V$BRN2_01 1.61E-05 
 XU_ATRA_DN 3.22E-05 
 HINATA_NFKB_DN 8.63E-05 
   
module 31 LIAN_MYELOID_DIFF_RECEPTORS 3.27E-06 
 GCTGAGT,MIR-512-5P 9.21E-06 
 CK1PATHWAY 8.14E-05 

Table S3. Gene set annotations of the modules identified by SPD.  
 
 
 



1.3. SPD applied to cell cycle dataset 4 
 
Dataset 4 contained 11 samples in the first cell cycle. We chose SD threshold 0.45 to obtain 3113 
genes with high variance. Clustering parameters were L = 200, c_1 = 0.8, c_2 =0.9.  
 
SPD identified eight gene modules that supported a common progression in Figure S3. The 
correct time order was perfectly recovered. The mean expressions of the eight modules were 
computed, in Figure S4. 
 

 

 
Figure S4. Average expression of the SPD identified modules in two cell cycles. 
 

Figure S3. Sample progression order identified by SPD. 



The eight identified modules were annotated using gene sets in MSigDB, Table S4. Consistent 
with the results in the previous two cell cycle time series, we observed enrichment of cell cycle 
genes and E2F targets.  
 
all 8 modules SERUM_FIBROBLAST_CELLCYCLE 7.81E-42 
 LEE_TCELLS2_UP 2.01E-23 
 HOFFMANN_BIVSBII_BI_TABLE2 1.19E-21 
 TARTE_PLASMA_BLASTIC 7.81E-21 
 BRENTANI_CELL_CYCLE 1.38E-19 
 CELL_CYCLE 3.81E-18 
 LEE_TCELLS3_UP 4.71E-18 
 CANCER_UNDIFFERENTIATED_META_UP 7.65E-18 
 CELL_CYCLE_KEGG 1.14E-17 
 HSA04110_CELL_CYCLE 1.82E-17 
   
module 9 SERUM_FIBROBLAST_CELLCYCLE 6.03E-16 
 CMV_IE86_UP 3.21E-11 
 VHL_NORMAL_UP 8.56E-09 
 CANCER_UNDIFFERENTIATED_META_UP 1.69E-08 
 RCC_NL_UP 3.90E-08 
 LAMB_CYCLIN_D3_GLOCUS 4.26E-08 
   
module 12 SERUM_FIBROBLAST_CELLCYCLE 4.05E-28 
 HOFFMANN_BIVSBII_BI_TABLE2 2.20E-16 
 BREAST_DUCTAL_CARCINOMA_GENES 3.87E-16 
 LEE_TCELLS3_UP 1.97E-15 
 BRENTANI_CELL_CYCLE 2.17E-14 
 TARTE_PLASMA_BLASTIC 1.04E-13 
 GOLDRATH_CELLCYCLE 1.38E-13 
   
module 21  NELSON_ANDROGEN_UP 4.43E-08 
 LEI_MYB_REGULATED_GENES 6.20E-08 
 ET743_HELA_UP 4.90E-07 
 RUTELLA_HEMATOGFSNDCS_DIFF 6.90E-06 
 SHEPARD_NEG_REG_OF_CELL_PROLIFERATION 9.00E-06 
   
module 37 V$E2F1_Q3 5.73E-08 
 SGCGSSAAA_V$E2F1DP2_01 1.61E-07 
 CMV_IE86_UP 8.34E-07 
 KNUDSEN_PMNS_DN 8.40E-07 
 V$E2F_Q3 8.62E-07 
 V$E2F1_Q4_01 9.30E-07 
   
module 47 HSA04510_FOCAL_ADHESION 7.53E-06 
 TGFBETA_ALL_UP 1.89E-05 
 GRAEBER_BETA2_INTEGRINS 2.27E-05 
 TGFBETA_C4_UP 2.27E-05 

Table S4. Gene set annotations of the modules identified by SPD.  
 



1.4. SPD applied to cell cycle datasets 1 and 5 
 
Datasets 1 and 5 were relatively small, containing 7 and 8 samples, respectively. We applied SPD 
to these two datasets. The identified progression patterns, Figures S5 and S6, were not consistent 
with the true time order.  
 
The reason is as follows. SPD assumes that the underlying progression pattern can be reflected by 
the gradual shift in the expression of subsets of genes. If the progression process is not 
sufficiently probed, meaning that if there are not enough sample points, the time order of the 
samples can no longer be reflected by the gradual shift in expression. Lack of data points resulted 
in the inconsistency between the SPD results and the true time order.   
 

 

Figure S5. In dataset 1, the progression identified by SPD is not consistent 
with the time order.  

Figure S6. In dataset 5, the progression identified by SPD is not consistent 
with the time order.  
 



1.5 Robustness of SPD via bootstrap and leave-one-out cross validation 
 
We performed two tests to evaluate the robustness of SPD, bootstrap and leave-one-out cross 
validation.  
 
In our bootstrap analysis, we used cell cycle dataset 3 as example. We performed 100 iterations of 
bootstrap. In each of the 100 iterations, 90% of the 3196 genes were randomly selected. SPD was 
applied to the bootstrapped data. All three steps were performed: clustering, MST construction 
and statistical comparison. Topological overlap measure (TOM) (Yip and Horvath 2007) distance 
was used to evaluate the distance between the identified progression and the true time order. The 
mean TOM distance was 5.36, and the standard deviation was 3.37. The standard deviation of the 
TOM distance appeared to be comparable to the mean because of the statistical property of this 
distance metric. The TOM distances of the two worst iterations were 16.2 and 12.7, and the 
corresponding SPD results were visualized in Figure S7, which were quite consistent with the 
true time order. Therefore, although the variance of the bootstrapped TOM distance appeared to 
be large, the identified progression pattern was quite stable during bootstrap. 
 
The statistical significance of the bootstrapped TOM distance should be viewed in conjunction 
with random permutation analysis. We randomly generated 1000 MSTs, and computed the TOM 
distance between the random MSTs and the true time order. The mean and standard deviation of 
the empirical null distribution of TOM was 59.21 ± 8, far away from the TOM distances obtained 
during bootstrap. Therefore, the TOM distances in all of the 100 bootstrap iterations were 
significant compared to the random permutation. 
 
To evaluate this statistical significance, we considered permuting the expression data for each 
gene separately and generate p-value from permuted data. The problem with this approach is as 
follows: in the progression similarity matrix, we will not observe modules that are similar in 
terms of progression (the diagonal block in Figure 2 a,b in the main text). Note that the overall 
MST is constructed based on a set of modules that are similar in terms of progression (the 
diagonal block). If we permute the data gene by gene, we will not be able to obtain such a 
diagonal block and MST that are comparable to result from the original data. That is why we 
decided to randomly generate MSTs to evaluate the significance. We admit that the random trees 
may not exactly represent the true empirical null distribution. The complexity of the SPD 
framework makes it difficult to get a null distribution by permuting the data. This is a point that 
worth further consideration. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S7. The two bootstrap iterations with worst/largest TOM distance, (a) 16.2 and 
(b) 12.7  



 
We also performed leave-one-out cross validation (LOOCV). In each of the 17 leave-one-out 
iterations, we left out one sample, and applied SPD to extract the progression among the 
remaining samples. When we left out the second sample, for example, we expected SPD to 
recover the linkage between the first and the third sample. TOM distance was used to evaluate the 
distance between the SPD identified progression and the true time order. The mean TOM distance 
was 6.12, and the standard deviation was 4.45.  
 
 
 
 
1.6 Robustness of SPD with respect to the gene clustering component 
 
In practice, when we analyze microarray gene expression data using SPD, we always set L = 200, 
c2 = 0.9. The choice of the parameter c1 depends on the correlation structure in the data. If there 
are many gene pairs that share large correlation, we typically set c1 = 0.8. If relatively few gene 
pairs share high correlation, we set c1 to be smaller, c1 = 0.6, in order to get gene modules of 
reasonable sizes (at least > 5 genes). In our software implementation of SPD (available 
at http://icbp.stanford.edu/software/SPD/), we implemented another clustering algorithm, which 
is agglomerative. This algorithm does not need the parameter L, but it still needs c1 and c2. Again, 
we set c2=0.9, and choose the value of c1 according to the strength of correlation within the data. 
 
Different choices of clustering parameters will inevitably lead to different gene clustering results. 
Such differences may propagate into the subsequent steps of SPD and the final progression 
structure. In this subsection, we evaluate the robustness of SPD with respect to the parameter 
settings. We also include the agglomerative clustering algorithm in the SPD software in addition 
to the divisive consensus clustering algorithm described in the Method section of the main text.  
 
We used the cell cycle data behind Figure 1 of the main text for this analysis, varied the algorithm 
and parameters of the clustering step, and examined the final progression tree. For the divisive 
consensus clustering algorithm, we set c2 = 0.9, and varied the parameters L and c1. For the 
agglomerative clustering algorithm, we set c2=0.9, and varied the choice of c1. As expected, 
different clustering algorithms and parameters produced different gene clusters. However, the 
final progression tree is robust. In Figures S8-S12, we show the progression similarity matrix and 
the overall MST for each parameter setting. From these figures, we can observe that the overall 
MST is reproducible. 
 
Figures S8-S12 only show results of one run for each parameter setting. Since both the divisive 
and agglomerative clustering algorithms contain randomness, we may get different clustering 
results in multiple runs with the same parameter setting. The run-to-run variations of the 
clustering results may also lead to difference in the progression similarity matrices and the overall 
MSTs. However, we found that the overall MSTs are consistent across multiple runs. This is also 
shown in the bootstrap analysis in the previous subsection. 
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Figure S8. SPD result of the cell cycle dataset. Divisive clustering was performed, with 
parameters L = 150, c1 = 0.85, c2 = 0.9. The left panel is the progression similarity matrix; the 
right panel is the overall MST.  
 
 
 
 
 

 
Figure S9. SPD result of the cell cycle dataset. Divisive clustering was performed, with 
parameters L = 150, c1 = 0.75, c2 = 0.9. The left panel is the progression similarity matrix; the 
right panel is the overall MST. 
 
 
 
 
 
 
 
 



 
 
 
 

 
Figure S10. SPD result of the cell cycle dataset. Divisive clustering was performed, with 
parameters L = 300, c1 = 0.65, c2 = 0.9. The left panel is the progression similarity matrix; the 
right panel is the overall MST. 
 
 
 
 
 

 
Figure S11. SPD result of the cell cycle dataset. Agglomerative clustering was performed, with 
parameters c1 = 0.85, c2 = 0.9. The left panel is the progression similarity matrix; the right panel 
is the overall MST. 
 
 
 
 
 
 
 
 



 
 
 
 

 
Figure S12. SPD result of the cell cycle dataset. Agglomerative clustering was performed, with 
parameters c1 = 0.65, c2 = 0.9. The left panel is the progression similarity matrix; the right panel 
is the overall MST. 
 
 
 
 
1.7 Diameter of the SPD identified progression  
 
SPD can serve as a hypothesis generation tool, when applied to microarray datasets where the 
progression is unclear or even not exist, i.e. most existing cancer microarray datasets. In such 
cases, SPD assumes that: cancer development follows a certain progression process; cancer 
samples collected from individual patients represent different stages of cancer progression; the 
correct order among the samples may lay out a pathway or trajectory of cancer progression. 
Under these assumptions, SPD identifies a progression among the samples and gene modules 
whose gradual shifts reflect the identified progression.  
 
The identified progression is a hypothesis to be tested. Before wet-lab experimental tests, the 
biological relevance of the SPD result can be assessed by its diameter (defined as the number of 
edges in the shortest path between the furthest pair of nodes).  
 
For example, we randomly generated 1000 17-node MSTs, and computed their diameters. The 
mean was 7.7 ± 1.4. In the cell cycle dataset 3, which contained 17 samples, the diameter of the 
SPD result was 15.  The probability of obtaining such a large diameter by chance was very small, 
which implied that the SPD finding was statistically significant and was likely to be biologically 
relevant. And indeed, the identified progression was consistent with the progression of cell cycle. 
 
Therefore, when we analyze a dataset where the progression pattern is unknown, if the identified 
progression has large diameter, it is less likely to happen by chance and thus more likely to be 
biologically meaningful.  
 
 
 



2. SPD results on B-cell differentiation data 
 
module-1 BOQUEST_CD31PLUS_VS_CD31MINUS_UP 0.000180584 
 CHIARETTI_T_ALL 0.000164694 
 MARTINELLI_IFNS_DIFF 6.31E-05 
 CHIARETTI_T_ALL_DIFF 9.69E-05 
 VERHAAK_AML_NPM1_MUT_VS_WT_UP 3.09E-05 
   
module-2 Bhattacharya_DownMemB_vs_NaiveB 5.13E-05 
 LEE_TCELLS2_UP 1.50E-05 
 CAGTGTT,MIR-141,MIR-200A 0.000188404 
   
module-3 SHEPARD_BMYB_MORPHOLINO_UP 0.00016788 
 AACTGAC,MIR-223 2.52E-05 
   
module-4 IS_244_GC_B_cell_BL_equal_DLBCL 3.83E-05 
   
module-5 Bhattacharya_UpMemB_vs_GC 8.09E-05 
 IS_Hystad_list_Processed 3.51E-05 
 KLEIN_PEL_DN 2.67E-05 
 Bhattacharya_UpMemB_vs_Plasma 2.73E-07 
 WIELAND_HEPATITIS_B_INDUCED 1.66E-09 
 Bhattacharya_UpNaiveB_vs_GC 6.10E-05 
 BASSO_GERMINAL_CENTER_CD40_UP 4.54E-05 
 HSA04662_B_CELL_RECEPTOR_SIGNALING_PATHWAY 9.24E-07 
 IS_38_Resting_blood_B_cell_GNF 5.00E-08 
 IS_88_Blimp_Bcell_repressed 5.99E-10 
 IS_34_Pan_B_U133plus 8.93E-06 
 CARIES_PULP_UP 4.17E-07 
 BLEO_HUMAN_LYMPH_HIGH_24HRS_UP 2.52E-05 
 Bhattacharya_UpNaiveB_vs_Plasma 6.60E-06 
 IS_57_CD40_upregulated_Burkitt_lymphoma 2.69E-05 
 CARIES_PULP_HIGH_UP 0.000148813 
 HSA04612_ANTIGEN_PROCESSING_AND_PRESENTATION 6.71E-05 
 SANA_IFNG_ENDOTHELIAL_UP 0.000145208 
   
module-6 IS_Hystad_list_Processed 2.34E-07 
 ZHAN_MM_MOLECULAR_CLASSI_DN 1.72E-05 
   
module-7 Fortunel_NPC_vs_RPC 8.09E-05 
 ROME_INSULIN_2F_UP 1.52E-06 
 HUMAN_MITODB_6_2002 0.000102532 
 HSA00190_OXIDATIVE_PHOSPHORYLATION 8.51E-05 
 JISON_SICKLECELL_DIFF 9.53E-05 
 UVB_NHEK2_UP 3.37E-05 
 IFN_BETA_GLIOMA_DN 8.05E-05 
 Fortunel_RPC 3.52E-05 
 Wong_Mouse_ESC_module 4.68E-05 
 IS_10_Proliferation_DLBCL 1.41E-16 
 Ben-Porath_Myctargets2 5.55E-05 
 Kim_Myc_targets 2.54E-05 
 PGC 6.27E-07 
 RIBOSOMAL_PROTEINS 8.06E-13 
 PENG_RAPAMYCIN_DN 8.01E-06 
 MOOTHA_VOXPHOS 3.10E-06 
 IS_77_Tcell_cytokine_induced_prolif 4.28E-05 
 Chen_Zfx_geneassociations 0.00010474 
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 Wong_Human_ESC_module 4.17E-08 
 CANCER_UNDIFFERENTIATED_META_UP 2.20E-06 
 ELECTRON_TRANSPORT_CHAIN 2.06E-05 
 MITOCHONDRIA 8.23E-05 
 MycTargetDB 4.83E-05 
 UVB_NHEK1_UP 3.10E-05 
 SC_Ben-Porath_Myctargets2 5.55E-05 
 HSA03010_RIBOSOME 4.99E-11 
 IS_49_Ribosomal_protein 7.01E-09 
 Wong_Core_ESC_module 3.55E-08 
 Chen_c-Myc_geneassociations 5.87E-05 
   
module-8 HADDAD_HPCLYMPHO_ENRICHED 1.58E-08 
 IS_Hystad_list_Processed 1.43E-04 
 IS_56_CD40_downregulated_Burkitt_lymphoma 1.42E-04 
 HADDAD_HSC_CD10_UP 5.31E-09 
 Schebesta_Pax5_activated 1.62E-05 
   
module-9 HSC_HSCANDPROGENITORS_SHARED 8.08E-06 
 HSC_HSCANDPROGENITORS_FETAL 8.08E-06 
 HSC_HSCANDPROGENITORS_ADULT 1.08E-05 
   
module-10 IS_Hystad_list_Processed 9.24E-07 
 Jensen_CellCycle 7.97E-05 
 SC_Ben-Porath_CellCyclinggenes 5.22E-06 
 Wong_Mouse_ESC_module 1.19E-06 
 Bhattacharya_DownMemB_vs_Plasma 1.93E-05 
 GOLDRATH_CELLCYCLE 7.10E-06 
 IS_157_Cell_cycle_Liu 7.42E-07 
 CROONQUIST_IL6_RAS_DN 8.82E-06 
 Ben-Porath_CellCyclinggenes 5.22E-06 
 Ben-Porath_Proliferationgenes 1.89E-05 
 IS_147_Cell_cycle_Whitfield 3.34E-05 
 Bhattacharya_DownNaiveB_vs_GC 3.69E-05 
 LEE_TCELLS3_UP 1.04E-06 
 SC_Ben-Porath_Proliferationgenes 1.89E-05 
 Bhattacharya_DownMemB_vs_GC 1.03E-07 

Table S5. Gene set annotations of the SPD identified modules in the B-cell differentiation dataset.  
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3. SPD identified a landscape of mouse embryonic stem cell differentiation 
 
When applied to mouse embryonic stem cell differentiation data, SPD identified 35 modules that 
supported a common progression pattern. We annotated modules by comparison to known gene 
sets in MSigDB, and by examining the relationship between their constituent genes using 
Ingenuity Pathways Analysis (IPA). In the following, we show the annotations of the 7 modules 
discussed in the main text, and the progression trees color-coded according to the expression of 
the 7 modules. 
 

 
module-228 
 
 
 
 
 
 
 
 
 
 
 

Chen_Suz12_geneassociations 7.65E-09 
SC_Margueron_Ezh1 1.79E-07 
SC_Margueron_Ezh2 6.79E-06 
Maherali_iPS-ES_methylation_similar 1.04E-05 
Boyer_H3K27_bound 1.47E-05 
SC_Ben-Porath_Suz12targets 1.45E-05 
Ben-Porath_Suz12targets 1.45E-05 
Boyer_Eed_bound 3.55E-05 
Ben-Porath_PRC2targets 6.24E-05 
SC_Ben-Porath_PRC2targets 6.24E-05 
Lee_Suz12_bound 9.31E-05 

 
Figure S13. The SPD identified progression tree color-coded by the mean expression of module-
228. Blue means low expression; red means high expression; green/yellow means medium. We 
observed that module-228 was progressively induced in all differentiating lineages. This module 
was enriched by targets of Suz12 and Ezh1. 
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module-54 
 
 
 
 
 
 
 
 
 
 
 

Kim_Myc_targets 2.58E-10 
Chen_c-Myc_geneassociations 9.42E-10 
Chen_n-Myc_geneassociations 3.35E-09 
Fortunel_ESC 3.62E-06 
Wong_Mouse_ESC_module 2.07E-05 
Chen_E2f1_geneassociations 7.86E-05 
SANSOM_APC_LOSS5_UP 9.04E-05 
STEMCELL_EMBRYONIC_UP 9.96E-05 
IS_167_Myc_overexpression_1.5x_up 0.00016 
IS_168_Myc_overexpression_2x_up 0.000286 
Ivanova_Down_RA_TC 0.000302 

 
Figure S14. Progression color-coded by module-54, which was gradually down-regulated in each 
differentiating branch. This module was enriched by Myc targets.  
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module-55 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kim_Myc_targets 1.68E-07 
Sato_HSC_Enriched_SOURCE 6.85E-07 
Chen_c-Myc_geneassociations 1.29E-06 
Chen_n-Myc_geneassociations 1.11E-05 
HSA00240_PYRIMIDINE_METABOLISM 1.41E-05 
Sato_HSC_MouseAndHuman_enriched_SOURCE 2.79E-05 
Wong_Mouse_ESC_module 3.25E-05 
Fortunel_ESC 4.87E-05 
Wong_Human_ESC_module 0.000108 
FERRANDO_MLL_T_ALL_DN 0.000119 
YU_CMYC_UP 0.000205 
Fortunel_RPC 0.000221 
Chen_E2f1_geneassociations 0.000273 
PYRIMIDINE_METABOLISM 0.000289 
VeneziaHSC_cPsig 0.000342 

 
Figure S15. Progression color-coded by module-55, which was gradually down-regulated in each 
differentiating branch. This module was enriched by Myc targets and genes involved in Oct4 
maintenance of pluripotency. 
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module-329 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bracken_PolycombSuppTable3 2.33E-20 
SC_Bracken_PolycombSuppTable3 2.33E-20 
Lee_H3K27me3_bound 1.11E-09 
Ben-Porath_H3K27bound 1.45E-09 
SC_Ben-Porath_H3K27bound 1.45E-09 
Maherali_ES-MEF_2folddiff 3.22E-09 
IS_96_CNS_PNS_Node1663 1.17E-08 
Ivanova_Down_Pattern2 6.48E-07 
SC_Margueron_Ezh2 8.07E-07 
Chen_Suz12_geneassociations 6.23E-06 
Mathur_Nanog4KO_Down 7.30E-06 
Boyer_H3K27_bound 8.49E-05 
Mathur_Oct4KO_Down 0.000123 
Lee_Eed_bound 0.000168 
TAKEDA_NUP8_HOXA9_10D_UP 0.00027 
STRIATED_MUSCLE_CONTRACTION 0.000459 
Ben-Porath_Eedtargets 0.000477 
SC_Ben-Porath_Eedtargets 0.000477 

 
Figure S16. Progression color-coded by module-329, which was progressively down-regulated in 
all lineages except the neural lineage, which suggested particular subsets of tissue-specific genes. 
This module was enriched by targets of the Ezh2/Polycomb complex. 
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module-65 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ivanova_Nanog_shRNA 2.80E-07 
Krivtsov_HSC_Up_vs_normal 4.35E-07 
Mikkelsen_Down_iPS-ES 1.17E-06 
Ivanova_Oct4_shRNA 2.47E-06 
Wu_Myc_ReversiblyInduced 4.60E-06 
Wong_Mouse_AdultSC_module 6.18E-06 
Ivanova_Up_Pattern2 1.01E-05 
SC_Margueron_Ezh2 1.05E-05 
Ivanova_AffectedOne_shRNA_TC 1.29E-05 
Mathur_Oct4KO_Up 1.65E-05 
Wu_Myc_PermInduced 6.20E-05 
Boyer_H3K27_bound 7.47E-05 
IS_31_Monocyte_4x_U133plus 0.000109 
Krivtsov_LeukemicGMP_Up_vs_normal 0.000165 
CMV_24HRS_DN 0.000291 

 
Figure S17. Progression color-coded by module-65, which was strongly induced in trophoblast 
differentiation, and modestly in the other branches. This module contained numerous genes that 
are induced by shRNA knockdown Sox2, as well as apoptosis-related genes.  
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Figure S18. Progression color-coded by module-3, which was highly specifically regulated along 
the trophoblast differentiation branch. IPA analysis indicated that this module was highly 
enriched with targets of tumor necrosis factor TNF, (gray nodes are genes in module-3 that are 
close to TNF). 



 
 

 
module-123 
 
 

CELL_MOTILITY 3.51E-05 
Monocyte_T0_UP 0.000154 
ACTINYPATHWAY 0.000256 

 
Figure S19. Progression color-coded by module-123, which was highly specifically regulated 
along the trophoblast differentiation branch. This module was enriched by cell motility genes, 
which was consistent with the invasive character of trophoblasts. 
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4. SPD applied to a prostate cancer dataset  
 
We applied SPD to a prostate cancer microarray dataset (GSE6919). This dataset contains normal 
prostate tissue free of any pathological alteration from organ donor, normal prostate tissue 
adjacent to tumor (NAP), tumor samples, and metastatic prostate tumor samples (Mets). An 
arbitrary standard deviation threshold of 0.6 was chosen to select genes that have high standard 
deviation. 5670 genes passed the threshold.  We clustered the genes using an agglomerative 
algorithm implemented in our software (http://icbp.stanford.edu/software/SPD/). The clustering 
parameters were: c1 = 0.7, c2 = 0.9. In this dataset, the average correlation between genes was 
fairly small, which led to small modules. We excluded modules that contained less than 5 genes. 
After the clustering step, we obtained 46 modules that were coherent and had more than 5 genes. 
The total number of genes in these modules was 1007. SPD selected 12 modules (487 genes) that 
shared high progression similarity and derived a tree structure shown in Figure S20. Normal and 
metastatic samples are enriched at the left and right ends of the tree. Although NAP and tumor 
samples are mixed in the middle, NAP samples are more enriched near normal samples, while 
tumor samples are more enriched near the metastatic samples. The mix of NAP and tumor 
samples reflects possible field effect suggested by Chandran et al, 2005 in BMC Cancer: normal 
tissue adjacent to primary tumor is more similar to tumor than it is to normal tissues. This tree 
structure reflects the general trend we expected. In addition to this general trend, we also observe 
details that we did not expect to see: i.e. the normal samples mixed with NAP and tumor samples, 
the two branches of metastatic samples.  

 
Figure S20. SPD applied to a prostate cancer microarray dataset, GSE6919. 
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We color coded this tree structure using the average gene expression level of each of the 12 
modules, and observed several expression patterns across the tree. In Figure S21, we show 4 
modules that exhibit a similar pattern, high in normal and NAP samples, mid/high in tumor, and 
low in Mets. Gene set enrichment annotations of these 4 modules are listed in Table S6.  

 
Figure S21. SPD derived tree structure, color-coded by 4 of the 12 selected modules.  
 
Geneset name Description pvalue 
WEST_ADRENOCORTICAL_TUMOR_DN Down-regulated genes in pediatric adrenocortical tumors (ACT) 

compared to the normal tissue. 
0 

CHARAFE_BREAST_CANCER_LUMINAL
_VS_MESENCHYMAL_DN 

Genes down-regulated in luminal-like breast cancer cell lines compared 
to the mesenchymal-like ones. 

0 

LINDGREN_BLADDER_CANCER_CLUST
ER_2B 

Genes specifically up-regulated in Cluster IIb of urothelial cell carcinom 
(UCC) tumors. 

0 

VECCHI_GASTRIC_CANCER_EARLY_DN Down-regulated genes distinguishing between early gastric cancer 
(EGC) and normal tissue samples. 

0 

SABATES_COLORECTAL_ADENOMA_D
N 

Genes down-regulated in colorectal adenoma compared to normal 
mucosa samples. 

0 

DELYS_THYROID_CANCER_DN Genes down-regulated in papillary thyroid carcinoma (PTC) compared 
to normal tissue. 

0 

TURASHVILI_BREAST_DUCTAL_CARCI
NOMA_VS_DUCTAL_NORMAL_DN 

Genes down-regulated in ductal carcinoma vs normal ductal breast cells. 0 

BERTUCCI_MEDULLARY_VS_DUCTAL_
BREAST_CANCER_DN 

Genes down-regulated in medullary breast cancer (MBC) relative to 
ductal breast cancer (DBD). 

0 

LIU_PROSTATE_CANCER_DN Genes down-regulated in prostate cancer samples. 0 
TURASHVILI_BREAST_DUCTAL_CARCI
NOMA_VS_LOBULAR_NORMAL_DN 

Genes down-regulated in ductal carcinoma vs normal lobular breast 
cells. 

0 

CHANDRAN_METASTASIS_DN Genes down-regulated in metastatic tumors from the whole panel of 
patients with prostate cancer. 

0 

Table S6. Gene set enrichment of all genes in the 4 modules shown in Figure S21. 



 
The 5 modules in Figure S22 show a different expression pattern: low in normal and Mets, 
relatively high in NAP and tumor samples. The expression patterns in the middle part of the tree 
indicate that the NAP and tumor samples can be separated into three groups. This separation can 
also be observed in Figures S21 and S23. 
 
Another interesting observation is that, modules 17, 19 and 41 are show clear difference between 
the two branches in the upper right corner, which correspond to the metastatic samples. In this 
dataset, the metastatic samples were taken from liver, lymph nodes, adrenal gland, or kidney. The 
two branches do not correlate with the origin of the metastatic samples.  

 
Figure S22. SPD derived tree structure, color-coded by 3 of the 12 selected modules.  
 
 



 
 
Geneset name Description pvalue 
CHANDRAN_METASTASIS_DN Genes down-regulated in metastatic tumors from the whole panel of 

patients with prostate cancer. 
2.80E-11 

JAEGER_METASTASIS_DN Genes down-regulated in metastases from malignant melanoma 
compared to the primary tumors. 

6.93E-11 

ONDER_CDH1_TARGETS_2_DN Genes down-regulated in HMLE cells (immortalized nontransformed 
mammary epithelium) after E-cadhedrin (CDH1) knockdown by RNAi. 

4.95E-09 

COLDREN_GEFITINIB_RESISTANCE_DN Genes down-regulated in NSCLC (non-small cell lung carcinoma) cell 
lines resistant to gefitinib compared to the sensitive ones. 

6.56E-08 

CHARAFE_BREAST_CANCER_BASAL_V
S_MESENCHYMAL_UP 

Genes up-regulated in basal-like breast cancer cell lines as compared to 
the mesenchymal-like ones. 

1.75E-07 

CHARAFE_BREAST_CANCER_LUMINAL
_VS_MESENCHYMAL_UP 

Genes up-regulated in luminal-like breast cancer cell lines compared to 
the mesenchymal-like ones. 

3.10E-07 

DELYS_THYROID_CANCER_UP Genes up-regulated in papillary thyroid carcinoma (PTC) compared to 
normal tissue. 

8.09E-07 

CHARAFE_BREAST_CANCER_LUMINAL
_VS_BASAL_DN 

Genes down-regulated in luminal-like breast cancer cell lines compared 
to the basal-like ones. 

2.62E-06 

WU_CELL_MIGRATION Genes associated with migration rate of 40 human bladder cancer cells. 2.84E-06 
SABATES_COLORECTAL_ADENOMA_UP Genes up-regulated in colorectal adenoma compared to normal mucosa 

samples. 
6.64E-06 

MCBRYAN_PUBERTAL_BREAST_3_4WK
_UP 

Genes up-regulated during pubertal mammary gland development 
between weeks 3 and 4. 

2.80E-06 

Table S7. Gene set enrichment of all genes in the 4 modules shown in Figure S22. 
 
 
Although it is not surprising that genes previously identified as being down-regulated in 
metastases vs primary tumors show the same pattern here, it was unexpected that they were also 
less highly expressed in normal tissues than in primary tumors. Since these modules overlapped 
with changes in gene expression involved in metastasis in several epithelial cancers (not just other 
prostate studies), they may reflect general processes underlying the epithelial-mesenchymal 
transition and cell migration. Of note, one of the genes in this module was CDH3, a member of 
the cadherin family that interacts with CDH1. Targeted down-regulation of cadherins by RNA 
interference has been demonstrated to induce cell migration. However, up-regulation from normal 
to primary tumors followed by down-regulation in metastases has not been commented upon 
previously to our knowledge. 
 
We also applied IPA to the list of genes that comprised these modules. The most significant 
interaction network (p=1e-37) centered around genes involved in androgen and estrogen signaling, 
and influenced by beta-estradiol. Although estradiol is the predominant sex hormone in females, 
it is also produced in males as a metabolic product of testosterone. Androgen signaling generally 
has a pro-survival effect in prostate cancers. Thus one possible interpretation of the SPD result is 
that it reflects the fact that in primary tumors, androgen signaling up-regulation confers a 
selective advantage in the natural history of the tumor; but that some metastases develop 
androgen-independence. A priori, from gene expression profiles, it is unknown which metastases 
are androgen-independent; hence SPD may be identifying both androgen-independent samples, 
together with the genes whose changes in expression drive the phenomenon. 
 



The rest 3 of the 12 selected modules are shown in Figure S23. These three modules show high 
expression in the metastatic samples, while changes among other sample classes are relatively 
subtle. In Figure S23, we again observe the difference between the two branches that correspond 
to metastatic samples, and variation of expression in the middle part of the tree which 
corresponds to NAP and tumor samples.  
 

 
Figure S23. SPD derived tree structure, color-coded by 3 of the 12 selected modules.  
 
Geneset name Description pvalue 
SHEDDEN_LUNG_CANCER_POOR_SURV
IVAL_A6 

Cluster 6 of method A: up-regulation of these genes in patients with non 
small cell lung cancer (NSCLC) predicts poor survival outcome. 

7.66E-11 

ROSTY_CERVICAL_CANCER_PROLIFER
ATION_CLUSTER 

The 'Cervical Cancer Proliferation Cluster' (CCPC): genes whose 
expression in cervical carcinoma positively correlates with that of the 
HPV E6 and E7 oncogenes; they are also differentially expressed 
according to disease outcome. 

3.42E-10 

SOTIRIOU_BREAST_CANCER_GRADE_1_
VS_3_UP 

Up-regulated genes whose expression correlated with histologic grade of 
invasive breast cancer tumors: comparison of grade 1 vs grade 3. 

6.96E-10 

CHANDRAN_METASTASIS_UP Genes up-regulated in metastatic tumors from the whole panel of 
patients with prostate cancer. 

9.19E-10 

VECCHI_GASTRIC_CANCER_EARLY_UP Up-regulated genes distinguishing between early gastric cancer (EGC) 
and normal tissue samples. 

1.20E-08 

CROONQUIST_IL6_DEPRIVATION_DN Genes down-regulated in the ANBL-6 cell line (multiple myeloma, MM) 
after withdrawal of IL6. 

1.26E-08 

KOBAYASHI_EGFR_SIGNALING_24HR_D
N 

Genes down-regulated in non-small cell lung cancer resistant to gefitinib 
after treatment with EGFR inhibitor CL-387785 for 24h. 

3.50E-08 

CHANG_CYCLING_GENES Fibroblast serum response genes showing periodic expression during the 
cell cycle; excluded from the core serum response signature. 

5.73E-08 

PUJANA_BRCA2_PCC_NETWORK Genes constituting the BRCA2-PCC network of transcripts whose 
expression positively correlated (Pearson correlation coefficient, 
PCC >= 0.4) with that of BRCA2 [Gene ID=675] across a compendium 
of normal tissues. 

1.66E-07 

RUIZ_TNC_TARGETS_DN Genes down-regulated in T98G cells (glioblastoma) by TNC. 4.07E-07 

Table S8. Gene set enrichment of all genes in the 4 modules shown in Figure S23. 



5. SPD applied to microarray dataset of FL-DLBCL transformation 
 
Follicular lymphoma (FL) is a relatively indolent B-cell malignancy that frequently undergoes 
histological transformation to aggressive diffuse large B-cell lymphoma (DLBCL), with 
drastically worse patient prognosis. We used SPD to analyze a dataset consisting of 24 paired 
samples of FL and DLBCL, obtained from 12 patients before and after transformation Glas, et al 
2005. Without using the class information of the aggressiveness of the samples, SPD identified 
seven modules (426 genes in total) that fit well with a common progression pattern. As shown in 
Figure S24, the FL and DLBCL samples were perfectly separated. We used the canonical 
pathways in the Molecular Signatures Database (MSigDB) to annotate the 426 genes. The 
annotation results were listed in Table S9. We noticed enrichment of proliferation genes and 
embryonic stem cell genes. If we order samples from left to right, we observe a gradual increase 
of the expression of both the proliferation genes and the embryonic stem cell genes. This 
observation is consistent with our understanding that DLBCL is more highly proliferative than FL. 
This example further demonstrates that SPD is able to determine which features are relevant to 
the progression. Moreover, the connection with stem-cell related transcriptional programs 
resonates with recent findings in FL and other hematological malignancies, implicating a role for 
them in cancer progression and aggressiveness, Ben-Porath et al 2008, Wong et al 2008, Gentles 
et al 2009. 
 
 
 

 
Figure S24. SPD applied to FL and DLBCL samples. FL samples are colored gray. DLBCL 
samples are colored black. T1a is FL sample from patient 1; T1b corresponds to DLBCL samples 
from patient 1. 
 
 
 
 
 



 
all 7 modules  STEMCELL_NEURAL_UP 7.22E-41 
 TARTE_PLASMA_BLASTIC 1.70E-37 
 SERUM_FIBROBLAST_CELLCYCLE 1.64E-36 
 CANCER_UNDIFFERENTIATED_META_UP 9.81E-34 
 LEE_TCELLS2_UP 4.44E-33 
 STEMCELL_EMBRYONIC_UP 1.86E-30 
 BRCA_ER_NEG 3.02E-28 
 SERUM_FIBROBLAST_CORE_UP 6.11E-25 
 LI_FETAL_VS_WT_KIDNEY_DN 2.13E-23 
 CHANG_SERUM_RESPONSE_UP 3.09E-23 
   
module 1 SERUM_FIBROBLAST_CELLCYCLE 3.12E-29 
 LEE_TCELLS3_UP 9.27E-23 
 ZHAN_MM_CD138_PR_VS_REST 9.96E-21 
 CANCER_UNDIFFERENTIATED_META_UP 1.37E-18 
 LI_FETAL_VS_WT_KIDNEY_DN 5.67E-18 
 LEE_TCELLS2_UP 9.55E-18 
 IDX_TSA_UP_CLUSTER3 5.39E-17 
 BRCA_ER_NEG 3.88E-16 
 DOX_RESIST_GASTRIC_UP 1.94E-15 
 P21_P53_ANY_DN 6.32E-15 
   
module 2 PENG_GLUTAMINE_DN 2.01E-08 
 FLECHNER_KIDNEY_TRANSPLANT_WELL_UP 4.19E-06 
 CHANG_SERUM_RESPONSE_UP 4.33E-06 
 TMTCGCGANR_UNKNOWN 8.01E-06 
   
module 3 CANCER_UNDIFFERENTIATED_META_UP 2.33E-09 
 LEE_TCELLS2_UP 4.23E-09 
 STEMCELL_NEURAL_UP 2.23E-07 
 HDACI_COLON_BUT_DN 2.38E-07 
 BRENTANI_CELL_CYCLE 4.22E-07 
 TARTE_PLASMA_BLASTIC 1.05E-06 
 OLDAGE_DN 1.43E-06 
 ET743_SARCOMA_72HRS_DN 2.39E-06 
 IRITANI_ADPROX_LYMPH 2.89E-06 
 ET743_SARCOMA_DN 7.13E-06 
   
module 4 MANALO_HYPOXIA_DN 8.28E-17 
 CANCER_NEOPLASTIC_META_UP 1.32E-12 
 DNA_REPLICATION_REACTOME 1.18E-11 
 CMV_IE86_UP 1.59E-11 
 CHANG_SERUM_RESPONSE_UP 3.74E-11 
 SGCGSSAAA_V$E2F1DP2_01 1.28E-10 
 SERUM_FIBROBLAST_CORE_UP 6.38E-10 
 SERUM_FIBROBLAST_CELLCYCLE 6.89E-10 
 LEE_TCELLS2_UP 1.50E-09 



 STEMCELL_EMBRYONIC_UP 1.90E-09 
   
module 5 ONE_CARBON_POOL_BY_FOLATE 4.93E-08 
 STEMCELL_NEURAL_UP 5.11E-08 
 HSA00670_ONE_CARBON_POOL_BY_FOLATE 6.56E-08 
 TARTE_PLASMA_BLASTIC 1.01E-06 
 BREASTCA_TWO_CLASSES 1.40E-06 
 PENG_RAPAMYCIN_DN 1.67E-06 
 STEMCELL_EMBRYONIC_UP 3.88E-06 
   
module 6 STEMCELL_NEURAL_UP 4.94E-06 

Table S9. Gene set annotations of the SPD identified modules in FL-DLBCL transformation 
dataset.  
 
  
 


